Classical Electrodynamics

Week 3

1. In order to get familiar with the method of image charges it’s better to warm up
with some examples. For all the following configurations draw the position and
the value of the image charge and check that the scalar potential ¢ is zero on
the surface of the conductors.

a) A single point-like charge and an infinite conducting plane (figure 1(a)).

b) Two point-like charges of different values and an infinite conducting plane
(figure 1(b)).

c) A single charge placed inside a 90 degrees corner of conducting materials
(figure 1(c)).

d) A single charge between two parallel metallic planes (figure 1(d)). For this
last one it is not required to compute the full solution but only to discuss
qualitatively the configuration of image charges that realizes it.
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Figure 1: Configurations of charges and conducting planes.



Solution

a)

b)

d)

We need to replace the conducting plane with an appropriately positioned
image charge such that the electric field or the potential in the area of interest
is the same. To do so, it is sufficient to check that the boundary potential
is the same and that the charge distribution in the space of interest is not
altered.

In this case, as the potential on a conductor is constant (otherwise charges
would be flowing), and as the conductor extends to infinity where the poten-
tial is zero (by convention), one needs to place the image charge such that
the potential on a virtual plane (the boundary of the conductor) is zero.

The solution is shown in figure 2(a). All the points on the plane are equidis-
tant to the two opposite charges. As the potential is the sum of the potential
created by each of the charges, the potential on the plane amounts to zero.

In this case (2(b)), the potential outside the conductor is the sum of the
potential of each of the 4 charges. On the plane, the potential created by the
upper-left charge cancels with the one created by the lower-left image-charge
and the potential of the upper-right with the one of the lower-right.

On the vertical plane, the potential created by the upper-left charge and the
upper-right charge cancel, so does the potential created by the lower-left and
lower-right charges. On the horizontal plane, the potential created by the
upper-right and the lower-right charges cancel, and the potential created by
the upper-left and lower-left charges cancel.

In this configuration (2(d)), the potential on right-hand plane is zero (the
left part is a mirror image of the right with opposite charges). But the
potential on the left plane is not zero (it is the sum of the two charges on
the right). To make it zero, we should add two charges on the left so we
have again mirror images (in respect to a "mirror” on the left plane). In
that case, the potential on the right plane would not be zero but would be
the potential created by the charges we have just added. One sees that we
could repeat this process at infinity where the "unwanted” potential would
be the potential created by two lastly-added charges but so far away that
this potential would tend to zero!

If we place the original charge at the origin and put the two conducting
planes at * = a and ©* = —b, we need an infinite number of image charges
Q placed at = 2(a + b)k,y = 0,z = 0 where k € Z (k = 0 is the original
charge, all other are image charges) and another infinite number of image
charges —(@Q) at coordinates z = 2a + 2(a + b)k, k € Z. One might worry
about the convergence of the solution found by the image charge method.
This is left as an exercise to the reader.
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Figure 2: Configurations of charges and conducting planes, along with the image
charges. The potential created by the charges and their images (without the con-
ductors) is equivalent to the potential created by the charge and the conducting
planes.



2. Consider a conducting sphere of radius R and a point-like charge @ placed at a
distace d from the surface of the sphere.

a) Find the position and the value of the image charge inside the sphere such
that the potential ¢ is zero on the surface of the sphere.

b) Find how to place an additionnal image charge such that the sphere is
neutral and has constant potential on its surface (not necessarily zero).

Solution

a) Let’s consider that the centre of the sphere is at the origin and the charge @
is placed at xo = (0,0, R+ d). The sphere is a conductor so its surface must
be equipotential. The problem we have to solve in order to find the potential
is : V2p(x) = —%5(}{ — Xo) with boundary conditions : ¢ constant on the
surface of the sphere. We will use the method of image charges in order to
reproduce these conditions.

We assume it is possible to place a single charge inside the sphere so that the
potential is zero on the surface. It will make the equations easier to solve!.
By the cylindrical symmetry of the problem, the mirror charge )" must be
on the z axis, at coordinates (0,0, a). If we use spherical coordinates (7, 0, ),
we get a potential:

Q 1 Q' 1
+
dmeg \/r2 4+ (R+d)? — 2r(R+d) cosf  4meo /12 + a? — 2racosf
(1)

Considering first the two points P, = (R,0,0) and P, = (R, 7,0), we get a
system of two equations with solutions:
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It is then straighforward to check that with these solutions, ¢ = 0 for r = R
for any 6.

b) With the first question we have found a way to get constant zero potential on
the surface of the sphere. Now, if we add one more charge ()" such that the
potential from that charge only is constant on the sphere, by superposition
principle the potential from all three charges is still a constant. Clearly, the
place such a charge can be is the centre of the sphere. We can now adjust
the value of Q" to have a neutral sphere. Intuitively Q" = —@’. And indeed,
Gauss’ law (for a sphere of radius R + €) implies that the flux of the electric
field outside the sphere indicates the total charge of the sphere is Q' + Q"

®(E) = —(Q'+ Q") (3)

1
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'If this did not work, we could have tried to equate the potential to an arbitrary constant,
which would be a third unknown, so we would need to compare three points. Computations become
involved doing so. Alternatively, one can impose the derivatives of ¢ with respect to 6 to vanish.
This is easiest by looking at the second derivative in 6, at P; and Ps.



So we immediately get :

= — 4
=@ =07 @)
Conclusion: the potential outside the conductive sphere satisfies the same
equation with boundary conditions in the original problem and in the sim-

plified case where we only have the three charges QQ, Q" and Q”. The potential
outside the sphere is thus (valid for » > R):
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3. Consider a point-like charge @ hanging from an insulating string as shown in
figure 3(a).

a) Using Maxwell equations, compute the electric field produced by the charge,

(i) neglecting the effect of all nearby objects.

(ii) assuming that the ground under the charge is a flat infinite conductor
at a distance h. Determine also the surface charge density induced on
the conducting floor. Hint: use the method of image charges.

b) Suppose that the floor is an insulator with the electrical permittivity of the
vacuum and we place a neutral metallic sphere on the ground exactly below
the hanging charge as depicted in figure 3(b). The sphere has radius R and
the distance from the top of the sphere to the hanging charge is d.

(i) Using the method of image charges, show that the surface charge den-
sity induced on the conducting sphere is
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where 6 is the polar angle from the top of the sphere. Hint: use the
result of exercise 2.b

(ii) Study the limit of the charge density for a very large sphere (R — 00)
keeping the distance d fixed. Compare your result with the case of a
flat conducting floor.

(iii) What is the minimal weight of the sphere so that it remains on the
ground?

c) Challenge: Assume the ground in figure 3(a) is a water pond. What is the
shape of the surface of the water due to the presence of a small hanging
charge?



Solution
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Figure 3: Charge hanging from an insulating string.

Consider a sphere of radius r centered at the position of the particle.
According to Gauss’s law, we have

Q
O(E)=—. (7)
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Due to the spherical symmetry of the problem, the electric field is
always perpendicular to the surface of the sphere: E = FEeé,.. Therefore,

the flux is given by

(I)(E):/dSE-n:/dSE:E47rr2. (8)
And thus the electric field is
Q.
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as we should expect from the Coulomb law.

We choose a reference frame so that the conductor is placed in the
plane z = 0. Since all the material in z < 0 is a conductor, we know
that E = 0 for z < 0 and thus the potential ¢ is constant for z negative.
Since the conductor extends to infinity, we have ¢ = 0 for z < 0.

In order to find the potential for z positive, we have to solve the fol-
lowing problem (Poisson equation with boundary conditions):
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We will solve this problem with the method of image charges. The idea
is to introduce ficticious charges outside the volume where we want to
solve the Poisson equation in order to reproduce the boundary condi-
tions (here ¢ = 0 when z = 0).

To do so, we introduce an image charge ¢ = —(Q) at distance h on the
opposite side of the conductor as on figure 2(a). This does not spoil
the Poisson equation for z > 0 and on the boundary z = 0 we have a
potential :
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This reproduces the boundary conditions and we can conclude that the
potential in the whole upper space z > 0 is given by the sum of the
potentials generated by the two charges:
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The three component of the electric field are derived using E = —V¢
(or summing the field produced by the two charges):
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We will now relate the surface charge with the electric field found
above. Notice that the electric field is discontinuous at the surface
2=0:FE,(z,y,0_) =0and E,(x,y,04) # 0.

Consider now a closed box delimited by two large parallel planes placed
at z = € and z = —e, where € is a small positive parameter. We will
apply Gauss’s law, so we first compute the flux through the box:

®(E) = ?{dsbox E(x) n= /dS E.(z,y,¢€) + flux through the sides

— [ dS E.(x,y,0,) (13)
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Gauss’s law tells us :

— Qbox _ 1 dSo(x,y) = /dSEZ(J;7y70+) ~ (14)
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Equation (14) is satisfied for any such surface only if

o(z,y)
€0
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Therefore, the surface density is given by

Qh
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Notice that the total charge of the conducting plane is:
Qy = [ oz, y)dady = —Q (17)

exactly the opposite of the hanging charge!



b)

Note : The result we have just derived is more general than this exercise.
Using a similar argument, you can show that the surface charge density of
any surface is proportionnal to the discontinuity of the electric field normal
to the surface:

o(x) = egAE (x) (18)

You can use this result later in the course without rederiving it.

(i) Let’s consider that the centre of the sphere is at the origin and the

charge @) is placed at xg = (0,0, R + d). The sphere is neutral and a
conductor, so its surface must be equipotential. The problem of solving
Poisson’s equation outside that sphere has been solved with image
charges in problem 2. It involved placing an image charge )’ = _Qp%d

at position (0,0, RR—J;) and one charge Q" = —(@Q’ at the origin. The
potential outside the sphere is given in (5).

Now we can compute the electric field outside the sphere at the surface
by taking the gradient, and we deduce the surface charge with the

formula o = g E-ni. We need only the radial component of the gradient:
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Now let R — oo, d fixed in the previous equation. We get:

@
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so for a very large sphere, we have a constant, very small charge density
all over the sphere. But now the total charge of the sphere is Q! What
happened?

Notice that when # — 0, the denominator of the first fraction cancels.
So we have to expand the cosine to investigate the small angle limit :
cosf=1-— %. The charge density becomes:
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When the sphere becomes very large, most of the sphere gets a small
surface charge density of the same sign as the hanging charge except
for the tip of the sphere where there is a concentration of opposite
signe charges.

Compared to the plane, we can say R20%* — 22 + y? when R becomes
large so we find the charge distribution for the infinite plane:
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(iii) The force exerted by the point charge on the sphere is the opposite
of the force exerted by the sphere on the point charge. This is given
by the force excerced by the electric field created by the sphere on Q.
And the electric field produced by the sphere is the same as the one
produced by the two image charges Q" and @Q”. So the force acting on
the sphere is:
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In order for the weight of the sphere to cancel this force, one needs:

. Q? R3 2d% + 4dR + R?
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c) The water can be considered as the infinite conductor of part a). The charge
@ will attract the surface charges and the surface of the water will rise. The
complete problem is impossible to treat analytically but it is reasonable to
assume that the deformation of the water is small. From the electrostatic
point of view, the surface of the water remains flat so that the surface charge
density is simply:

o= L d T - (26)
27 (@ + 22 + )’
Each point at the surface of the water is subjected to an electric field: E =
%éz for z > 0 and E = 0 for z < 0. Therefore, an element of surface dS feels
a force:

o? Q*dS d?
dF = —dSé, = e, 27
2e0 ‘ 8m2eg (d? + 22 + 1112)36 (27)
(since the electric field is discontinuous, one has to consider the average of
the value above and below the plane).

This force is cancelled by the weight of the column of water above the original

height, given by
dP = —pgdz(x,y)dSeé, , (28)

where p is the density of water and 0z(x,y) is the height of the water with
respect to z = 0. When we impose dF + dP = 0, we obtain:
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0z(x,y) =



Figure 4: Plot of the shape of the water (z axis exaggerated).
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