
Classical Electrodynamics

Week 6

1. Consider a particle of charge q moving with constant velocity v = (0, 0, v) along
the z-axis. Show that the retarded potentials are given by

Φ(t,x) =
qγ

4πε0

1√
x2 + y2 + γ2(z − vt)2

, A(t,x) =
v

c2
Φ(t,x) , (1)

where γ = 1√
1−v2/c2

is the Lorentz factor.

Solution
We are going to use the formula

Φ(x, t) =
1

ϵ0

∫
d3x′dt′ G(x′, t′,x, t) ρ(x′, t′) . (2)

For a point-like particle moving in the direction of the z-axis, the density is

ρ(x′, t′) = q δ(x′)δ(y′)δ(z′ − vt′) . (3)

As we have seen, the Green’s function in this case is

G(x′, t′,x, t) =
δ(t− t′ − |x′−x|

c
)

4π|x′ − x|
. (4)

We may proceed in two different ways.

First method
We start with an integration with respect to t′:

Φ(x, t) =
1

4πϵ0

∫
d3x′ q δ(x

′)δ(y′)δ(z′ − v(t− |x′−x|
c

))

|x′ − x|
=

=
1

4πϵ0

∫
dz′

q δ
(
z′ − v

(
t− |(0,0,z′)−x|

c

))
|(0, 0, z′)− x|

. (5)

In equation (5), we have integrated over t′ and then over x′ and y′. We are left
with an expression which contains a term of the form

δ [f(z)] . (6)

In a derivation that has been made in a previous exercise section, we found that
the following equation holds

δ [f(z)] =
∑
i

δ(z − z0i)

|f ′(z0i)|
, (7)

where z0i are defined as the points such that f(z0i) = 0. We need to find the z′0
for which we have

f(z′0) = z′0 − v

(
t− |(0, 0, z′0)− x|

c

)
= 0 . (8)
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In order to do so, we must solve a quadratic equation:

vt− z′0 =
v

c

√
x2 + y2 + (z′0 − z)2

(vt− z′0)
2 =

v2

c2
(
x2 + y2 + (z′0 − z)2

)
(vt)2 + z′20 − 2vtz′0 =

v2

c2
(
z′20 + r2 − 2zz′0

)
z′20 (1−

v2

c2
)− 2z′0(vt−

v2

c2
z)− v2

c2
r2 + (vt)2 = 0 (9)

z′0 = γ2

[
vt− v2

c2
z −

√
(vt− v2

c2
z)2 +

1

γ2

(
v2

c2
r2 − (vt)2

)]

z′0 = γ2

[
vt− v2

c2
z − v

c

1

γ

√
x2 + y2 + γ2(vt− z)2

]
,

where we have defined γ = 1√
1− v2

c2

and r =
√

x2 + y2 + z2.

Note that in (9) we have selected one of the two solutions of the quadratic
equation. The other solution (which appeared because we took the square of the
equation at some point) would not satisfy the first equation in (9), since it would
have a negative term on the left hand side for some values of t (you may check
this fact for x = 0). For an interpretation of this see figure 1.
Let us calculate the derivative of f :

f ′(z′0) = 1 +
v

c

z′0 − z

|(0, 0, z′0)− x|
. (10)

Moreover, using (8), we have

|(0, 0, z′0)− x| = ct− c

v
z′0 . (11)

Now we have everything we need to solve the integral in (5):

Φ(x, t) =
1

4πϵ0

q

|(0, 0, z′0)− x|
1

|f ′(z′0)|
=

=
1

4πϵ0

q

|(0, 0, z′0)− x|
1

1 + v
c

z′0−z

|(0,0,z′0)−x|

=

=
1

4πϵ0

q

|(0, 0, z′0)− x|+ v
c
(z′0 − z)

=

=
1

4πϵ0

q

ct− c
v
z′0 +

v
c
(z′0 − z)

=

=
1

4πϵ0

q

c
v

(
vt− z′0

γ2 − v2

c2
z
) =

=
1

4πϵ0

q

c
v

(
v
c
1
γ

√
x2 + y2 + γ2(vt− z)2

) =

=
1

4πϵ0

q γ√
x2 + y2 + γ2(vt− z)2

. (12)
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Second method
Alternatively, we may decide to start with an integration with respect to x′. In
this case, the integral for the potential becomes

Φ(x, t) =
1

4πϵ0

∫
dt′

q δ
[
t′ −

(
t− |(0,0,vt′)−x|

c

)]
|(0, 0, vt′)− x|

. (13)

If we call t′0 the value such that

g(t′0) = t′0 −
(
t− |(0, 0, vt′0)− x|

c

)
= 0 , (14)

we can solve the integral in a way that is similar to the one of the first method.
In this case

dg

dt′
(t′0) = 1 +

v

c

vt′0 − z

|(0, 0, vt′0)− x|
. (15)

Therefore, we can write the potential in the following way:

Φ(x, t) =
1

4πϵ0

q

|(0, 0, vt′0)− x|
1

1 + v
c

vt′0−z

|(0,0,vt′0)−x|

=

=
1

4πϵ0

q

|(0, 0, vt′0)− x|+ v
c
(vt′0 − z)

=

=
1

4πϵ0

q

c(t− t′0) +
v
c
(vt′0 − z)

= (16)

=
1

4πϵ0

q

ct− v
c
z − ct′0

(
1− v2

c2

) .

Now we just need to find t′0 and the solution will be complete. This is done by
solving equation (14). The solution is

t′0 = γ2

[
t− v

c2
z − 1

c

√
(z − vt)2 +

1

γ2
(x2 + y2)

]
. (17)

If we plug this solution into (16), we obtain

Φ(x, t) =
1

4πϵ0

q γ√
x2 + y2 + γ2(vt− z)2

. (18)
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Figure 1: Depiction of the two solutions of the quadratic equation in (9). The wiggly
line coming from below represents a retarded potential because Φ(t,x) depends on
the position of the particle at a time t′ before t, while the wiggly line coming from
above represents an unphysical advanced potential as Φ(t,x) would depend on the
future position of the particle.

2. Two infinitely-long grounded metal plates, located at y = 0 and at y = a, are
connected at x = ±b by metal strips (again infinitely-long) maintained at a
constant potential V0 (a thin layer of insulation at each corner prevents them
from shorting out). Find the potential inside the resulting rectangular pipe, by
using the separation of variable method.

Solution

The coordinate system that looks best suited to solve this problem is the carte-
sian system, so we are going to adopt that in our solution. The configuration is
independent of z, so Φ(x, y, z) ≡ Φ(x, y) and the Laplace equation reduces to:

∂Φ

∂x2
+

∂Φ

∂y2
= 0, (19)

with boundary conditions{
Φ(x, y) ≡ 0 if y = 0 or y = a;

Φ(x, y) ≡ V0 if x = ±b.

We then proceed to the ansatz for variable separation, namely, we study the
solutions of the form:

Φ(x, y) = X(x)Y (y),

and by pasting it in equation (19) we get:

Y
d2X

dx2
+X

d2Y

dy2
= 0 =⇒ 1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0,

where we “separated the variables” by dividing by Φ.
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Now, we have reduced to an equation of the form f(x) + g(y) = 0, and the
only possible solutions are those where both f and g are constants (deeply con-
vince yourself of that by thinking of what would happen if you varied x without
touching y).

Our problem has reduced then to the system:

1

X

d2X

dx2
= C̃

1

Y

d2Y

dy2
= −C̃;

in principle C̃ could take any value, but for reasons that will become evident in
a moment, we will assume it to be positive, C̃ = k2. We are indeed left with two
ordinary differential equations:

d2X

dx2
= k2X

d2Y

dy2
= −k2Y,

that have solutions:

X(x) = Aekx +Be−kx Y (y) = C sin ky +D cos ky

which gives a family of solutions labeled by k

Φk(x, y) =
(
Aekx +Be−kx

)
· (C sin ky +D cos ky) .

It remains to impose the right boundary conditions that will set the constants.

Here comes the crucial part of the variable separation method: the ansatz Φ(x, y) =
X(x)Y (y) gives us an infinite family of solutions, none of them satisfying the
boundary conditions by itself, but we can linearly combine them in a way that
they do! This is possible because we are dealing with a complete set of functions,
a basis for the full space of solutions.

Notice that our problem is symmetric in x, Φ(−x, y) = Φ(x, y), which sets A =
B, so

A = B =⇒ X(x) = A(ekx + e−kx) = 2A cosh(kx).

We can reabsorb the constant A within C and D so to have

Φk(x, y) = cosh(kx) (C sin ky +D cos ky) .

Let’s impose teh boundary condition on y = 0, a, we can do so for each solution
Φk

1:

Φk(x, y = 0) = 0 =⇒ D = 0;

Φk(x, y = a) = 0 =⇒ C · sin(ka) = 0 =⇒ k =
nπ

a
with n ∈ Z;

The general solution will then be a linear combination of the functions found
above, so the potential can be written as:

Φ(x, y) =
∞∑
n=1

Cn cosh
(nπ

a
x
)
· sin

(nπ
a
y
)
.

1This is the reason why we chose C̃ > 0, it becomes immediate to solve for the boundary
conditions.
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We can now impose the condition at x = b (and then x = −b will be automat-
ically satisfied because we already imposed the symmetry of the solution under
x → −x). This reads:

Φ(b, y) =
+∞∑
n=1

Cn cosh

(
nπb

a

)
· sin

(nπ
a
y
)
= V0.

The coefficient can be computed by means of some Fourier analysis, by remem-
bering that sin y is an orthogonal complete basis on the set y ∈ [0, π]. In partic-
ular, the result is:

Cn cosh

(
nπb

a

)
=

{
0 if n is even.
4V0

nπ
if n is odd.

In conclusion, the final answer for the potential is:

Φ(x, y) =
4V0

π

+∞∑
odd n=1

1

n

cosh
(
nπ
a
x
)

cosh
(
nπb
a

) sin
(nπ

a
y
)
.

Note: This exercise corresponds to Example 3.4 in Griffiths’s book.

3. The electric field associated with an electromagnetic wave travelling along the
z-axis can be written as follows

E = E0x cos (kz − ωt+ θ) ex + E0y cos (kz − ωt+ θ + ϕ) ey (20)

= Re
[
(Jxex + Jyey)

√
E2

0x + E2
0y e

i(kz−ωt+θ)
]

(21)

where the polarization of the wave is encoded in the two dimensional vector,

J = (Jx, Jy) =

 E0x√
E2

0x + E2
0y

,
E0y√

E2
0x + E2

0y

eiϕ

 , (22)

known as the Jones vector. Notice that |J|2 = |Jx|2 + |Jy|2 = 1.

Consider two electromagnetic waves E1 and E2 propagating along the z-axis
with opposite circular polarisations and with the same frequency and phase.

a) Find the Jones vector of each wave E1 and E2.

b) Discuss, as a function of the amplitudes of each wave, the polarisation of
the total wave and its associated Jones vector.

Solution

a) The wave E1 has circular polarization. This means that when we fix z, for
example z = 0, the electric field E1(t) moves in a circle:

Ex(t) = E0 cos(ωt+ θ) (23)

Ey(t) = ±E0 sin(ωt+ θ).
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The sign in the second equation distinguishes the left and right polarization.
+ is by convention the left-handed polarization and − is the right handed
polarization.

If E1 has left circular polarization, we see that we need E1x = E1y and
ϕ1 =

π
2
in equation (22). This gives:

E1 = E1 cos (kz − ωt+ θ) ex − E1 sin (kz − ωt+ θ) ey

J1 =
1√
2
(1, i) . (24)

E2 has right circular polarization, which means that ϕ2 = 3π
2

in equation
(22). This gives a Jones vector:

E2 = E2 cos (kz − ωt+ θ) ex + E2 sin (kz − ωt+ θ) ey

J2 =
1√
2
(1,−i) . (25)

b) The total wave is E = E1 + E2. We can write:

E = (E1 + E2) cos (kz − ωt+ θ) ex + (E2 − E1) sin (kz − ωt+ θ) ey

= Re
[
(Jxex + Jyey)

√
(E1 + E2)2 + (E2 − E1)2 e

i(kz−ωt+θ)
]
. (26)

The total Jones vector is thus:

J =
1

√
2
√

E2
1 + E2

2

(
E1 + E2

(E1 − E2)i

)
=

1√
E2

1 + E2
2

(E1J1 + E2J2). (27)

The polarization of the total wave is, depending on the cases:

� E1 = 0 or E2 = 0: left or right circular polarization.

� E1 = E2: linear polarization along x.

� E1 = −E2: linear polarization along y.

� E1 ̸= E2 ̸= 0: elliptic polarization.

4. The complex plane is a very useful tool to compute integrals. The Cauchy the-
orem ∮

∂D

f(z)dz = 0 , if f is analytic in D , (28)

tells us that we can continuously deform the integration contour without chang-
ing the value of the integral (as long as we keep the endpoints fixed and do not
cross any singularity). The residue theorem∮

∂D

f(z)dz = 2πi
∑
k

Res(f, zk) , (29)

reduces the contour integral calculation to the sum over residues of all poles of
f inside the domain D (as long as f is single-valued inside D).
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a) Use these ideas to calculate the integrals∫ ∞

−∞

dx

1 + x2
,

∫ ∞

−∞

dx

1 + x4
. (30)

b) Calculate also the Fourier transforms∫
dω

2π

1

1 + ω2
e−iωt ,

∫
dω

2π

1

cosh πω
2

e−iωt . (31)

c) Use the same methods to find the form of the advanced and retarded Green
functions in position space, starting from

G(x, t) =

∫
dωd3k

(2π)4
e−iωt+ik·x 1

k2 − 1
c2
(ω ± iϵ)2

, (32)

where ϵ > 0 is infinitesimal and the sign ± distinguishes the retarded from
the advanced Green function.

Solution

a) (1) Consider the integral∫ +∞

−∞
f(x)dx =

∫ +∞

−∞

dx

1 + x2
=

∫ +∞

−∞

dx

(x+ i)(x− i)
. (33)

In the complex plane, f(z) has two simple poles, in z = i and z = −i. In this
particular case, we can close the path of integration in both the half planes,
because in both cases zf(z) → 0 when |z| → 0. Suppose we decide to close it
in the upper plane, namely the plane with positive imaginary part. In that
case, the only pole that is inside the contour of integration is z = i. Let γ+
be a semicircle as represented in figure 2. Using the Residue theorem, we
can write ∫ +∞

−∞
f(x)dx =

∫
γ+

f(z)dz = 2πi lim
z→i

1

z + i
= π . (34)

For pedagogical reasons, we will show that if we chose to close the contour
in the other plane we would obtain the same result. This allow us to remind
the reader of an important rule that must be respected when we integrate
in the complex plane and we want to use the Residue theorem: the sign
does not change if the path is followed keeping the inner part on the left,
otherwise the sign needs to be changed. Therefore, if we call γ− the circuit
done in the lower half plane (figure 3), we have∫ +∞

−∞
f(x)dx =

∫
γ−

f(z)dz = −2πi lim
z→−i

1

z − i
= π . (35)

(2) For the second integral, we start by solving the equation

z4 = −1 . (36)
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−R R Re

Im

O

γ+

i

−i

Figure 2: We close the contour in the upper plane. The inner part is kept on the
left, if we follow the path.

−R R

Re

Im

O

γ−

i

−i

Figure 3: We close the contour in the lower plane. The inner part is kept on the
right, if we follow the path: we must change the sign of the integral.

The solutions are

z1 =
1√
2
(1 + i)

z2 =
1√
2
(1− i)

z3 = − 1√
2
(1 + i) (37)

z4 = − 1√
2
(1− i) .

Even in this case, we can choose to close the path in the upper or lower half
plane. If we close it in the upper half plane, the poles are in z = z1 and
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z = z4. We can proceed with the calculation:∫ +∞

−∞

dx

x4 + 1
=

=

∫
γ+

dz

z4 + 1
=

=

∫
γ+

dz

(z − z1)(z − z2)(z − z3)(z − z4)
=

=2πi

[
lim
z→z1

1

(z − z2)(z − z3)(z − z4)
+ lim

z→z4

1

(z − z1)(z − z2)(z − z3)

]
=

=2πi

[
1√

2i
√
2(1 + i)

√
2
+

1

(−
√
2)(−

√
2(1− i))

√
2i

]
= (38)

=
π√
2

[
1

(1 + i)
+

1

(1− i)

]
=

π√
2
.

−R R Re

Im

O

γ+

z1

z2z3

z4

Figure 4: We close the contour in the upper plane.

b) (1)

I =

∫
dω

2π

1

1 + ω2
e−iωt =

1

2π

∫
dω

(ω + i)(ω − i)
e−iωt . (39)

Now, if t > 0, we must close the path in the negative half of the imaginary
axis, because we want the exponential to go to zero for |ω| → ∞. This is
possible only if we can write ω as ω = a − ib, with b > 0, where a = Re[ω]
and b = Im[ω]. In this way, we have e−iωt = e−(ia+b)t. Therefore the integral
is

I = −2πi lim
ω→−i

1

2π

1

ω − i
e−iωt =

e−t

2
. (40)

If instead t < 0, we must close the path in the positive half. The integral
becomes

I = 2πi lim
ω→i

1

2π

1

ω + i
e−iωt =

et

2
. (41)
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As a consequence the final result, which takes into account both the possi-
bilities, is

I =
e−|t|

2
. (42)

(2)

I =

∫
dω

2π

1

cosh πω
2

e−iωt =

∫
dω

2π

2

exp
[
πω
2

]
+ exp

[−πω
2

]e−iωt . (43)

We must solve the equation

exp
[πω
2

]
= − exp

[
−πω

2

]
= exp

[
−πω

2
± i(2k + 1)π

]
, (44)

where we have used
−1 = exp[±(2k + 1)iπ] , (45)

where k is a positive integer. The solution is

ω = ±i(2k + 1) . (46)

Therefore we have an infinite number of poles. Suppose first that t > 0.
What we would like to do is to build a closed path in the complex plane
with Im[z] < 0 and use the Residue theorem, summing the contributions
that come from each pole. But are we allowed to do it?

In order to answer this question, we need to discuss the mathematical results
that allow us to use the Residue theorem in the first place. When we have
an integral of the form ∫ +∞

−∞
f(x)dx , (47)

what we usually do 2 is to consider a closed half circle γR with radius R and
to write ∫ +R

−R

f(x)dx =

∫
γR

f(z)dz −
∫
ArcR

f(z)dz , (48)

where with ArcR we indicate the half circle without the diameter. Then, we
show that

lim
R→∞

∫
ArcR

f(z)dz = 0 , (49)

and we are thus allowed to solve the integral with the Residue theorem.
However, in this particular case, we cannot send R to infinity because every
time R is an odd integer number the integral is not even defined, since the
integrand is not analytical along the whole contour of integration. We thus
impose R = 2s, where s is a positive integer, and we send s to infinity. If ω
lies on a half circle of radius 2s, we have, for every ω,∣∣∣∣ 12π 1

cosh πω
2

e−iωt

∣∣∣∣ ≃ ∣∣∣∣ 12πe−(t|Im[ω]|+π
2 |Re[ω]|)

∣∣∣∣ ≤ 1

2π
e−2a(t)s , (50)

2even if it has been left implicit in the previous integrals
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with a(t) > 0 for every value of t. There is a theorem, called estimation
lemma, which states that if

|f(z)| ≤ M , (51)

for all z ∈ γ, then ∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤ M l (γ) , (52)

where l (γ) is the length of γ. In our case, since l (ArcR) = 2πs, we have, for
s → ∞, ∣∣∣∣∫

ArcR

1

2π

1

cosh πω
2

e−iωtdz

∣∣∣∣ ≤ s e−2a(t)s → 0 . (53)

−R R Re

Im

O

γ+

i

3i

5i

−i

−3i

−5i

Figure 5: We close the contour in the upper plane.

Therefore the answer is yes, and we can proceed with the integral. As we
said, t > 0 and we must close the contour of integration in the lower half
plane. We expand the hyperbolic cosine around ωk = −i(2k + 1):

cosh
πω

2
≃ (−1)k+1 iπ

2
(ω − ωk) . (54)

We can use this result to solve the integral:

I = −2πi

2π

∑
k

lim
ω→ωk

e−iωt

(−1)k+1 iπ
2

=

=
∑
k

2

π
e−(2k+1)t(−1)k = (55)

=
2

π
e−t 1

1 + e−2t
=

1

π cosh t
.
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If t < 0, the contour must be closed on the positive half plane and we write
the poles as ωk = i(2k + 1). The hyperbolic cosine in this case is

cosh
πω

2
≃ (−1)k

iπ

2
(ω − ωk) , (56)

and the integral is

I =
2πi

2π

∑
k

lim
ω→ωk

e−iωt

(−1)k iπ
2

=

=
∑
k

2

π
e−(2k+1)t(−1)k = (57)

=
2

π
e−t 1

1 + e−2t
=

1

π cosh t
.

c) x is a parameter of the integral. We first decompose k in spherical coordi-
nates such that the azimutal axis is aligned with x and so: k · x = kr cos θ
where r = |x|. Then the integral is:

G(x, t) =

∫
dωdkd cos θdφ

(2π)4
k2e−iωt+ikr cos θ 1

k2 − 1
c2
(ω ± iϵ)2

= 2π

∫
dωdkd cos θ

(2π)4
k2e−iωt+ikr cos θ 1

k2 − 1
c2
(ω ± iϵ)2

=

∫
dωdk

(2π)3
k

ir
e−iωt

[
eikr − e−ikr

] 1

k2 − 1
c2
(ω ± iϵ)2

(58)

=

∫
dωdk

(2π)3
k

ir
e−iωt

[
eikr − e−ikr

] −c2

(ω ± iϵ− ck)(ω ± iϵ+ ck)

=

∫
dωdk

(2π)3
k

ir
e−iωt

[
eikr − e−ikr

] −c2

(ω − ω1)(ω − ω2)
,

where we have defined

ω1 = +ck ∓ iϵ ,

ω2 = −ck ∓ iϵ . (59)

We will now integrate with respect to ω. From now on, we will distinguish
between the ”+” and the ”−” in equation (59).
If we choose

ω1 = +ck + iϵ ,

ω2 = −ck + iϵ , (60)

the poles have positive imaginary part, therefore the integral is zero if t > 0,
since we must close the contour in the lower half plane. If instead t < 0, we
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have (sending ϵ to zero)

G(x, t) = 2πi

∫ ∞

0

dk

(2π)3
k

ir

[
eikx − e−ikr

] [
e−iω1t − e−iω2t

] −c2

2ck

=

∫ ∞

0

dk

(2π)2
[
eikr − e−ikr

] [
e−iω1t − e−iω2t

] −c

2r

=

∫ ∞

0

dk

(2π)2
[
eikr − e−ikr

] [
e−iω2t − e−iω1t

] c

2r

=
1

2

∫ ∞

−∞

dk

(2π)2
[
eik(r+ct) + e−ik(r+ct) − eik(r−ct) − e−ik(r−ct)

] c

2r

=
c

(4π)r
(δ(r + ct)− δ(r − ct))

=
c

4π

δ(r + ct)

r
. (61)

In the last line, remember that r ≥ 0 and t < 0 so only the first delta
function is relevant. To conclude we have found:

G(x, t) = Θ(−t)
c

4π

δ(|x|+ ct)

|x|
(62)

On the contrary, if we choose

ω1 = +ck − iϵ ,

ω2 = −ck − iϵ , (63)

the poles have negative imaginary part and the integral is zero whenever
t < 0. For t > 0, the calculation goes as before. In conclusion we have

G(x, t) = Θ(t)
c

4π

δ(|x| − ct)

|x|
. (64)
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Figure 6: We close the contour in the upper plane.
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