
Classical Electrodynamics

Week 9

1. Consider an infinite cylinder of radius a carrying the current I. The cylinder is
surrounded by an insulator with magnetic permeability µ. A metallic cylindrical
surface of radius b > a conducts the current in the opposite direction.

Determine the magnetic field H, the magnetic induction B and the magnetiza-
tion M in every point in space. Find the free current density J and the average
microscopic current density ⟨j⟩.

Solution

The Maxwell equations of magnetostatics are

∇ ·B = 0

∇×H = J (1)

For a < r < b, when we calculate the circulation of H along a circle of radius r
we obtain ∫

H · dl =
∫

∇×H · dS =

∫
J · dS = I , (2)

where we have used the Stokes theorem, the second equation above and the
definition of current density. Since we know, because of the cylindrical symmetry,
that H = H(r)eϕ, we can write∫

H · dl = H(r)2πr , (3)

and thus

H =
I

2πr
eϕ . (4)

For r > b the total current is zero, so we have H = 0. For r < a, the current
relevant for H becomes Jπr2 = Ir2

a2
. Now that we have H, we can calculate B

using
B = µH . (5)

The magnetic induction is

B =
µ0Ir

2πa2
eϕ for r < a

B =
µI

2πr
eϕ for a < r < b (6)

B = 0 for r > b ,

and the magnetization is given by M = 1
µ0
B −H and we obtain as expected a

non-vanishing component only in the insulator

M = 0 for r < a

M =
I

2πr

µ− µ0

µ0

eϕ for a < r < b (7)

M = 0 for r > b .
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In order to find the average microscopic current density we start by writing M
in a more synthetic way:

I

2πr

µ− µ0

µ0

eϕ (Θ(r − a)−Θ(r − b)) . (8)

We can now apply the formula

⟨j⟩ = J+∇×M , (9)

and when we do so, we must remember that the derivative of the Heaviside
function Θ is the Dirac δ, as we have shown in a previous exercise. We obtain

∇×M =
1

r

∂

∂r
(rM(r)) ez =

I

2πr

µ− µ0

µ0

ez (δ(r − a)− δ(r − b)) . (10)

Note that, since µ > µ0 for a paramagnetic insulator and µ < µ0 for a diamag-
netic insulator, we can see that a paramagnetic insulator gives a current in the
same direction of J, so that B is increased, whereas in a diamagnetic insulator
the direction is the opposite and B is decreased.

2. In electrostatics, the n-th pole is given by

Qi1...in =

∫
d3x ρ(x)Ti1...in(x) , (11)

where the totally symmetric tensor Ti1...in can be defined by

Ti1...in = (2n− 1)!! xi1 . . . xin − Ai1...in , (12)

with the double factorial (2n − 1)!! = (2n − 1)(2n − 3)(2n − 5) . . . (5)(3)(1)
and (−1)!! = 1. The tensor Ai1...in is an homogeneous polynomial of degree n in
the components of x and it contains at least one Kronecker-δ so that the trace
vanishes:

Ti1...inδikil = 0 , ∀ k, l ∈ {1, 2, . . . , n} , k ̸= l . (13)

It is convenient to introduce the notation B(i1...in) for the total symmetrization
of a tensor Bi1...in . More precisely,

B(i1...in) ≡
1

n!

∑
perm σ

Bσ(i1...in) , (14)

where the sum runs over all permutations σ of the n indices i1 . . . in. For example,

B(ij) ≡
1

2
(Bij +Bji) , v(iwj) ≡

1

2
(viwj + vjwi) (15)

B(ijk) ≡
1

6
(Bijk +Bikj +Bjik +Bjki +Bkij +Bkji) . (16)
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a) Argue that the tensors Ai1...in , for n = 2, 3, 4, must be of the form

Aij = c2 x
2δij (17)

Aijk = c3 x
2δ(ijxk) (18)

Aijkl = c4 x
2δ(ijxkxl) + c′4 x

4δ(ijδkl) , (19)

where c2, c3, c4 and c′4 are numerical constants.

b) Determine the constants c2, c3, c4 and c′4 imposing the trace condition (13).

c) How many independent components does the tensor Qi1...in have? Start by
working out the cases n = 0, 1, 2. Can you guess the formula for general n?
Hint: Start by counting the number of independent components in a totally
symmetric tensor with n indices and then impose the trace constraint.

d) Generalize the previous question to d space dimensions. Show that the num-
ber of independent components of a traceless symmetric tensor Qi1...in in d
dimensions (i.e., each index can take the values 1, 2, . . . , d) is given by

(2n+ d− 2)
(n+ d− 3)!

n!(d− 2)!
. (20)

Solution

a) The building blocks for the tensors Ai1...in are two elementary tensors: δij
and xj. We need to put at least one δ, and we need to build a tensor with n
indices. The most general structure is obtained by multiplying k Kronecher-
δs and n − 2k components of x, with k = 1, 2, . . . [n/2], [n/2] being the
integer part of n/2. This yields tensors with n indices, and degree n− 2k in
the components of x. To compensate, we multiply the result by x2k. Finally,
we symmetrize the indices as described in the text. This fixes the rank n
tensor up to [n/2] coefficients ck,n:

Ai1...in =

[n/2]∑
k=1

ck,n x
2k δ(i1i2 . . . δi2k−1i2k︸ ︷︷ ︸

k

xi2k+1
. . . xin)︸ ︷︷ ︸

n−2k

. (21)

Choosing n = 2, 3, 4 we get the specific cases shown in the text. You may still
object: why did we write x2k rather than picking some specific components,
say (x1)

2k? The resulting tensor would have been of the right degree in
x. The easy answer is that the purpose in life of Ai1...in is to cancel the
traces from the tensor xi1 . . . xin . It is easy to see that all traces of the latter
generate factors of x2 and not specific components. There is also a fancier
explanation. The tensor Ti1...in in eq. (2) appears in the Taylor expansion of
a function of x and x′:

1

|x− x′|
=

∞∑
n=0

1

n!
T i1...in(x′)

xi1 . . . xin

x2n+1
. (22)

The function on the left hand side is invariant under rotations of the refer-
ence frame, so each term on the right hand side must be as well. Specific
components of the vector x′ are not invariant under rotations, of course, and
so cannot appear. Only scalar products can appear on the right hand side.
In particular, x′2 = x′ · x′ is allowed, as are x · x′ and x2.
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b) Let’s start with n = 2:

(2n− 1)!!δijxixj − c2x
2δijδij = 3x2 − 3c2x

2 = 0, (23)

that is,
c2 = 1. (24)

Starting from n = 3, we need to symmetrize. Since δij is already symmetric,
we do not need to add up all nine permutations of the three indices:

δ(ijxk) =
1

3
(δijxk + δikxj + δjkxi) . (25)

Therefore,

5 · 3x2xk =
c3
3
x2 (3xk + xk + xk) , (26)

that is,
c3 = 9. (27)

In the n = 4 case, the permutations of four elements are 24, but we can again
use symmetry to reduce the needed number. δijxkxl is symmetric under the
exchanges i ↔ j and k ↔ l, so we only need 6 permutations:

δ(ijxkxl) =
1

6
(δijxkxl + δikxjxl + δilxkxj + δjkxixl + δjlxkxi + δklxixj) .

(28)
Finally, δijδkl has the same symmetries of the previous case, plus the ex-
change (ij) ↔ (kl). We only need 3 permutations:

δ(ijδkl) =
1

3
(δijδkl + δikδjl + δilδjk) . (29)

Taking the trace of Tijkl leads to the following:

7 · 5 · 3xkxl =
c4
6

(
7xkxl + δklx

2
)
+

5

3
c′4x

2δkl. (30)

This implies

c4 = 90, c′4 = − c4
10

= −9. (31)

c) and d) We directly give the solution for general dimension. Since the tensor
Ti1...in is symmetric, we are free to order the indices, say in increasing order,
and count all the components of the kind

T1 . . . 1︸ ︷︷ ︸
k1times

2 . . . 2︸ ︷︷ ︸
k2times

···d . . . d︸ ︷︷ ︸
kdtimes

,
d∑

i=1

ki = n. (32)

In other words, we need to count the partitions of n in a maximum of d
addends - the k′

is are allowed to be zero. The problem can be rephrased in a
way which makes the solution easy. Let us draw a wall each time we increase
the value of the index:

1 . . . 1 | 2 . . . 2 | . . . | d . . . d︸ ︷︷ ︸
n+d−1 boxes

(33)
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We include the d−1 walls in the count of the boxes. Now, different partitions
are completely specified by the position of the walls. So here is the new
problem: count in how many ways we can choose d−1 boxes out of n+d−1.
But this is just the definition of a binomial, so we arrive at the following
partial answer:

# of independent components of
a symmetric tensor of rank n in d
dimensions

=

(
n+ d− 1

d− 1

)
=

(n+ d− 1)!

n!(d− 1)!
.

In setting the traces to zero, we can again take advantage of the symmetry.
Once the following equation is satisfied:

δi1i2Ti1i2i3...in = 0, (34)

all other traces are zero as well. Formula (34) amounts to a set of homo-
geneous linear equations for the components of the tensor. The number of
equations is equal to the number of independent ways to choose the in-
dices i3 to in which are not contracted. This is the number of independent
components of a symmetric tensor of rank n − 2. Each equation provides
a constraint, and so we get the final answer by subtracting the number of
constraints:

# of independent components of
a symmetric traceless tensor of
rank n in d dimensions

=

(
n+ d− 1

d− 1

)
−
(
n+ d− 3

d− 1

)
= (2n+ d− 2)

(n+ d− 3)!

n!(d− 2)!
.

3. A dielectric sphere of radius a and permittivity ε1 is placed in a constant electric
field E0 in vacuum.

a) Assume that the electrostatic potential can be written as

Φ = f(r) cos θ , (35)

using spherical coordinates centred at the sphere and with the north pole
direction θ = 0 defined by the background electric field E0.

i. What is f(r) in the absence of the sphere?

ii. What are the interface matching conditions for the electromagnetic
fields E and D in the absence of free charges? What conditions do these
imply for f(r) at r = a?

iii. Determine the function f(r) for all r > 0.
Hint: Firstly, list the conditions the function f(r) satisfies at r = 0,
r = a and r = ∞. Secondly, derive differential equations for f(r) in the
regions r < a and r > a. Thirdly, notice that r d

dr
rl ∝ rl.

b) Study the potential at large distances to show that the electric dipole of the
sphere is given by

d = αE0 , (36)

and determine α.
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c) Consider now a dilute gas of these small dielectric spheres. Let n be the
number of spheres per unit volume. Determine the effective electric per-
mittivity ε of this gas relevant to describe its electromagnetic properties at
macroscopic length scales r ≫ n− 1

3 ≫ a.

Solution

a) i. When the sphere is not there, the electic field is E = E0 = E0ez. The
potential is

Φ = −E0z = −E0r cos θ,

so f(r) = −E0r.

ii. The matching conditions at the interface are:

(D1 −D2)⊥ = 0, (37)

(E1 − E2)// = 0, (38)

where the fields E1,D1 are ouside the dielectric sphere and the fields
E2,D2 are inside. Note that the r.h.s. of the first condition is generally
ρsn, where n is a unit normal vector pointing outwards the sphere, and
ρs is the surface density of free charges, which is 0 in our case. We relate
the fields E and D with

D1 = ε0E1, D2 = ε1E2. (39)

To get a condition on the potential, we use:

E = −∇Φ = −f ′(r) cos θ er +
f(r)

r
sin θ eθ.

This reduces (37) and (38) to

ε1f
′(a−)− ε0f

′(a+) = 0, (40)

f(a+)− f(a−) = 0, (41)

where f(a±) means limr→a± f(r).

iii. We now solve for the potential everywhere. The boundary conditions at
r = a are given by (40),(41). At r = 0, the potential should actually not
depend on θ so we impose

f(0) = 0. (42)

When we are really far away of the sphere, its effect should vanish and
the potential should converge to the result of question a)

lim
r→∞

(f(r)− (−E0r)) = 0. (43)

We use the Maxwell equation:

∇ ·D = ρ(x) = 0

which, using (39), indicates we simply have to solve the Laplace equation
∇2Φ = 0, separately in regions r < a and r > a.

∇2Φ =

(
f ′′(r) +

2

r
f ′r − 2

r2
f(r)

)
cos θ = 0.
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This must be verified for any θ. Making the Ansatz f(r) ∝ rl, we get
that the parenthesis vanishes if

l2 + l − 2 = 0 ⇒ l = 1 or l = −2.

Since the equation is linear in Φ, any superposition of these solutions is
valid, so we get:

f(r) =

{
K1r +K2r

−2 r < a,

C1r + c2r
−2 r > a.

Boundary conditions yield:

(42) ⇒ K2 = 0,

(43) ⇒ C1 = −E0,

(40) ⇒ ε1K1 − ε0(C1 − 2C2a
3) = 0,

(41) ⇒ K1a− (C1a+ C2a
−2) = 0.

The last two equations solve to:

K1 = −3
ε0

2ε0 + ε1
E0, C2 =

ε1 − ε0
2ε0 + ε1

a3E0,

which give as final answer:

f(r) =

{
−3 ε0

2ε0+ε1
E0r r < a,

−E0r +
ε1−ε0
2ε0+ε1

a3

r2
E0 r > a.

b) The potential we found is:

Φ =

{
−3 ε0

2ε0+ε1
E0z r < a,

−E0z +
ε1−ε0
2ε0+ε1

a3

r3
E0z r > a.

At r > a, we found the term from the external field E0, and the second term
looks like a dipole potential, which means the polarized sphere produces a
dipole field:

ε1 − ε0
2ε0 + ε1

a3

r3
E0z =

1

4πε0

d · x
r3

for d = 4πε0
ε1 − ε0
2ε0 + ε1

a3︸ ︷︷ ︸
α

E0. (44)

c) Imagine that the gas fills a sphere of radius R aroud the origin, with r ≫
R ≫ n−1/3 ≫ a. This hierarchy of scales means the following. The typical
distance λ ∼ n−1/3 between the small beads is much larger than their radius
a, which means the beads don’t interact (at the position of one bead, the
dipole potential from an other bead scales like a2/λ2 which is negligible). But
the sphere of radius R countains many beads, which means we can consider
the gas homogeneous. And we look at that sphere from a very large distance
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r. Then we compare the effect of this sphere of gas, to the effect we computed
for a sphere of continuous material, to extract its effective permittivity ε.

From that distance, at first order every bead is located at the origin. More-
over, since they don’t interact, they all get polarized like we computed before.
So, we can simply add up their dipole contribution to the potential:

Φ =− E0z +
∑
i

1

4πε0

αE0 · (x− xi)

|x− xi|3

≃− E0z +
1

4πε0

αE0 · x
r3

4πR3n

3

=− E0z +
1

4πε0

d′ · x
r3

.

Here the index i runs over all the beads. Like previously, we find the effect
of the big sphere to amount to a dipole d′ = α′E0, with

α′ = 4πε0

(
4

3
πna3

ε1 − ε0
2ε0 + ε1

)
R3 = 4πε0

(
ε− ε0
2ε0 + ε

)
R3.

The last equality defines ε, and is fixed by analogy with the definition of α
in (44).

Thus, ε is given by
ε− ε0
2ε0 + ε

=
4

3
πna3

ε1 − ε0
2ε0 + ε1

,

which yields:

ε = ε0
1 + 2ξ

1− ξ
, ξ =

4

3
πna3

ε1 − ε0
2ε0 + ε1

.
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