
Classical Electrodynamics

Solutions week 4

1. Two spherical cavities, of radii a and b, are hollowed out from the interior of
a neutral conducting sphere of radius R. At the center of each cavity a point
charge is placed. Call these charges qa and qb.

a) Find the surface charges σa, σb and σR.

b) What is the field outside the conductor?

c) What is the field within each cavity?

d) What is the force on qa and qb?

e) Which of these answers would change if a third charge, qc, were brought near
the conductor?

Hint: it is possible to solve this exercise without any computation beyond ele-
mentary algebra.
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Solution

a) The electric field inside the conductor is zero. Consider a Gaussian sphere
around each cavity. Since the Gaussian surfaces are in the conductor, the
total flux of electric field on the spheres vanish. As a result, the total charge
inside the sphere is zero which means the total surface charge of each cavity
is equal to the charge inside the cavity with a negative sign. Regarding the
distribution of the surface charges, one obvious solution is uniform distri-
bution. But due to uniqueness of the solutions, that is the only solution!
Therefore, we have:

σa = − qa
4πa2

(1)

σb = − qb
4πb2

(2)
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Since the total charge on the conductor is zero, there must be total charge
of qa + qb on the surface of conductor at r = R. With a similar argument as
above, one can conclude the surface charge density is also uniform on the
boundary at r = R. So:

σR =
qa + qb
4πR2

(3)

To justify the uniform distribution, one can also remember that a spheri-
cal shell of uniform surface charge produces, outside of the shell, the same
electric field as a point of the same total charge located in its center (and
produces zero electric field inside the shell). Thus, inside the conductor, the
electrici field is indeed zero: the field produced by qa is compensated by the
field of σa, same for qb and σb, and σR produces zero field.

b) The field is generated by the surface charges at r = R, r = a and r = b and
also two charges inside the cavities. Because the surface charges at r = a
and r = b cancel the effect of the charges qa and qb inside cavities, the
field outside the conductor is equal to fields generated by surface charges at
r = R:

Eout =
qa + qb
4πε0r2

r̂ (4)

Note that it does not matter how big the cavities are and where they are
located inside the sphere. The conducting sphere is like a Faraday cage.

c) Let’s first consider cavity a. The same argument works for cavity b as well.
The field generated by the surface charges at r = R and r = a is zero. More-
over the field generated by surface charges at r = b cancels the contribution
from the charge qb. So the field inside the cavity i is:

Ei =
qi

4πε0r2
r̂ (5)

where the origin of the spherical coordinates is the charge qi.

d) As discussed above, the electric field generated by the surface charges and
qb(a) inside the cavity a(b) vanishes. As a result, the force on qa and qb is
zero. Note that this would not be true if the charges were not at the center
of the spherical cavities. Say qa is not at the center of cavity a, then the
suface charge σa would be stronger at positions closer to qa, and cause an
attraction of the charge qa towards the wall of the cavity.

e) Somehow σR and the field outside the conductor would change to cancel
the effect of qc inside the condutor, so that the condition Econductor = 0 is
satisfied. On the other hand, σa, σb, the electric field within each cavity and
the absence of forces on the charges qa and qb will not change.

Note that one can also use the uniqueness of the solution to answer all of
the above questions.
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2. Given the charge density ρ(x, y, z) and the value of the potential Φ(x, y, 0) =
ϕ(x, y) on the plane z = 0, determine the potential Φ(x, y, z) in the region z ≥ 0.

Hint: Start by finding the appropriate Green function G(r, r′) for this problem.
Recall the general solution of Poisson equation

Φ(r) =
1

ε0

∫
V

ρ(r′)G(r′, r)d3r′ +

∫
∂V

[G(r′, r)∇r′Φ(r′)− Φ(r′)∇r′G(r′, r)] · dσ′ .

(6)

Solution

We want to solve the Poisson equation ∇2Φ = ρ/ε0 in the upper half space
V = {r = (x, y, z) ∈ R3 : z ≥ 0} with boundary given by the plane ∂V = {r ∈
R3 : z = 0}.
We start by reminding that the solution to the Poisson equation is given by
equation (6) where the Green function G(r, r′) is solution of the equation{

∇2
rG(r, r′) = −δ3(r− r′)

G(r, r′)
∣∣
r∈∂V = 0 ,

(7)

where the second condition is added because it is the most convenient for Dirich-
let boundary conditions. Notice that the term involving the normal derivative of
Φ in (6) drops out with this choice. We are going to guess such a Green function
using the method of image charge.

The first equation can be interpreted as the potential generated in r by a point
charge of unit value placed at position r′. Moreover, we want the potential sat-
isfying the boundary condition that it vanishes at the surface z = 0.

We already know how to solve this problem with the image charge method. Here,
G(r, r′) is given by the potential generated by a charge at position r′ = (x′, y′, z′)
and a negative unit charge at r′′ = (x′, y′,−z′), symmetric of r with respect to
the z = 0 plane. Therefore, the Green function we are looking for is

G(r, r′) =
1

4π
√

(x− x′)2 + (y − y′)2 + (z − z′)2

− 1

4π
√

(x− x′)2 + (y − y′)2 + (z + z′)2
. (8)

It is easy to show that G(r, r′) = 0 for z = 0. The student may also check that, in
the region z ≥ 0, we have ∇2

rG(r, r′) = −δ(r−r′). In addition, G(r, r′) = G(r′, r)
as it must for a Dirichlet Green function.

Now, if n̂ is a unitary vector perpendicular to the plane and pointing toward the
negative values of the z-axis, we can write

∇r′G(r, r′) · dσ′ = ∇r′G(r, r′) · n̂ dx′dy′ = −∂G(r, r′)

∂z′
dx′dy′ . (9)

Since the derivative of the Green function with respect to z′ in z′ = 0 is

∂G(r, r′)

∂z′

∣∣∣
z′=0

=
2z

4π [(x− x′)2 + (y − y′)2 + z2]3/2
, (10)
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the result is

Φ(r) =
1

ε0

∫
V

ρ(r′)G(r′, r)d3r′+

+
2z

4π

∫ +∞

−∞

∫ +∞

−∞

ϕ(x′, y′)

[(x− x′)2 + (y − y′)2 + z2]3/2
dx′dy′ . (11)

3. Consider the region ρ ≤ ρ0 and 0 ≤ ϕ ≤ β in cylindrical coordinates as depicted
in figure 1. There are no charges inside this region and the potential is fixed at
the boundaries to Φ(ρ, ϕ = 0, z) = Φ(ρ, ϕ = β, z) = 0 and Φ(ρ0, ϕ, z) = V (ϕ),
where V (ϕ) is a continuous function for 0 ≤ ϕ ≤ β and V (0) = V (β) = 0.

a) Check that the potential inside the region is given by

Φ(ρ, ϕ, z) =
∞∑
m=1

am

(
ρ

ρ0

)mπ/β
sin

mπϕ

β
(12)

and determine the coefficients am in terms of V .

b) Determine the surface charge density σ(ρ) along the boundary ϕ = 0 of the
grounded conductor.

c) Assuming the generic case a1 6= 0, study the behaviour of the surface charge
density σ(ρ) near the corner at ρ = 0. Comment on the 4 cases 0 < β < π,
β = π, π < β < 2π and β = 2π and their physical meaning.

d) Challenge: Take β = 3π/2 and suppose the region is filled with air. What
will happen near the corner at ρ = 0?

Solution

a) In order to check that the solution for the potential is correct, we need to
do two things:
i) Show that the boundary conditions are satisfied.
ii) Show that the Poisson equation is satisfied.

i) First of all, we see that Φ(ρ, 0, z) = Φ(ρ, β, z) = 0. Secondly, we need
to find the coefficients am so that

Φ(ρ0, ϕ, z) =
∞∑
m=1

am sin
mπϕ

β
= V (ϕ) . (13)

We can do this by multiplying equation (13) on both sides for sin lπϕ
β

, where
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Figure 1: Two dimensional cross section of a region that extends along the z-direction
orthogonal to the plane of the figure. The system is invariant under translations in
the z-direction. The radial conductors at ϕ = 0 and ϕ = β are grounded. The surface
at ρ = ρ0 has a given potential profile V (ϕ). The angular region bounded by these
3 surfaces is empty (vacuum).

l is a positive integer, and integrating between 0 and β:∫ β

0

dϕ
∞∑
m=1

am sin
mπϕ

β
sin

lπϕ

β
=

=
∞∑
m=1

am

∫ β

0

dϕ
1

2

[
cos

(m− l)πϕ
β

− cos
(m+ l)πϕ

β

]
=

=
∞∑
m=1

am
2

∫ β

0

dϕ

[
cos

(m− l)πϕ
β

]
= (14)

=
∞∑
m=1

am
2
βδml = al

β

2
=

=

∫ β

0

dϕV (ϕ) sin
lπϕ

β
.

From (14), we deduce the coefficients:

al =
2

β

∫ β

0

dϕV (ϕ) sin
lπϕ

β
. (15)

ii) Now we need to prove that

∇2Φ(ρ, ϕ, z) = 0 . (16)

Using cylindrical coordinates, the Laplacian becomes

∇2Φ =
1

ρ

∂

∂ρ

[
ρ
∂Φ

∂ρ

]
+

1

ρ2
∂2Φ

∂ϕ2
+
∂2Φ

∂z2
. (17)
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The first term on the right hand side of (17) is

1

ρ

∂

∂ρ

[
ρ
∂Φ

∂ρ

]
=

∞∑
m=1

am

[
mπ

β

]2
1

ρ20

(
ρ

ρ0

)mπ/β−2
sin

mπϕ

β
. (18)

When we evaluate the derivatives in the second term, we obtain

1

ρ2
∂2Φ

∂ϕ2
= −

∞∑
m=1

am

[
mπ

β

]2
1

ρ20

(
ρ

ρ0

)mπ/β−2
sin

mπϕ

β
=

=− 1

ρ

∂

∂ρ

[
ρ
∂Φ

∂ρ

]
. (19)

Plugging (18) and (19) into (17) we obtain (16).

b) Let us first compute the electric field in the region :

E(ρ, ϕ, z) = −∇Φ = −
∞∑
m=1

am
mπ

βρ0

(
ρ

ρ0

)mπ
β
−1 [

sin
mπϕ

β
êρ + cos

mπϕ

β
êϕ

]
,

which, along the boundary ϕ = 0 reduces to:

E(ρ) = −
∞∑
m=1

am
mπ

βρ0

(
ρ

ρ0

)mπ
β
−1

êϕ, (20)

and thus:

σ(ρ) = −ε0
∞∑
m=1

am
mπ

βρ0

(
ρ

ρ0

)mπ
β
−1

. (21)

c) Assuming that a1 6= 0, we have for ρ→ 0:

σ(ρ) = −ε0a1
π

βρ0

(
ρ

ρ0

)π
β
−1

+O
(
ρ

ρ0

) 2π
β
−1

. (22)

The behaviour of σ(ρ) for ρ→ 0 can be deduced from the leading term. In
each case:

• 0 < β < π: in this case, the conductor has a inwards corner. The leading
exponent π

β
− 1 is positive and σ(ρ) goes smoothly to zero, there is no

special behaviour at the corner.

• β = π: the conductor is a semi-circle and there is no discontinuity at
the point ρ = 0. The leading exponent is zero π

β
− 1 = 0 and the charge

density at the center is σ(0) = − ε0a1
ρ0

. Moreover, all physical quantities
are analytic in ρ.

• π < β < 2π: in this case, the conductor has a corner at ρ = 0. The
leading exponent π

β
− 1 is negative and the charge density diverges at

the corner.

• β = 2π: the conductor is reduced to a needle. The leading exponent is
π
β
− 1 = −1

2
and the charge density diverges at the tip of the needle like

1√
ρ
.
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Notice that the total charge (per unit length along the z-direction)∫ ρ0

0

dρ σ(ρ) = −ε0
∞∑
m=1

am = −ε0
1

β

∫ β

0

dϕV (ϕ) cot
πϕ

2β
(23)

is finite for any β, even though the charge density diverges for β > π.

d) β = 3π
2

is in the third case: the charge density and also the electric field are
divergent at the corner. In practice, when the electric field reaches a critical
value, it can ionize the air around the corner. The ions then move between
the corner of the conductor and the ρ = ρ0 boundary (from high potential
to low potential for positive ions). Since the potentials are held fixed, this
creates a steady current. The ionization around the corner is accompanied
by scattering of charged particles on nuclei, which creates a purple glow and
buzzing noise. This effect is called corona discharge or corona effect.

A quantitative treatment of this effect is beyond the scope of this course.
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