Classical Electrodynamics

Week 9

1. Consider an infinite cylinder of radius a carrying the current I. The cylinder is
surrounded by an insulator with magnetic permeability p. A metallic cylindrical
surface of radius b > a conducts the current in the opposite direction.

Determine the magnetic field H, the magnetic induction B and the magnetiza-
tion M in every point in space. Find the free current density J and the average
microscopic current density (j).
Solution
The Maxwell equations of magnetostatics are
V-B=0
VxH=1J (1)

For a < r < b, when we calculate the circulation of H along a circle of radius r

we obtain
/H-dl—/VxH-dS—/J-dS—I, (2)

where we have used the Stokes theorem, the second equation above and the
definition of current density. Since we know, because of the cylindrical symmetry,
that H = H(r)e,, we can write

/H ~dl = H(r)2nr , (3)

and thus I
H-= —e¢ . (4)
For » > b the total current is zero, so we have H = 0. For r < a, the current
2
relevant for H becomes Jrr? = Ia% Now that we have H, we can calculate B

using
B=uH. (5)
The magnetic induction is
I
= %%, for r<a
ul
B=— f <r<b 6
500 or a<r (6)
B= for r>b,
and the magnetization is given by M = - B — H and we obtain as expected a

1o
non-vanishing component only in the insulator

M=0 for r<a

I u—
M:%'u'uo'uoed) for a<r<b (7)

M=0 for r>0.




In order to find the average microscopic current density we start by writing M
in a more synthetic way:

I p—po
CEr es (O(r —a) —O(r —b)) . (8)

We can now apply the formula
(Gj)=J+VxM, (9)

and when we do so, we must remember that the derivative of the Heaviside
function O is the Dirac 9, as we have shown in a previous exercise. We obtain
19 I p—po

M=-2 (M _ b
VX r or (rM(r))e- 2T g

e.(0(r—a)—0(r—20)) . (10)

Note that, since p > pgo for a paramagnetic insulator and p < po for a diamag-
netic insulator, we can see that a paramagnetic insulator gives a current in the
same direction of J, so that B is increased, whereas in a diamagnetic insulator
the direction is the opposite and B is decreased.

. In electrostatics, the n-th pole is given by

Qiy..in, = /dgfl' p(x) Ti, ., (X)) (11)
where the totally symmetric tensor 7, ;, can be defined by

with the double factorial (2n — 1)!l = (2n — 1)(2n — 3)(2n — 5)...(5)(3)(1)
and (—1)!! = 1. The tensor A;, ;. is an homogeneous polynomial of degree n in
the components of x and it contains at least one Kronecker-d so that the trace
vanishes:

J

T =0, Vkile{l,2...,n}, k#IL. (13)

1oein iy

It is convenient to introduce the notation By, ,,) for the total symmetrization
of a tensor B;, ;. More precisely,

1
Biis.in) = — Y Botirin) (14)

perm o

where the sum runs over all permutations o of the n indices 7, . . . i,,. For example,

1 1

Bij) = 5 (Byy + Bji) ,  vawy = 5 (vaw; + vjwy) (15)
1

Bijry = G (Bijk + Bikj + Bjir + Bjki + Brij + Biji) - (16)



a) Argue that the tensors A4;, ; , for n = 2,3,4, must be of the form

Aij = C2 1‘251']' (17)
Aijk =C3 $25(ij$k) (18)
Aijin = ca2®8apany + ¢y 2000w (19)

where ¢y, ¢3, ¢4 and ¢ are numerical constants.
b) Determine the constants ¢, c3, ¢4 and ¢ imposing the trace condition (13).

c¢) How many independent components does the tensor @);,. ;. have? Start by
working out the cases n = 0,1, 2. Can you guess the formula for general n?
Hint: Start by counting the number of independent components in a totally
symmetric tensor with n indices and then impose the trace constraint.

d) Generalize the previous question to d space dimensions. Show that the num-
ber of independent components of a traceless symmetric tensor @y, ;. in d

dimensions (i.e., each index can take the values 1,2,...,d) is given by
(n+d—3)!
2 d—2)—F~ 20
(2n + ) nl(d — 2)! (20)
Solution

a) The building blocks for the tensors A;, ;. are two elementary tensors: d;;
and z;. We need to put at least one J, and we need to build a tensor with n
indices. The most general structure is obtained by multiplying & Kronecher-
ds and n — 2k components of x, with & = 1,2,...[n/2], [n/2] being the
integer part of n/2. This yields tensors with n indices, and degree n — 2k in
the components of x. To compensate, we multiply the result by 2%*. Finally,
we symmetrize the indices as described in the text. This fixes the rank n
tensor up to [n/2] coeflicients ¢y,

[n/2]
_ E 2k
Ail---in == Ckn T §(i1i2 SR 6i2k_1izkj iviQkJrl s xlnl . (2]‘)
k=1 k n—2k

Choosing n = 2, 3,4 we get the specific cases shown in the text. You may still
object: why did we write 2* rather than picking some specific components,
say (x1)*? The resulting tensor would have been of the right degree in
x. The easy answer is that the purpose in life of A;  ; is to cancel the
traces from the tensor x;, ...z;, . It is easy to see that all traces of the latter
generate factors of 22 and not specific components. There is also a fancier
explanation. The tensor T; in eq. (2) appears in the Taylor expansion of
a function of x and x':

1...0n

o0

P _nzz(ﬁTl ()= (22)

The function on the left hand side is invariant under rotations of the refer-
ence frame, so each term on the right hand side must be as well. Specific
components of the vector x’ are not invariant under rotations, of course, and
so cannot appear. Only scalar products can appear on the right hand side.
In particular, 2’2 = x’ - x’ is allowed, as are x - X’ and z2.



b) Let’s start with n = 2:

(2n — 1)!!5ij:vixj — 023:'25“627 = 32 — 322 =0, (23)
that is,
Cy = 1. (24)

Starting from n = 3, we need to symmetrize. Since 0;; is already symmetric,
we do not need to add up all nine permutations of the three indices:

1
Therefore,
c
532 m, = §3x2 (Bxy + xp + 1) , (26)
that is,
C3 = 9. (27)

In the n = 4 case, the permutations of four elements are 24, but we can again
use symmetry to reduce the needed number. d;;x52; is symmetric under the
exchanges i <+ j and k <> [, so we only need 6 permutations:

5(@'@'1&7[) = é (5ijkal + 5ikxjxl + 5ilxkxj + (5jka:i3:l + 6jl$k$i + (5klxia:j) .
(28)
Finally, 9;;05; has the same symmetries of the previous case, plus the ex-
change (ij) <> (kl). We only need 3 permutations:

1
(i 0kt) = 3 (04j0k1 + k01 + 0ubji) - (29)

Taking the trace of Tj;; leads to the following:

)
7-5- Bili'kxl = % (7l’k$l + 5kl$2) + §CQ$25]€[. (30)
This implies
/ Cq
cq = 90, Cy 10 9 (31)

and d) We directly give the solution for general dimension. Since the tensor
T;, . 4, 1s symmetric, we are free to order the indices, say in increasing order,
and count all the components of the kind

d
Ty 2. .9.4...d» D ki=n (32)
S =~ Y

kitimes kotimes kgtimes

In other words, we need to count the partitions of n in a maximum of d
addends - the ks are allowed to be zero. The problem can be rephrased in a
way which makes the solution easy. Let us draw a wall each time we increase
the value of the index:

.. [L112]. . [2]1]. . [1]d]. . [d] (33)

~
n+d—1 boxes

4



We include the d—1 walls in the count of the boxes. Now, different partitions
are completely specified by the position of the walls. So here is the new
problem: count in how many ways we can choose d— 1 boxes out of n+d—1.
But this is just the definition of a binomial, so we arrive at the following
partial answer:

# of independent components of ntd—1 (n+d—1)!

a symmetric tensor of rank n ind = ( d—1 ) = m
dimensions ’ ’

In setting the traces to zero, we can again take advantage of the symmetry.

Once the following equation is satisfied:

02T iy i = 0, (34)

all other traces are zero as well. Formula (34) amounts to a set of homo-
geneous linear equations for the components of the tensor. The number of
equations is equal to the number of independent ways to choose the in-
dices i3 to i,, which are not contracted. This is the number of independent
components of a symmetric tensor of rank n — 2. Each equation provides
a constraint, and so we get the final answer by subtracting the number of
constraints:

# of indep?ndent components of ntd—1 ntd—3
a symmetric traceless tensor of = d—1 — d1

rank n in d dimensions
(n+d—3)!

=2n+d-2) d—2)

3. A dielectric sphere of radius a and permittivity ; is placed in a constant electric
field Eq in vacuum.

a) Assume that the electrostatic potential can be written as
d = f(r)cosh, (35)

using spherical coordinates centred at the sphere and with the north pole
direction # = 0 defined by the background electric field Ey.

i. What is f(r) in the absence of the sphere?

ii. What are the interface matching conditions for the electromagnetic
fields E and D in the absence of free charges? What conditions do these
imply for f(r) at r = a?

iii. Determine the function f(r) for all r > 0.

Hint: Firstly, list the conditions the function f(r) satisfies at r = 0,
r = a and r = oo. Secondly, derive differential equations for f(r) in the
regions 7 < a and r > a. Thirdly, notice that rd%rl o 7l

b) Study the potential at large distances to show that the electric dipole of the

sphere is given by
d=aE, (36)

and determine «.



c) Consider now a dilute gas of these small dielectric spheres. Let n be the
number of spheres per unit volume. Determine the effective electric per-
mittivity € of this gas relevant to describe its electromagnetic properties at
macroscopic length scales r > n7i > a.

Solution

a) i

ii.

1il.

When the sphere is not there, the electic field is E = Eq = Eye,. The
potential is
® = —Fyz=—Fyrcosb,

so f(r) = —Eyr.

The matching conditions at the interface are:
(Dl - DQ)J_ == 0, (37)
(E; —Ey);, =0, (38)

where the fields E;,D; are ouside the dielectric sphere and the fields
E,, Dy are inside. Note that the r.h.s. of the first condition is generally
psn, where n is a unit normal vector pointing outwards the sphere, and

ps is the surface density of free charges, which is 0 in our case. We relate
the fields E and D with

D1 = €0E1, D2 = €1E2. (39)

To get a condition on the potential, we use:

E=-Vd=—f(r)cosfe, + fEaT’) sin 6 ey.
This reduces (37) and (38) to
e1f'(a”) —eof'(a*) =0, (40)
fla®) = fla™) =0, (41)

where f(a®) means lim,_,q+ f(r).

We now solve for the potential everywhere. The boundary conditions at
r = a are given by (40),(41). At r = 0, the potential should actually not
depend on 6 so we impose

f(0)=0. (42)
When we are really far away of the sphere, its effect should vanish and
the potential should converge to the result of question a)

Jim (£(0) = (~Eor) =0 (43
We use the Maxwell equation:

V-D=p(zx)=0

which, using (39), indicates we simply have to solve the Laplace equation
V2® = 0, separately in regions r < a and r > a.

V20 = (f”(r) + %f’r — %f(r)) cosd = 0.
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This must be verified for any §. Making the Ansatz f(r) oc r!, we get
that the parenthesis vanishes if

P+1-2=0 = Il=1lorl=-2.

Since the equation is linear in ®, any superposition of these solutions is
valid, so we get:

) Kir+Kyr™% r<a,
T) =
Cir+cor™2  r>a.

Boundary conditions yield:

(42) = K, =0,

(43) = C) = —Ey,

(40) = &1 K1 — go(C) — 2C5a*) =
(41) = Kia — (Cra + Cya™?) = O.

The last two equations solve to:

€0

K =-3—"—FE), C=-——"0E
! 20+er 2 2046
which give as final answer:
) = —32605161 Eqyr r < a,
—FEor + 425;0; ?2 Ey r>a.
b) The potential we found is:

o — =354 Loz r <a,
—Eoz + 5 7‘15 Eoz r>a.

At r > a, we found the term from the external field Eg, and the second term
looks like a dipole potential, which means the polarized sphere produces a
dipole field:

3
€1 — &0 @ 1 d-x €1 —E€0 5
— —Fpz = for d=4reg—a’ Ey. 44
2e0 +e1 13 0 dmey 13 02€0+51 ) 0 (44)

«

Imagine that the gas fills a sphere of radius R aroud the origin, with r >
R > n~'% > a. This hierarchy of scales means the following. The typical
distance A\ ~ n~'/3 between the small beads is much larger than their radius
a, which means the beads don’t interact (at the position of one bead, the
dipole potential from an other bead scales like a? /A\? which is negligible). But
the sphere of radius R countains many beads, which means we can consider
the gas homogeneous. And we look at that sphere from a very large distance



r. Then we compare the effect of this sphere of gas, to the effect we computed
for a sphere of continuous material, to extract its effective permittivity e.

From that distance, at first order every bead is located at the origin. More-
over, since they don’t interact, they all get polarized like we computed before.
So, we can simply add up their dipole contribution to the potential:

1 OZEO Xi)
=—FE,
0FF Z Areg |x X; |3

1 aEy - x 47 R3n

471'80 73 3
1 d-x
__E -
OZ+47T€ r3

Here the index ¢ runs over all the beads. Like previously, we find the effect
of the big sphere to amount to a dipole d’ = o’'Eg, with

4 g1 — € —¢€p
'=4 - — — |R¥=14 R3.
“ e <37ma 250 + 51> e 26[) +ée

The last equality defines €, and is fixed by analogy with the definition of «
n (44).

Thus, € is given by

which yields:




