Classical Electrodynamics

Solutions week 4

1. Two spherical cavities, of radii a and b, are hollowed out from the interior of
a neutral conducting sphere of radius R. At the center of each cavity a point
charge is placed. Call these charges ¢, and g,.

a) Find the surface charges o,, 0, and og.
b) What is the field outside the conductor?
c) What is the field within each cavity?

d) What is the force on ¢, and ¢,?

e) Which of these answers would change if a third charge, g., were brought near
the conductor?

Hint: it is possible to solve this exercise without any computation beyond ele-
mentary algebra.

Solution

a) The electric field inside the conductor is zero. Consider a Gaussian sphere
around each cavity. Since the Gaussian surfaces are in the conductor, the
total flux of electric field on the spheres vanish. As a result, the total charge
inside the sphere is zero which means the total surface charge of each cavity
is equal to the charge inside the cavity with a negative sign. Regarding the
distribution of the surface charges, one obvious solution is uniform distri-
bution. But due to uniqueness of the solutions, that is the only solution!
Therefore, we have:
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b)

d)

Since the total charge on the conductor is zero, there must be total charge
of q, + @, on the surface of conductor at r = R. With a similar argument as
above, one can conclude the surface charge density is also uniform on the
boundary at r = R. So:
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To justify the uniform distribution, one can also remember that a spheri-
cal shell of uniform surface charge produces, outside of the shell, the same
electric field as a point of the same total charge located in its center (and
produces zero electric field inside the shell). Thus, inside the conductor, the
electrici field is indeed zero: the field produced by ¢, is compensated by the
field of o,, same for ¢, and o3, and or produces zero field.

The field is generated by the surface charges at r = R, r = a and r = b and
also two charges inside the cavities. Because the surface charges at r = a
and r = b cancel the effect of the charges ¢, and ¢, inside cavities, the
field outside the conductor is equal to fields generated by surface charges at

r=R:
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Note that it does not matter how big the cavities are and where they are
located inside the sphere. The conducting sphere is like a Faraday cage.

Let’s first consider cavity a. The same argument works for cavity b as well.
The field generated by the surface charges at r = R and r = a is zero. More-
over the field generated by surface charges at r = b cancels the contribution
from the charge ¢,. So the field inside the cavity ¢ is:
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where the origin of the spherical coordinates is the charge ¢;.

As discussed above, the electric field generated by the surface charges and
Qb(e) inside the cavity a(b) vanishes. As a result, the force on ¢, and g, is
zero. Note that this would not be true if the charges were not at the center
of the spherical cavities. Say ¢, is not at the center of cavity a, then the
suface charge o, would be stronger at positions closer to ¢,, and cause an
attraction of the charge ¢, towards the wall of the cavity.

Somehow or and the field outside the conductor would change to cancel
the effect of ¢. inside the condutor, so that the condition E.onquctor = 0 is
satisfied. On the other hand, o,, 03, the electric field within each cavity and
the absence of forces on the charges ¢, and ¢, will not change.

Note that one can also use the uniqueness of the solution to answer all of
the above questions.



2. Given the charge density p(x,y,z) and the value of the potential ®(x,y,0) =
©(x,y) on the plane z = 0, determine the potential ®(z, y, z) in the region z > 0.

Hint: Start by finding the appropriate Green function G(r,r’) for this problem.
Recall the general solution of Poisson equation

P(r) = — /V p(r)G(r',r)d’r + /6 § (G, 1)V ®(r) — &(r) VG, 1)) -da(’(.i)

Solution

We want to solve the Poisson equation V2® = p/¢y in the upper half space

V ={r=(z,y,2) € R®: z > 0} with boundary given by the plane 9V = {r €

R?: z =0}

We start by reminding that the solution to the Poisson equation is given by

equation (6) where the Green function G(r,r’) is solution of the equation
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where the second condition is added because it is the most convenient for Dirich-
let boundary conditions. Notice that the term involving the normal derivative of
® in (6) drops out with this choice. We are going to guess such a Green function
using the method of image charge.

The first equation can be interpreted as the potential generated in r by a point
charge of unit value placed at position r’. Moreover, we want the potential sat-
isfying the boundary condition that it vanishes at the surface z = 0.

We already know how to solve this problem with the image charge method. Here,
G(r,r’) is given by the potential generated by a charge at position v’ = (2/, ¢/, 2’)

and a negative unit charge at r” = (2/,y/, —2’), symmetric of r with respect to
the z = 0 plane. Therefore, the Green function we are looking for is
1
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It is easy to show that G(r,r’) = 0 for z = 0. The student may also check that, in

the region z > 0, we have V2G(r,r') = —6(r—r’). In addition, G(r,r’') = G(r/, 1)
as it must for a Dirichlet Green function.

Now, if nn is a unitary vector perpendicular to the plane and pointing toward the
negative values of the z-axis, we can write
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Since the derivative of the Green function with respect to 2’ in 2z’ = 0 is
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the result is
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3. Consider the region p < py and 0 < ¢ < 3 in cylindrical coordinates as depicted
in figure 1. There are no charges inside this region and the potential is fixed at
the boundaries to ®(p, = 0,2) = ®(p, ¢ = B,2) = 0 and P(po, v, 2) = V(p),
where V(i) is a continuous function for 0 < ¢ < g and V(0) = V(8) = 0.

a) Check that the potential inside the region is given by
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and determine the coefficients a,, in terms of V.

b) Determine the surface charge density o(p) along the boundary ¢ = 0 of the
grounded conductor.

c) Assuming the generic case a; # 0, study the behaviour of the surface charge
density o(p) near the corner at p = 0. Comment on the 4 cases 0 < 5 < T,
B=m nm<p <2rand f = 27 and their physical meaning.

d) Challenge: Take § = 37 /2 and suppose the region is filled with air. What
will happen near the corner at p = 07

Solution

a) In order to check that the solution for the potential is correct, we need to
do two things:
i) Show that the boundary conditions are satisfied.
ii) Show that the Poisson equation is satisfied.

i) First of all, we see that ®(p,0,2) = ®(p,3,2) = 0. Secondly, we need
to find the coefficients a,,, so that
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We can do this by multiplying equation (13) on both sides for sin l%‘”, where



®(p,0) =0

Figure 1: Two dimensional cross section of a region that extends along the z-direction
orthogonal to the plane of the figure. The system is invariant under translations in
the z-direction. The radial conductors at ¢ = 0 and ¢ = [ are grounded. The surface
at p = po has a given potential profile V' (¢). The angular region bounded by these
3 surfaces is empty (vacuum).
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From (14), we deduce the coefficients:

2 [P lmp
a = — dp V(p)sin —- . 15
=5 | v (15)
ii) Now we need to prove that
V20 (p,p,2) =0 . (16)

Using cylindrical coordinates, the Laplacian becomes
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b)

The first term on the right hand side of (17) is

1o [ 0P = mr]? 1 <,0)m7r/6_2 . mmp
- m|l— | = — S . 18
pdp [ 8p} Za [ g } 5 \Po " p (18)

m=1

When we evaluate the derivatives in the second term, we obtain
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Plugging (18) and (19) into (17) we obtain (16).

Let us first compute the electric field in the region :
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which, along the boundary ¢ = 0 reduces to:

Z mﬂpo (_> é«pa (20)
and thus:
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Assuming that a; # 0, we have for p — 0:
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The behaviour of o(p) for p — 0 can be deduced from the leading term. In
each case:

e 0 < < m: in this case, the conductor has a inwards corner. The leading
exponent % — 1 is positive and o(p) goes smoothly to zero, there is no
special behaviour at the corner.

e 3 = m: the conductor is a semi-circle and there is no discontinuity at
the point p = 0. The leading exponent is zero % — 1 =0 and the charge
density at the center is o(0) = —%. Moreover, all physical quantities
are analytic in p.

e T < [ < 2m: in this case, the conductor has a corner at p = 0. The
leading exponent % — 1 is negative and the charge density diverges at
the corner.

e 3 = 2m: the conductor is reduced to a needle. The leading exponent is
T—-1= —% and the charge density diverges at the tip of the needle like
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Notice that the total charge (per unit length along the z-direction)

PO
/0 dpo(p) = —e Z py = EOB/ dpV (o) cot _ﬁ (23)

is finite for any 3, even though the charge density diverges for g > 7.

d) S = 2L is in the third case: the charge density and also the electric field are
dlvergent at the corner. In practice, when the electric field reaches a critical
value, it can ionize the air around the corner. The ions then move between
the corner of the conductor and the p = py boundary (from high potential
to low potential for positive ions). Since the potentials are held fixed, this
creates a steady current. The ionization around the corner is accompanied
by scattering of charged particles on nuclei, which creates a purple glow and
buzzing noise. This effect is called corona discharge or corona effect.

A quantitative treatment of this effect is beyond the scope of this course.



