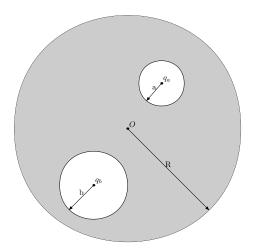
## Classical Electrodynamics

## Solutions week 4

- 1. Two spherical cavities, of radii a and b, are hollowed out from the interior of a neutral conducting sphere of radius R. At the center of each cavity a point charge is placed. Call these charges  $q_a$  and  $q_b$ .
  - a) Find the surface charges  $\sigma_a$ ,  $\sigma_b$  and  $\sigma_R$ .
  - b) What is the field outside the conductor?
  - c) What is the field within each cavity?
  - d) What is the force on  $q_a$  and  $q_b$ ?
  - e) Which of these answers would change if a third charge,  $q_c$ , were brought near the conductor?

**Hint**: it is possible to solve this exercise without any computation beyond elementary algebra.



Solution

a) The electric field inside the conductor is zero. Consider a Gaussian sphere around each cavity. Since the Gaussian surfaces are in the conductor, the total flux of electric field on the spheres vanish. As a result, the total charge inside the sphere is zero which means the total surface charge of each cavity is equal to the charge inside the cavity with a negative sign. Regarding the distribution of the surface charges, one obvious solution is uniform distribution. But due to uniqueness of the solutions, that is the only solution! Therefore, we have:

$$\sigma_a = -\frac{q_a}{4\pi a^2}$$

$$\sigma_b = -\frac{q_b}{4\pi b^2}$$
(1)

$$\sigma_b = -\frac{q_b}{4\pi b^2} \tag{2}$$

Since the total charge on the conductor is zero, there must be total charge of  $q_a + q_b$  on the surface of conductor at r = R. With a similar argument as above, one can conclude the surface charge density is also uniform on the boundary at r = R. So:

$$\sigma_R = \frac{q_a + q_b}{4\pi R^2} \tag{3}$$

To justify the uniform distribution, one can also remember that a spherical shell of uniform surface charge produces, outside of the shell, the same electric field as a point of the same total charge located in its center (and produces zero electric field inside the shell). Thus, inside the conductor, the electric field is indeed zero: the field produced by  $q_a$  is compensated by the field of  $\sigma_a$ , same for  $q_b$  and  $\sigma_b$ , and  $\sigma_R$  produces zero field.

b) The field is generated by the surface charges at r = R, r = a and r = b and also two charges inside the cavities. Because the surface charges at r = a and r = b cancel the effect of the charges  $q_a$  and  $q_b$  inside cavities, the field outside the conductor is equal to fields generated by surface charges at r = R:

$$\mathbf{E}_{out} = \frac{q_a + q_b}{4\pi\epsilon_0 r^2} \hat{r} \tag{4}$$

Note that it does not matter how big the cavities are and where they are located inside the sphere. The conducting sphere is like a Faraday cage.

c) Let's first consider cavity a. The same argument works for cavity b as well. The field generated by the surface charges at r = R and r = a is zero. Moreover the field generated by surface charges at r = b cancels the contribution from the charge  $q_b$ . So the field inside the cavity i is:

$$\mathbf{E}_i = \frac{q_i}{4\pi\epsilon_0 r^2} \hat{r} \tag{5}$$

where the origin of the spherical coordinates is the charge  $q_i$ .

- d) As discussed above, the electric field generated by the surface charges and  $q_{b(a)}$  inside the cavity a(b) vanishes. As a result, the force on  $q_a$  and  $q_b$  is zero. Note that this would not be true if the charges were not at the center of the spherical cavities. Say  $q_a$  is not at the center of cavity a, then the surface charge  $\sigma_a$  would be stronger at positions closer to  $q_a$ , and cause an attraction of the charge  $q_a$  towards the wall of the cavity.
- e) Somehow  $\sigma_R$  and the field outside the conductor would change to cancel the effect of  $q_c$  inside the condutor, so that the condition  $\mathbf{E}_{\text{conductor}} = 0$  is satisfied. On the other hand,  $\sigma_a$ ,  $\sigma_b$ , the electric field within each cavity and the absence of forces on the charges  $q_a$  and  $q_b$  will not change.

Note that one can also use the uniqueness of the solution to answer all of the above questions. **2.** Given the charge density  $\rho(x,y,z)$  and the value of the potential  $\Phi(x,y,0) = \varphi(x,y)$  on the plane z=0, determine the potential  $\Phi(x,y,z)$  in the region  $z\geq 0$ .

**Hint:** Start by finding the appropriate Green function  $G(\mathbf{r}, \mathbf{r}')$  for this problem. Recall the general solution of Poisson equation

$$\Phi(\mathbf{r}) = \frac{1}{\epsilon_0} \int_V \rho(\mathbf{r}') G(\mathbf{r}', \mathbf{r}) d^3 \mathbf{r}' + \int_{\partial V} \left[ G(\mathbf{r}', \mathbf{r}) \nabla_{\mathbf{r}'} \Phi(\mathbf{r}') - \Phi(\mathbf{r}') \nabla_{\mathbf{r}'} G(\mathbf{r}', \mathbf{r}) \right] \cdot \mathbf{d}\sigma'.$$
(6)

Solution

We want to solve the Poisson equation  $\nabla^2 \Phi = \rho/\epsilon_0$  in the upper half space  $V = \{ \mathbf{r} = (x, y, z) \in \mathbb{R}^3 : z \geq 0 \}$  with boundary given by the plane  $\partial V = \{ \mathbf{r} \in \mathbb{R}^3 : z = 0 \}$ .

We start by reminding that the solution to the Poisson equation is given by equation (6) where the Green function  $G(\mathbf{r}, \mathbf{r}')$  is solution of the equation

$$\begin{cases} \nabla_{\mathbf{r}}^{2} G(\mathbf{r}, \mathbf{r}') = -\delta^{3}(\mathbf{r} - \mathbf{r}') \\ G(\mathbf{r}, \mathbf{r}') \Big|_{\mathbf{r} \in \partial V} = 0, \end{cases}$$
(7)

where the second condition is added because it is the most convenient for Dirichlet boundary conditions. Notice that the term involving the normal derivative of  $\Phi$  in (6) drops out with this choice. We are going to guess such a Green function using the method of image charge.

The first equation can be interpreted as the potential generated in  $\mathbf{r}$  by a point charge of unit value placed at position  $\mathbf{r}'$ . Moreover, we want the potential satisfying the boundary condition that it vanishes at the surface z=0.

We already know how to solve this problem with the image charge method. Here,  $G(\mathbf{r}, \mathbf{r}')$  is given by the potential generated by a charge at position  $\mathbf{r}' = (x', y', z')$  and a negative unit charge at  $\mathbf{r}'' = (x', y', -z')$ , symmetric of  $\mathbf{r}$  with respect to the z = 0 plane. Therefore, the Green function we are looking for is

$$G(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}} - \frac{1}{4\pi\sqrt{(x-x')^2 + (y-y')^2 + (z+z')^2}}.$$
 (8)

It is easy to show that  $G(\mathbf{r}, \mathbf{r}') = 0$  for z = 0. The student may also check that, in the region  $z \geq 0$ , we have  $\nabla^2_{\mathbf{r}} G(\mathbf{r}, \mathbf{r}') = -\delta(\mathbf{r} - \mathbf{r}')$ . In addition,  $G(\mathbf{r}, \mathbf{r}') = G(\mathbf{r}', \mathbf{r})$  as it must for a Dirichlet Green function.

Now, if  $\hat{\mathbf{n}}$  is a unitary vector perpendicular to the plane and pointing toward the negative values of the z-axis, we can write

$$\nabla_{\mathbf{r}'} G(\mathbf{r}, \mathbf{r}') \cdot \mathbf{d}\sigma' = \nabla_{\mathbf{r}'} G(\mathbf{r}, \mathbf{r}') \cdot \hat{\mathbf{n}} \, dx' dy' = -\frac{\partial G(\mathbf{r}, \mathbf{r}')}{\partial z'} \, dx' dy' \,. \tag{9}$$

Since the derivative of the Green function with respect to z' in z'=0 is

$$\frac{\partial G(\mathbf{r}, \mathbf{r}')}{\partial z'}\Big|_{z'=0} = \frac{2z}{4\pi \left[ (x - x')^2 + (y - y')^2 + z^2 \right]^{3/2}} , \qquad (10)$$

the result is

$$\Phi(\mathbf{r}) = \frac{1}{\epsilon_0} \int_V \rho(\mathbf{r}') G(\mathbf{r}', \mathbf{r}) d^3 \mathbf{r}' + \frac{2z}{4\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\varphi(x', y')}{[(x - x')^2 + (y - y')^2 + z^2]^{3/2}} dx' dy'.$$
(11)

- **3.** Consider the region  $\rho \leq \rho_0$  and  $0 \leq \varphi \leq \beta$  in cylindrical coordinates as depicted in figure 1. There are no charges inside this region and the potential is fixed at the boundaries to  $\Phi(\rho, \varphi = 0, z) = \Phi(\rho, \varphi = \beta, z) = 0$  and  $\Phi(\rho_0, \varphi, z) = V(\varphi)$ , where  $V(\varphi)$  is a continuous function for  $0 \leq \varphi \leq \beta$  and  $V(0) = V(\beta) = 0$ .
  - a) Check that the potential inside the region is given by

$$\Phi(\rho, \varphi, z) = \sum_{m=1}^{\infty} a_m \left(\frac{\rho}{\rho_0}\right)^{m\pi/\beta} \sin \frac{m\pi\varphi}{\beta}$$
 (12)

and determine the coefficients  $a_m$  in terms of V.

- **b)** Determine the surface charge density  $\sigma(\rho)$  along the boundary  $\varphi = 0$  of the grounded conductor.
- c) Assuming the generic case  $a_1 \neq 0$ , study the behaviour of the surface charge density  $\sigma(\rho)$  near the corner at  $\rho = 0$ . Comment on the 4 cases  $0 < \beta < \pi$ ,  $\beta = \pi$ ,  $\pi < \beta < 2\pi$  and  $\beta = 2\pi$  and their physical meaning.
- d) Challenge: Take  $\beta = 3\pi/2$  and suppose the region is filled with air. What will happen near the corner at  $\rho = 0$ ?

Solution

- a) In order to check that the solution for the potential is correct, we need to do two things:
  - i) Show that the boundary conditions are satisfied.
  - ii) Show that the Poisson equation is satisfied.
  - i) First of all, we see that  $\Phi(\rho, 0, z) = \Phi(\rho, \beta, z) = 0$ . Secondly, we need to find the coefficients  $a_m$  so that

$$\Phi(\rho_0, \varphi, z) = \sum_{m=1}^{\infty} a_m \sin \frac{m\pi\varphi}{\beta} = V(\varphi) . \tag{13}$$

We can do this by multiplying equation (13) on both sides for  $\sin \frac{l\pi\varphi}{\beta}$ , where



Figure 1: Two dimensional cross section of a region that extends along the z-direction orthogonal to the plane of the figure. The system is invariant under translations in the z-direction. The radial conductors at  $\varphi = 0$  and  $\varphi = \beta$  are grounded. The surface at  $\rho = \rho_0$  has a given potential profile  $V(\varphi)$ . The angular region bounded by these 3 surfaces is empty (vacuum).

l is a positive integer, and integrating between 0 and  $\beta$ :

$$\int_{0}^{\beta} d\varphi \sum_{m=1}^{\infty} a_{m} \sin \frac{m\pi\varphi}{\beta} \sin \frac{l\pi\varphi}{\beta} =$$

$$= \sum_{m=1}^{\infty} a_{m} \int_{0}^{\beta} d\varphi \frac{1}{2} \left[ \cos \frac{(m-l)\pi\varphi}{\beta} - \cos \frac{(m+l)\pi\varphi}{\beta} \right] =$$

$$= \sum_{m=1}^{\infty} \frac{a_{m}}{2} \int_{0}^{\beta} d\varphi \left[ \cos \frac{(m-l)\pi\varphi}{\beta} \right] =$$

$$= \sum_{m=1}^{\infty} \frac{a_{m}}{2} \beta \delta_{ml} = a_{l} \frac{\beta}{2} =$$

$$= \int_{0}^{\beta} d\varphi V(\varphi) \sin \frac{l\pi\varphi}{\beta} .$$
(14)

From (14), we deduce the coefficients:

$$a_{l} = \frac{2}{\beta} \int_{0}^{\beta} d\varphi \, V(\varphi) \sin \frac{l\pi\varphi}{\beta} \,. \tag{15}$$

ii) Now we need to prove that

$$\nabla^2 \Phi(\rho, \varphi, z) = 0 . {16}$$

Using cylindrical coordinates, the Laplacian becomes

$$\nabla^2 \Phi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[ \rho \frac{\partial \Phi}{\partial \rho} \right] + \frac{1}{\rho^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + \frac{\partial^2 \Phi}{\partial z^2} . \tag{17}$$

The first term on the right hand side of (17) is

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left[ \rho \frac{\partial \Phi}{\partial \rho} \right] = \sum_{m=1}^{\infty} a_m \left[ \frac{m\pi}{\beta} \right]^2 \frac{1}{\rho_0^2} \left( \frac{\rho}{\rho_0} \right)^{m\pi/\beta - 2} \sin \frac{m\pi\varphi}{\beta} . \tag{18}$$

When we evaluate the derivatives in the second term, we obtain

$$\frac{1}{\rho^2} \frac{\partial^2 \Phi}{\partial \varphi^2} = -\sum_{m=1}^{\infty} a_m \left[ \frac{m\pi}{\beta} \right]^2 \frac{1}{\rho_0^2} \left( \frac{\rho}{\rho_0} \right)^{m\pi/\beta - 2} \sin \frac{m\pi\varphi}{\beta} =$$

$$= -\frac{1}{\rho} \frac{\partial}{\partial \rho} \left[ \rho \frac{\partial \Phi}{\partial \rho} \right] . \tag{19}$$

Plugging (18) and (19) into (17) we obtain (16).

**b)** Let us first compute the electric field in the region :

$$\mathbf{E}(\rho,\varphi,z) = -\nabla\Phi = -\sum_{m=1}^{\infty} a_m \frac{m\pi}{\beta\rho_0} \left(\frac{\rho}{\rho_0}\right)^{\frac{m\pi}{\beta}-1} \left[\sin\frac{m\pi\varphi}{\beta}\hat{\mathbf{e}}_{\rho} + \cos\frac{m\pi\varphi}{\beta}\hat{\mathbf{e}}_{\varphi}\right],$$

which, along the boundary  $\varphi = 0$  reduces to:

$$\mathbf{E}(\rho) = -\sum_{m=1}^{\infty} a_m \frac{m\pi}{\beta \rho_0} \left(\frac{\rho}{\rho_0}\right)^{\frac{m\pi}{\beta} - 1} \hat{\mathbf{e}}_{\varphi}, \tag{20}$$

and thus:

$$\sigma(\rho) = -\epsilon_0 \sum_{m=1}^{\infty} a_m \frac{m\pi}{\beta \rho_0} \left(\frac{\rho}{\rho_0}\right)^{\frac{m\pi}{\beta} - 1}.$$
 (21)

c) Assuming that  $a_1 \neq 0$ , we have for  $\rho \to 0$ :

$$\sigma(\rho) = -\epsilon_0 a_1 \frac{\pi}{\beta \rho_0} \left(\frac{\rho}{\rho_0}\right)^{\frac{\pi}{\beta} - 1} + \mathcal{O}\left(\frac{\rho}{\rho_0}\right)^{\frac{2\pi}{\beta} - 1}.$$
 (22)

The behaviour of  $\sigma(\rho)$  for  $\rho \to 0$  can be deduced from the leading term. In each case:

- $0 < \beta < \pi$ : in this case, the conductor has a inwards corner. The leading exponent  $\frac{\pi}{\beta} 1$  is positive and  $\sigma(\rho)$  goes smoothly to zero, there is no special behaviour at the corner.
- $\beta = \pi$ : the conductor is a semi-circle and there is no discontinuity at the point  $\rho = 0$ . The leading exponent is zero  $\frac{\pi}{\beta} 1 = 0$  and the charge density at the center is  $\sigma(0) = -\frac{\epsilon_0 a_1}{\rho_0}$ . Moreover, all physical quantities are analytic in  $\rho$ .
- $\pi < \beta < 2\pi$ : in this case, the conductor has a corner at  $\rho = 0$ . The leading exponent  $\frac{\pi}{\beta} 1$  is negative and the charge density diverges at the corner.
- $\beta = 2\pi$ : the conductor is reduced to a needle. The leading exponent is  $\frac{\pi}{\beta} 1 = -\frac{1}{2}$  and the charge density diverges at the tip of the needle like  $\frac{1}{\sqrt{\rho}}$ .

Notice that the total charge (per unit length along the z-direction)

$$\int_0^{\rho_0} d\rho \, \sigma(\rho) = -\epsilon_0 \sum_{m=1}^{\infty} a_m = -\epsilon_0 \frac{1}{\beta} \int_0^{\beta} d\varphi V(\varphi) \cot \frac{\pi \varphi}{2\beta}$$
 (23)

is finite for any  $\beta$ , even though the charge density diverges for  $\beta > \pi$ .

d)  $\beta = \frac{3\pi}{2}$  is in the third case: the charge density and also the electric field are divergent at the corner. In practice, when the electric field reaches a critical value, it can ionize the air around the corner. The ions then move between the corner of the conductor and the  $\rho = \rho_0$  boundary (from high potential to low potential for positive ions). Since the potentials are held fixed, this creates a steady current. The ionization around the corner is accompanied by scattering of charged particles on nuclei, which creates a purple glow and buzzing noise. This effect is called **corona discharge** or **corona effect**.

A quantitative treatment of this effect is beyond the scope of this course.