
Classical Electrodynamics

Solutions week 5

1. Consider the interior V of a spherical shell with radius R centred at point x0.
There is no electric charge inside the shell and there is an arbitrary profile of
electrostatic potential on the shell Φ(x)

∣∣
|x|=R = V (θ, ϕ).

a) Using the Green’s identity for two scalar Φ and Ψ:∫
V
d3r (Φ∇2Ψ−Ψ∇2Φ) =

∮
∂V

dS · (Φ∇Ψ−Ψ∇Φ), (1)

show that the potential at center x0 is the average of potential V (θ, ϕ) over
the shell:

Φ(x0) =

∫
∂V
V (θ, ϕ) dΩ , (2)

with dΩ = 1
4π

sin θ dθ dϕ.

Hint 1: Introduce a function Ψ that simplifies the l.h.s of equation (1) to
the potential at center i.e. Φ(x0).

Hint 2: Use
∮
∂V dS · ∇Φ(x) = 0 to simplify the r.h.s of equation (1).

b) Use this result to argue that maxima or minima of a solution to Laplace
equation can only be at the boundary of the domain.

Solution

a) Choose the Φ in Green’s identity to be the potential. We want to simplify
the l.h.s. of Greens’s identity to the potential at the center. First of all, the
second term vanishes since there is no charge inside: ∇2Φ = −ρ/ε0 = 0.
Furthermore, if we pick the Laplacian of Ψ to be a delta function at center
∇2Ψ = δ3(x− x0) then the l.h.s. would be the potential at center:∫

V
d3rΦ∇2Ψ =

∫
V
d3rΦ δ3(x− x0) = Φ(x0). (3)

As we have already seen before, the solution for ∇2Ψ = δ3(x−x0) is similar
to the potential of charge density ρ = qδ3(x− x0) i.e. point-like charge:

Ψ(x) = − 1

4πr
, (4)

and therefore its gradient is similar to the electric field of a point-like charge:

∇Ψ(x) =
1

4πr2
r̂. (5)
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We can now compute the r.h.s. of Green’s identity. The first term is:∮
∂V

dS · Φ∇Ψ =

∮
∂V

dS · V (θ, ϕ)
r̂

4πR2
=

1

4π

∮
S2

V (θ, ϕ)dΩ, (6)

where we used the fact that dS = R2dΩr̂, with dΩ = sin θ dθ dϕ. The final
integral is over a unit sphere S2, and is indeed the average of the potential
on the shell.

To complete the proof, we show the last term equals 0. The function Ψ
is constant on ∂V , and can be factored out of the integral. The remaining
integral is zero because of Gauss’ law:∮

∂V
dS · ∇Φ(x) = −

∫
V

ρ(x)

ε0
= 0. (7)

b) The Laplace equation ∇2Φ = 0 corresponds to a potential in a region with
no electric charge. Consider a (connected) domain D on which the function
Φ solves the Laplace equation. We show that the maxima and minima of
the solution Φ are located on the boundary ∂D:

Proceed by contradiction: assume that some point x0 in the interior of D
is the minimum of Φ on D. Then, we can consider a ball centered at x0

and countained in the domain D. By the property we showed above, the
average of Φ on the surface of the sphere is equal to Φ(x0). Because of our
assumption, this is only possible if Φ(x) = Φ(x0) on the shell. Therefore,
the function is constant on the ball, and this reasoning can be extended to
the whole domain D. Hence Φ is a constant on the whole domain, and any
point of the boundary is also a maximum. The same argument works for the
minimum.

2. Consider a sphere of radius R with a fixed potential Φ(R, θ, ϕ) = V (θ, ϕ) on its
surface.

a) Find an integral expression for the potential Φ(r, θ, ϕ) in all space outside
the sphere. Hint: Start by finding the appropriate Green function G(r, r′)
for this problem. Recall the general solution of Poisson equation

Φ(r) =
1

ε0

∫
V

ρ(r′)G(r′, r)d3r′+

∫
∂V

[G(r′, r)∇r′Φ(r′)− Φ(r′)∇r′G(r′, r)]·dσ′ .

b) What is the leading behaviour of the potential Φ(r, θ, ϕ) far away from the
sphere, i.e. for r � R?

c) Consider now the following experiment. We take a metallic ball, cut it in
half and glue it back together using an insulating glue. Then we establish a
potential difference V0 between the two half-balls (keeping the total charge
of the ball equal to zero). Find an integral expression for the potential Φ
outside the ball. How does Φ behave far away from the ball?
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d) Estimate the total charge accumulated in each half-ball assuming that the
thickness d of the insulating glue is much smaller than the radius of the ball.

e) Assume that the interior of the sphere is empty and the potential on the
surface is given by Φ(R, θ, ϕ) = V (θ, ϕ). Find an integral expression for the
potential Φ(r, θ, ϕ) inside the sphere. What is the potential at the center of
the sphere?

Solution

a) We will use the same method as the exercise 3 of the exercise sheet of
Week 3. The potential Φ satisfies a Poisson equation with Dirichlet boundary
conditions: {

−∇2Φ = 0

Φ(R, θ, ϕ) = V (θ, ϕ).
(8)

The solution to this problem is given by the formula given in the text where
the Green function G is chosen such that:{

−∇2G(r, r′) = δ3(r− r′)

G(r, r′)
∣∣
|r|=R = 0,

(9)

with boundary conditions of the Green function appropriate to solve a
Dirichlet boundary condition problem. With this choice the first term in
the boundary integral vanishes and the knowledge of Φ only in ∂V is suffi-
cient to determine Φ everywhere.

The first step is to find the Green function. Remember that the Green
function G(r, r′) is formally equivalent to the potential at r created by a
point charge of charge unity placed at r′. For this particular Green function,
the volume V is the volume outside the sphere with boundary conditions
G(r, r′)

∣∣
|r|=R = 0 (zero potential on the sphere). This problem has been

solved in the third exercise of the first week problem sheet with the image
charge method.

We recall that for a charge q placed at r′, one considers an image charge in
the sphere of charge q′′ and position r′′ given by:{

q′′ = −R
r′
q

r′′ = R2

r′
r̂′ = R2

(r′)2
r′.

(10)

Using the same technique, we can deduce the expression of the Green func-
tion satisfying (9):

G(r, r′) =
1

4π

[
1

|r− r′|
− R

r′
1

|r− r′′|

]
. (11)

Let us express the Green function with the coordinates (r, θ, ϕ) and (r′, θ′, ϕ′)
of r and r′ (r′′ has coordinates (R2/r′, θ, ϕ)). We define γ the angle between
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the vectors r and r′ and we have:

G(r, r′) =
1

4π

 1√
r2 + r′2 − 2rr′ cos γ

− R

r′
1√

r2 + R4

r′2
− 2 rR

2

r′
cos γ


=

1

4π

[
1√

r2 + r′2 − 2rr′ cos γ
− R√

r2r′2 +R4 − 2rr′R2 cos γ

]
.

(12)

We have cos γ = r̂ · r̂′ so plugging in coordinates, one gets:

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′). (13)

We have determined the Green function satisfying (9) (notice the symmetry
between r and r′), now we can plug the expression (12) in the formula of
the general solution of Poisson equation given in the text. Since there is no
volumic charge and the Green function has been chosen to vanish on the
sphere, one has:

Φ(r) = −
∫
∂V

[Φ(r′)∇r′G(r, r′)] · dσ′ . (14)

dσ′ = −R2 sin θ′dθ′dϕ′r̂′ (remember that the area vector is by convention
pointing outside the volume) so the above formula becomes:

Φ(r) = R2

∫ 1

−1
d cos θ′

∫ π

−π
dϕ′
[
V (θ′, ϕ′)

∂G

∂r′

∣∣∣∣
r′=R

]
, (15)

and from the explicit formula (12), we get:

∂G

∂r′

∣∣∣∣
r′=R

=
1

4πR

r2 −R2

(r2 +R2 − 2rR cos γ)
3
2

, (16)

so we can conclude:

Φ(r) =
R

4π

∫ 1

−1
d cos θ′

∫ π

−π
dϕ′

[
V (θ′, ϕ′)

r2 −R2

(r2 +R2 − 2rR cos γ)
3
2

]
. (17)

b) The value of cos γ does not change the leading behaviour when r goes to
infinity.

r2 −R2

(r2 +R2 − 2rR cos γ)
3
2

→ r2

r3
, (18)

so:

Φ(r)→ R

4πr

∫ 1

−1
d cos θ′

∫ π

−π
dϕ′ V (θ′, ϕ′). (19)

Very far from the sphere, the potential is the one created by a point charge
of charge:

Q = Rε0

∫ 1

−1
d cos θ′

∫ π

−π
dϕ′ V (θ′, ϕ′), (20)

which is the total charge of the sphere. This is in fact true for any charged
object of finite size: at very large distance, it behaves as a point charge.
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c) Now we have an explicit expression for V (θ, ϕ):{
V (θ, ϕ) = V0 + C for cos θ > 0

V (θ, ϕ) = C for cos θ < 0.
(21)

We need to determine the constant C knowing that the total charge of the
sphere is zero. From previous equation (20), we can see that:

Q = Rε0

∫ 1

−1
d cos θ′

∫ π

−π
dϕ′ V (θ′, ϕ′) = 2πRε0(2C + V0) = 0, (22)

from which we can deduce C = −V0/2 i.e.{
V (θ, ϕ) = V0

2
for cos θ > 0

V (θ, ϕ) = −V0
2

for cos θ < 0.
(23)

We can use the equation (17) with the explicit function V and we get:

Φ(r) =
R(r2 −R2)

4π

[∫ 1

0

d cos θ′
∫ π

−π
dϕ′

[
V0

2(r2 +R2 − 2rR cos γ)
3
2

]

+

∫ 0

−1
d cos θ′

∫ π

−π
dϕ′

[
− V0

2(r2 +R2 − 2rR cos γ)
3
2

]]
(24)

It is difficult to simplify this expression in the general case but we can expand
in the limit r →∞. One has:

1

(r2 +R2 − 2rR cos γ)
3
2

=
1

r3
1

(1 + x2 − 2x cos γ)
3
2

=
1

r3
(1+3x cos γ)+O(x2)

(25)
where x = R/r. In the integral (24), this gives:

Φ(r) =
R

4πr

[∫ 1

0

d cos θ′
∫ π

−π
dϕ′

V0
2

(
1 +

3R

r
cos γ

)

−
∫ 0

−1
d cos θ′

∫ π

−π
dϕ′

V0
2

(
1 +

3R

r
cos γ

)]
+O(x2). (26)

Using the explicit form of cos γ, one can calculate that:∫ 1

0

d cos θ′
∫ π

−π
dϕ′ cos γ = −

∫ 0

−1
d cos θ′

∫ π

−π
dϕ′ cos γ = π cos θ. (27)

Putting all together, the leading order terms cancel and we can conclude:

Φ(r)→ 3V0R
2

4r2
cos θ = 3V0R

2 z

4r3
. (28)

We find that at very large distance, the sphere behaves like an electrostatic
dipole of dipole moment d = 3πV0ε0R

2ẑ.

This is in fact a very general statement: a finite size object with zero charge
behaves at large distances like a dipole, if it has a non zero dipole moment.
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d) We could compute the charge density on the surface of the sphere in the limit
d → 0 by taking the formula (24), deriving the electric field at the surface
and get the surface density by Gauss theorem but the integrals are difficult
to compute explicitly. However, most of the charges are concentrated on the
two disks around cos θ = 0 (the (x, y) plane) and not on the surface of the
sphere.

The area around z = 0 can be approximated by two planes, separated by
a distance d with potential V0/2 and −V0/2. The volume between the two
half-balls is subjected to an electric field E = −V0/d ẑ (neglecting boundary
effects) so the upper half-ball has a surface charge of σ ≈ ε0V0/d.

The charge of each half-ball is divergent when d goes to zero because two
regions of different potential are getting very close together. For small d, the
charge of the upper half-ball can be approximated by:

Q ≈ ε0πR
2V0
d
. (29)

One can check by direct computation or simply by dimensional analysis that
the absolute value |QC | of the total charge residing on the curved part of
each hemisphere is of order |QC | ∼ ε0RV0, which is indeed much smaller
than the total charge on each disc we found above when d → 0, justifying
the claim we made earlier.

e) The problem is the same as the one of point a) but we want to find the
potential inside the sphere, mathematically in the space E = {r ∈ R3 :
|r| ≤ R} of boundary ∂E = {r ∈ R3 : |r| = R}.
The first step is to build a Green function G satisfying:{

−∇2G(r, r′) = δ3(r− r′) for r ∈ E
G(r, r′)

∣∣
|r|=R = 0,

(30)

One can use again the image charge method and find that the Green function
found in question a) solves the problem:

G(r, r′) =
1

4π

[
1

|r− r′|
− R

r′
1

|r− r′′|

]
. (31)

If r′ ∈ E then r′′ /∈ E so this function solves equation (30).

Then using the general formula at the beginning, since the sphere is empty
of charges, only one term remains:

Φ(r) = −
∫
∂V

[Φ(r′)∇r′G(r, r′)] · dσ′ . (32)

but here
dσ′ = +R2 sin θ′dθ′dϕ′r̂′ (33)

because the surface vector points outside the volume E. Since ∇r′G(r, r′)
has been computed before, we can conclude that:

Φ(r) =
R

4π

∫ 1

−1
d cos θ′

∫ π

−π
dϕ′

[
V (θ′, ϕ′)

R2 − r2

(r2 +R2 − 2rR cos γ)
3
2

]
. (34)
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At the center of the sphere, r = 0 and we have:

Φ(0) =
R

4π

∫ 1

−1
d cos θ′

∫ π

−π
dϕ′

[
V (θ′, ϕ′)

R2

(R2)
3
2

]

=
1

4π

∫ 1

−1
d cos θ′

∫ π

−π
dϕ′ V (θ′, ϕ′) . (35)

The potential at the center of the sphere is the average of the potential on
the sphere.

3. Consider the general expressions for the potentials Φ and A using the retarded
Green function,

Φ(x, t) =
1

4πε0

∫
d3x′

ρ
(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

, (36)

A(x, t) =
µ0

4π

∫
d3x′

J
(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

. (37)

Show that the Lorenz gauge condition is implied by the continuity equation, i.e.
charge conservation.

Solution

We start by assuming the continuity equation and show that Φ and A satisfy
the Lorenz gauge condition. The Lorenz gauge condition is

1

c2
∂Φ

∂t
= −∇ ·A . (38)

We start by focusing on the left hand side of (38):

1

c2
∂Φ

∂t
=

1

c2
1

4πε0

∫
d3x′

∂ρ
∂t

(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

=

=
1

c2
1

4πε0

∫
d3x′

∂ρ
∂t′

(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

. (39)

We were able to simply substitute a derivative with respect to t with a derivative
with respect to t′ because ∂t′

∂t
= 1. Now we use the continuity equation:

1

c2
1

4πε0

∫
d3x′

∂ρ
∂t′

(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

=

=
1

c2
1

4πε0

∫
d3x′
−∇part

x′ · J
(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

. (40)

Here the divergence ∇part
x′ · J means that derivatives of the nabla operator are

applied only to the variable x′ and not to the x′ dependence inside t′. In what
follows, the symbol J stands for J

(
x′, t′ = t− 1

c
|x− x′|

)
. Notice that

(∇x′ +∇x)f(x− x′) = 0 , (41)
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for any scalar function f of the difference x− x′. Therefore

∇part
x′ · J

(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

= (∇x′ +∇x) ·
[

J

|x− x′|

]
. (42)

Indeed, one can develop the r.h.s. as:

(∇x′ +∇x) ·
[

J

|x− x′|

]
=
∇part

x′ · J
(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

+
∂t′J

(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

· (∇x′ +∇x)

(
t− 1

c
|x− x′|

)
+ J

(
x′, t′ = t− 1

c
|x− x′|

)
· (∇x′ +∇x)

1

|x− x′|
,

(43)

and the gradients of the last two lines vanish.

We can now go back to the initial integral and proceed with the calculation:

1

c2
1

4πε0

∫
d3x′
−∇part

x′ · J
(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

=

=− 1

c2
1

4πε0

∫
d3x′∇x′ ·

[
J

|x− x′|

]
+

− 1

c2
1

4πε0

∫
d3x′∇x ·

[
J

|x− x′|

]
= (44)

=−∇x ·
1

c2
1

4πε0

∫
d3x′

[
J

|x− x′|

]
= −∇x ·A .

In this last derivation, we have used the Gauss’ theorem for the integral with
the divergence with respect to x′. In this way, we obtain a flux through a surface
which is sent to infinity, which is zero if J goes to zero at large distances.

4. The Faraday disk is a simple electrical generator. The basic ingredients are de-
picted in 1. There is a metallic annulus with internal radius r1, external radius
r2 and width h. The annulus is placed in a region with a constant magnetic
field perpendicular to the plane of the annulus. The metal of the annulus has
electrical conductivity σ.

a) When the annulus is rotating with angular velocity ω and the external circuit
is open, what is the electrostatic potential difference V0 between the internal
and the external circumference of the annulus?

b) This potential difference can be used as an electrical generator if we connect
the internal and the external circumference of the annulus to a circuit as
shown in figure 1 (assume that the connection to the external circuit does
not break the cylindrical symmetry of the system). What is the potential
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h

r1

r2

~B ~B

!

Figure 1: Metallic annulus rotating in a constant magnetic field ~B.

difference V (between r1 and r2) when there is a current I flowing through
the circuit?
Hint 1: Recall the microscopic definition of the conductivity σ,

J = σ (E + v ×B) . (45)

Hint 2: It might be useful to determine the resistance of the annulus.

c) What is the maximum output of electrical power of this generator? What is
the efficiency of the generator when working at the maximal output power?

d) Assume that the metallic annulus is mechanically connected to the wheels
of a train so that they rotate with the same angular velocity ω. Assume also
that the external electrical circuit acts as an effective resistance R. In this
case, we can use the annulus as a regenerative braking system of the train.
Start by showing that the total kinetic energy of the train can be written as
E = 1

2
Ieffω

2 and estimate the effective moment of inertia Ieff . Then, using
conservation of energy, find an equation for the time evolution of the angular
velocity ω when the brakes are on, i.e. the circuit is closed. How long does
it take to reduce the velocity of the train by a factor of 2?

e) Challenge: Suppose the annulus is made of 300 kg of iron, the train weighs
400 ton and it is travelling at 200 km/h. If we brake the train by short-
circuiting the internal and the external circumference of the annulus, will
the annulus melt? Is the braking event safe for the passengers?

Solution

a) Consider a point charge of charge q in the metallic annulus. When the circuit
is open, there is no current in the annulus so all charges in the conductor
are in equilibrium. The charge q feels a force F = q(E+ v×B) which must
be zero. Surface charges in the conductor create an electric field of value (in
cylindrical coordinates):

E = −v ×B = −rωBr̂. (46)
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From that we get the potential:

Φ = −
∫

E · dr =
r2

2
ωB + const , (47)

and we can express the potential difference V0 between r1 and r2:

V0 = Φ(r2)− Φ(r1) =
ωB

2
(r22 − r21). (48)

b) Method 1: Now the circuit is closed and current of intensity I is flowing
through the annulus. Assuming cylindrical symmetry, the current density
J can be written as J = J(r)r̂. Consider a cylindrical surface of radius r:
what is the current flowing through the surface? It is 2πrhJ(r) = I (here
we consider that I is flowing from the internal to the external circumference
of the annulus) so:

J(r) =
I

2πrh
. (49)

Since the problem has a cylindrical symmetry, we can rewrite equation (45)
as:

I

2πrh
= σ(E(r) + rωB), (50)

and integrate it from r1 to r2. The result is:

I

2πh
log

(
r2
r1

)
= σ

(
Φ(r1)− Φ(r2) +

ωB

2
(r22 − r21)

)
. (51)

From that, we deduce:

V = Φ(r2)− Φ(r1) =
ωB

2
(r22 − r21)−

I

2πhσ
log

(
r2
r1

)
. (52)

Method 2: The annulus behaves like a generator but it is not a perfect
generator because it has an internal resistance. A real generator can be
modeled by a perfect generator delivering a tension U0 and a resistance R0,
the internal resistance. The potential difference between the two ends of the
generator is then:

V = U0 −R0I. (53)

U0 is the potential difference between the two ends of the generator when
zero current is flowing through the circuit: it has been calculated in question
a), it is:

U0 = V0 =
ωB

2
(r22 − r21). (54)

Now R0 is the internal resistance of the generator, in this case the resistance
of the annulus. It can be computed as follows: remember that a wire made
of a metal of conductivity σ has resistance R = L/σS where L is the length
of the wire and S the surface of a section. Considering the annulus as many
cocentric cylinders of radius r and thickness dr of resistance:

dR =
dr

2πrhσ
, (55)
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we get the total resistance by integrating from r1 to r2 (we sum resistances
in series) and we get:

R0 =

∫ r2

r1

dR =
1

2πhσ
log

(
r2
r1

)
. (56)

We recognise the result of the first method.

c) The electrical output power of the generator is:

P = V I = V0I −R0I
2 (57)

which reaches a maximum for:

I =
V0

2R0

, Pmax =
V 2
0

4R0

. (58)

The total power of the generator (including power loss due to the internal
resistance) is Ptot = V0I so the efficiency is:

η =
Pmax

Ptot

=
1

2
. (59)

d) The kinetic energy of the train is Ec = 1
2
Mv2 where M is the mass of the

train (we neglect the rotating parts). But v = r0ω where r0 is the radius of
the wheels. So:

Ec =
1

2
Mr20ω

2 =
1

2
Ieffω

2. (60)

The closed circuit can be considered as a perfect generator delivering a
tension V0 and two resistances R0 and R. The intensity flowing through the
circuit is I = V0

R0+R
and the power dissipated by the brakes is P = V0I. This

power comes from the kinetic energy of the train so using conservation of
energy, one can write:

dEc
dt

=
1

2
Ieff

dω2

dt
= −P = −V0I = − V 2

0

R0 +R
= − ω2B2

4(R0 +R)
(r22 − r21)2.

(61)
Defining τ as:

τ =
4Ieff (R0 +R)

B2(r22 − r21)2
, (62)

we have:

ω(t) = ω0 exp

(
− t
τ

)
. (63)

The velocity is proportional to the angular velocity so the time needed to
reduce the speed of the train by a factor 2 is:

t1/2 = τ log 2 =
4Ieff (R0 +R)

B2(r22 − r21)2
log 2. (64)

e) Here, there is no external resistance R so all the power dissipated by the
brakes is converted into heat by resistive heating in the annulus. If we neglect
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dissipation of heat, the thermal energy accumulated in the annulus is the
total kinetic energy of the train:

∆E =
1

2
Mv2 = 6.2× 108 J. (65)

Let us compare this number to the energy needed to heat 300 kg of iron to
its melting point at 1800K (the heat capacity of iron is about 0.45 J/g/K):

∆E = CFem∆T ≈ 2× 108 J, (66)

so the annulus will melt, at least partially. However, we can argue that a
train will have one such brake per wheel, say N brakes, and this divides the
heat dissipated in each annulus by N . For N of the order of N = 10, we are
below the melting point.

Another problem is how brutal the braking system is. The acceleration is
maximal at the beginning of the braking and is given by:

a =
dv

dt

∣∣∣∣
t=0

= −r0ω0

τ
= −B

2(r22 − r21)2v0
4IeffR0

= −B
2(r22 − r21)2v0
4Mr20R0

. (67)

Now we need to make a certain number of (reasonable) assumptions to
estimate this effect. Let us take: r0 = 0.5 m, r2 = 0.35 m, r1 = 0.05 m,
h = 0.1 m, and B in the range 0.1 to 0.5 T, one can find σ = 1.0 × 107

S/m. This gives an internal resistance of R0 = 3.1× 10−7 Ω, a characteristic
breaking time of

τ ≈ (34− 860) s , (68)

and an acceleration of

a ≈ (0.06− 1.6) m · s−2 . (69)

This acceleration seems safe for the passengers (recall that gravity gives
g ≈ 10 m · s−2) but the breaking time is probably too large for an emergency
breaking system. Putting N brakes will also solve this problem.

Knowing that the passengers lives are at stake, we must perform a more
serious study before building such a train.
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