Classical Electrodynamics

Week 2

1. Show that
a) 0; =3
b) &€ =0
C) €ijk€imn = OjmOkn — OjnOkm
d) €mn€jmn = 20,

Solution

Remember that we use Einstein notation and sum over repeted indices. Moreover,
1, j, k are used for euclidean space indices. We furthermore remind you that

1 it i=
5’”_{0 if i ()
and that
1 if (i, k) is (1,2,3),(2,3,1) or (3,1,2)
€ijk = —1 if (ivja k) 18 (1a3)2)7 (27 ]-73) or (3727 1) (2)

0 otherwise
ie. it measures the sign of the permutation.
a) EXphCltly 5“ = (511 + (522 + (533 =3

b) We can proceed explicitly d;j€;x = Z§=1 S because of (1). And then
S Siicie = 0 using (2).

Note that this is true more generally if we contract a symmetric with an

antisymmetric tensor. Here d;; = d;; is symmetric in 4, j and €, = —¢€ji is
antysimetric. Remembering that for a symmetric tensor S;; = Sj; whereas
for antisymmetric tensor A;; = —Aj;, it follows that

Siinj — _SijAji — _SjiAji — _Siinj > Siinj — 0, (3)

where in the last step of the equalities we relabelled the indices i <> j.

c) One can write all terms explicitly, or we can also understand it as follows.
From (2), we have a non-zero situation only in the following two configura-
tion

e j=m,k=nandi#jk
e j=n,k=mandi#jk

In the first situation the two epsilon have the same ordering whereas in the
second they differ. Thus

€ijk€imn — (5]m(5k’n - 5]n6km (4)
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d) We can use the previous identity

€imn€imn = €mni€mnj — 5kn(6mni6mkj)

2. Vector idenities
By looking at a component and without writing the vectors explicitly, prove the
following identities:

a) AA(BAC)=B(A-C)—C(A-B)

b) V-(AAB)=(VAA)-B-A (VAB)

c) VA(AAB)=A(V-B)—B(V-A)+(B-V)A—(A-V)B
d) (AANV)-B=A-(VAB)

Solution
Here we use that

(A A B) = emk(A) (B)k = EZ]kA Bk (6)
A-B=(A);(B);,=A;B; (7)
We also use the notation 5 = 0; and thus (V); = 0;
a)
= €,k Aj(€snBICy) = €ijkerinA;BiCy, = €xijeinA;BiC, (9)
D (646:m — 6imd)A; B,C,, (10)
= (B):;(A-C) - (C);(A-B) (12)
b)

V- (AAB) = di(eijud;Br) " E ™ (en0i(A;) Br) + (ejuA;0i(B)) (
= €4i;Br0i(A;) — €;iA;0;(By) (14
= By (erij0iA;) — A;j(€ir0i Br) (
—(VAA)-B—A-(VAB) (



(17)
= €;jk€kn01(A; Bj)é, = (18)
= €pij€rnt [B;jOIA; + A;0,B;) €, = (19)
D (51651 — 6u6;0) [B;OLA; + Ay By &, = (20)
=B-V)A+(V-B)JA-(V-A)B- (A -V)B. (22)
d)
(A N V) -B = (eijkAjé?k) él . Blél == (23)
= 0, (€j5A;0)) B = (24)
= EijkAjakBi = EjkiAjakBi = (25)
—A-(VAB) (26)
3. Gauge transformations
a) Show that the potentials
B

¢ =0 A’ = B(0,z,0) (28)

are equivalent and represent the same magnetic and electric fields. Find the
gauge transformation that relates them. Here B is a constant and (z1, z9, 3)
represent the explicit components of a vector.

b) Show that the potentials
¢ = —Eq - rsin(wt) A=0 (29)
1
¢ =0 A= EO; cos(wt) (30)

are equivalent and represent the same magnetic and electric fields. Find the
gauge transformation that relates them.

Solution

a) We start with the magnetic field:
B=VxA=(0,0,B)

B'=VxA'"=(0,0,B). (31)
Now we compute the electric field:
dA
E=-Vo——=0
Ve dt
dA’
E =-V¢ — =0. 32
ve - 2 (3)



A possible gauge transformation is x(z,y, z) = gxy. So we have

B
VX = E(ywxao) ) (33)
and
A A+Vy=A (34)

The electric potential does not change under this transformation:
Ix
—¢p——=—=0=¢". 35
¢ o— 5 ¢ (35)

b) Again, we start by computing the electric and magnetic field to see if both
potentials are equivalent.

A
E:—ngb—aa—t:Eosin(wt) B=-VxA=0, (36)
/ / aA/ : / /

E'= V¢~ —- =Eosin(wi) B'=-VxA=0. (37)

We see that both fields are equal, so there must be a gauge transformation
relating the potentials. Such a gauge transformation y would satisfy:

0
0 =0- 5. A =A+Vy. (38)
The first equation implies
1
x =Eq- r- cos(wt) + f(r) , (39)

and the second implies V f = 0. Therefore, we can simply set f(r) = 0.

4. Gradient in spherical coordinates Starting from the expression of the gra-
dient in cartesian coordinates

_(of of of
(Vf)cartesian - (%7 a_y7 %) )

derive the expression for the gradient in spherical coordinates

_(of 1of 1 of
(vf>spherical - (E’ 00’ TSinea_qb) .

Solutions Let us use the coordinates x; for the cartesian coordinate and y; for
the spherical. As usual

1 = rsinf cos ¢ = y; siny, cos ys3
Zg = rsinfsin ¢ = y; sin y, sin y3 (40)

T3 = 1 cosf = y; cosys



or the inverse relation

(r =y = (aF + 25+ 23)'* = (w;3))
0=y, = LI
= Y2 = arccos (mﬂii)l/z (41)

¢ = y3 = arctan <ﬁ>
\ I
Now we know that x;(y), thus

1/2

of _ 9y; 0f
= L 42

Moreover, using the shorthand p? = x? 4 3, the versors transform according to
the map

T

<>
<>

3;
NED)

X1 = %5’1

— I3y P~y
X3="7Y1— ;Y2

+ 2 —
+ Vo +

T

S8
<8 =2
s

At this point we can write the gradient operator as
0
V: Vcart ~Ai: Ai:
(0y; Of \ .
= — | x; =
3xi 8yj
6yj 3f N
= (2225 T
< d; By, Yk
The k—th component of the gradient in spherical coordinates is then
dy; 0
T; I . 43

At this point we only have to substitute all the relevant pieces and perform the
sums (over i and j, the repeated indices in the expression).

Let’s derive the radial component for example: £ = 1, and let’s compute sepa-
o 0 0

rately the part proportional to aiyl = o0 Oy — % and 3%3 = 56"

o X %: it’s enough to set k = 1 and j = 1 in equation (43) (and sum over 7).

or or or
T + Ty — + Ty — =
Haxl 2183:2 3183:3

T, T To T Ty T
e It A AT i U |

ror r o r o r

o x Z: corresponds to k=1 and j = 2

90
06 00 00
Tii— 4+ Ty — + Ty — =
118:1:1 + Lo o2y + 31(91:3

r1 1xy To 1ao T3 1p

r.p7 ropr T X3T
4 P
"



® X 57 ﬁnally corresponds to k=1 and j =3

9
or”

All the other components can be computed analogously, by considering k£ = 2, 3.

So the radial component of the gradient in spherical coordinates is r -V =

Alternative solution

We first start from the expression of the gradient in cartesian basis (e,,e,, e,) =
(e1,e9,e3) and cartesian coordinates (z, v, z, %, 3%, %) and will note (x,y, 2) =
(21,22, x3) too to make notation simpler:

where the last equality uses Einstein’s summation convention.

Vf(r,y z) =

We Want to both change basis to (e,,ep,es) = (€1,€2,€3) and coordinates to
(r,0, ¢, 2 5 ae> 8¢) where will use (r,0, ¢) = (&1, T2, T3) again. The goal is now to
express the same vector field in a different basis and in different coordinates:

Vf=Di(f)er+ Da(f)es + D3(f)es = Di(f)ei, (45)

where the D’s are combinations of derivatives and coordinates z;’s and %’s.
It should be reminded that, contrary to the cartesian basis, the spherical basis
vectors depend on (7,0, ¢) and are not constant.

Let’s start by a useful definition of the €;’s (no summation implied on the right-

hand side):
9p(r,0,9)

éi<r7 97 ¢) ” apzmé @) || (46)
T 0%,
where p = x;€; is just the position vector. We could use this expression to
compute explicitly each spherical basis vector in term of the cartesian basis
vectors, but we’;; take a different route here.

Since (e, €9, e) form a orthonormal basis, we can find each components of any
vector expressed in that basis by taking the dot product: v =v,&; = v, = v - &;.
Thus, we get

o of 35,

. 1 8fe 8(mkek)
||8P | 0x; 7 OF;

(48)

Now, because e, are constant, we can pull them out of the derivative, and by
the linearity of the dot product, we get

1 aZL’k 8f
Dz(f) || 8p || 81}1 8% (e . ek).

(49)

6



We finally use (e; - e, = ;) to get

|22 03 0z; | 0% Or; |2 0%

Di(f) = (50)

N 152

where in the last equality we use the multivariable chain rule. Finally we need
to compute the normalization factors. We can do that in cartesian basis: v =
vie; = ||v]| = \/viv;, and so, using p = x;e;, the normalization factors are given
by

Jp

51

which leads to ) of
V= ﬁa—jiei- (52)

¥, (52)
5. Dirac d-function
a) Show that

lim —— (53)

a—0t T(a? + 22)

is a representation of the d-function by verifying that [* dzd(z)f(z) =
f(0), where f is a smooth test function that does not grow at infinity.

b) Prove the following identity

1

where the sum is over all the zeros f(z;) = 0 and we assume that f'(x;) # 0.

c) Prove the following identity in R"
/ % f () V" (% = X0) = — Vaef o - (55)

d) Let g(x) be a bounded smooth function. Compute [ dzg(z)0'(z — zy) and
derive a relation between the Heaviside #-function and the Dirac -function.

e) Evaluate the following integrals
/dxg(:c)é'(x — Zo) , /dxg(x)d”(x — Z9) - (56)

f) Calculate exp (zoL) §(x).
g) Show that 8(t) = 5= [*° dwe™' .



Solution

a) In exercises of this kind it is very important to remember that the integral
must be evaluated before the limit. We must solve the following integral:

I(a) = /_ i f(z) . (57)

~ (a2 + 22?)

We can do this by extending the integral to the complex plane. Indeed, we

have
«Q

I(a) = Bl{glgo " dz mf(z) , (58)
where y(R) is a semi-circle in the complex plane with a diameter which goes
from —R to R. After the integral is calculated, R is sent to infinity. We
choose to write the semi-circle in the positive semi-plane!. The reason why
equation (58) is legitimate is the behavior of the integrand for |z| — oc:
it goes to zero faster than 1/|z| in every direction. Inside the contour v(R)
there is one pole at z = i« plus other possible poles of the function f at
z = z;. The integral can be evaluated with the method of residues:

(0%

. . 2t
I(Oé) = ZWZZRGSWJC(Z> = f(lOé) + ; mRGSf(Zj> . (59)
Therefore, we can see that

/ T lim —" () = lim f(ia) = £(0) = /OO de 5(z) f(z) .

o a—0 m(a? + x2) a—0 -
(60)

b) First method: In order to prove the identity, we must understand what hap-
pens when we apply 0(f(x)) to a test function h(z). More precisely, we must
find the result of e

I :/ dz 5(f(2)) h(z) - (61)
We know that the delta function is different from zero only when its argu-
ment is zero, therefore we can write the integral as a sum of contributions
in the proximity of the zeros of f:

I 2/ () ) = 1 (62)

where € is a positive infinitesimal parameter. Consider a single term I;. We
do the change of variables

z—=y=f(z),
rite— f(o; +e) =~ tef(z;) (63)
_ 4

dr = dy .
T @(wy

Lin this particular case, both the semi-planes were possible.



The integral thus becomes

B tef'(z:) df~ 1
L= st b ) ) =
df !

= £h(f71(0))=— a0

(0) . (64)
We have written “ 4 ” because the sign is positive if f'(z;) > 0 and negative
otherwise?. We must now remember the theorem of the inverse function:
if y = g(x) is a monotonic differentiable function, in a point x; so that
g'(x1) # 0, the following equality holds:

{dgl] Lt (65)
Y |y 9(21)
Using this theorem, and the fact that f~1(0) = z;, we can write
I, = £h(z;)—— L h(x,)# . (66)
S (i) | (i)

Collecting all the results, we have:
“+o0o
1= [ dwstr@)hi) -
= = 67
= 2 Mgy o] (67

Y . Sz — x;) .
‘/_ © X T M)

Comparing the first and the third lines of (67) we can deduce that

Sz — xy)

i

(68)

Second method: Even in this case, we must treat separately the neighbor-
hood of each zero x;. We use the definition of the Dirac d of the previous
exercise and Taylor expand the function f around each zero x;:

o' « 1
lzli% m(a?+ (f(x))?) ili% | f/ ()] ()| (( )>2 o xl)Q)
= lim b
B=0 (B2 + (x — 2)?) | [ (w3)]
1
When we sum over 7 we obtain
o) = ¥ s (70)

i

2Indeed, from the definition of the Dirac §, we can deduce that f+ dzd(x)g(x) = —g(0).
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c)

d)

f)

We treat each component ¢ of the gradient vector separately. Suppose that
the interval of the integral for the coordinate z; is ¢ = (a;, b;), where a; and
b; can be either finite or infinite. We integrate by parts:

[ x99 (= x0) =

:/dn_lx [f(x)d" (x — x0)]; — /d”x@if(x)én (x—x%0) = (71)
= — 0; flx=xo -

We have put equal to zero the first term in the second line of (71) because
the ¢ function is zero for x; # z;9, and this is the case when z; = a; and
x; = b;. This is valid for all 7 so in vectorial form:

/d”xf(x)VX(S" (x —xq) = — fo|x:XO ) (72)
As in the previous case, we need an integration by parts:

/_+°° dz f(2)0,0(x — x¢) =

[e.o]

+R
= P}gxgo [f(x)f(x — xo)]fﬁ - P}glgo dz 0, f(x) = (73)
= lim [f(+R) = f(+R) + f(z0)] =
=f(xo) -

Therefore, the derivative of the Heaviside function is the Dirac 4.

By integration by parts, we have:

/dxg(x)é’(x —xg) = —/dxg’(x)d(z —x9) = —¢'(z0) - (74)

In the first equality the boundary term vanishes because g(x)d(z — xy) goes
to zero at infinity, the second equality comes from the definition of the Dirac
0 function.

For the second integral, two successive integrations by parts gives us:
/da;g(x)d”(:c—xo) = —/dwg’(x)é’(x—:co) = /dxg”(x)é(x—xo) = ¢" (o) .

(75)
Let’s take a smooth test function f:

/ d f () exp <x0%> 5(z) = / d () i i—?dgf) (76)

n=0

[e.9]

B xy d"o(x)
= Zm/dxf@)—dx”




g)

The first equality comes from the definition of the exponential and the third
from an immediate generalisation of the results obtained in question e).
The last line comes from the Taylor expansion formula. This is valid for all
smooth test functions so we can conclude:

mp@w%)ﬂ@:5@+x@. (78)

First method: by Fourier transform. We write f as the anti-transform of its
Fourier transform:

S B ,
f(t2) = / dwe’“t22—/ dtie™™" f(t1) =

-T—OOO 1 +C:OOO )
:/ ﬁ{—/ meHﬂﬂm. (79)
Now, compare the term in square brackets in (79) with a delta function:
+oo
f(tz) = / diy f(t1)o(t2 — 1) (80)
Therefore, we can write
1 [T ,
(S(tg - tl) = % /_OO dwe”’(trtl) s (81)

and, in particular, when t; = 0,

1 Foo )
5@:—/ dwe? (82)

21 J_ o

Second method: we use a regulator to compute the integral explicitly.

1 [ : 1 [~ -
— dwe™ = lim — / dw ete=w’ (83)
27’( — 00 e—0 27T

i N t? " 1 2

= lim——-—exp|—— ) =lim exp| —— | .
e—0 2T € P 4e? =0 \/47re? P 4e?
which is a representation of the Dirac delta. This can be checked as follows:

let f(x) be a smooth test function admitting a Taylor expansion in = = 0.
The statement we need to show is

2

Fep (~4z ) = 10 gn

[e.9]

lim dt

1
e—0 —00 A/ 47T€2

We proceed by splitting the integral into two regions: one close to t = 0 (say
at distance §) and its complement

hj% (/|t|<a+/|t>5> dt \/%f(t) exp (—4t—:2) : (85)
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The second integral has limit 0 for any fixed 6 when ¢ — 0. While in the
first one, we can choose § so that f(¢) can be Taylor expanded.

1 <= f™(0) ( t2 )
lim —— dt=Y ———t"exp | —— | . 86
e—=0 /47 Afﬁé € — n! p 462 ( )

Here actually the terms for odd n are zero. After a simple change of variables
we can recast this expression in a way that the limit is easy to take

lim / 2nf( ( )the—t2/4 _
=0 AT Jt1<6/e n=0 (2n)!

1 0 2
0) — dte t/* 87
) TW/_OO (87)

A simple computation shows that the result is indeed f(0).

Third method: by using another type of regulator. First, we separate the
integral into two parts

1 [ 1 VRN B S
— dwe™" = — dwe™* + — dw e™ (88)
— o0 27T —co 27T 0

2

Next, with the intention of suppressing the integrands at w — 00, we shift
t to t — i€ in the first integral and to ¢ + i€ in the second integral. Doing so
allows us to compute the integrals explicitly

1 00 ) 1 0 ) o) ]
. dw ezwt = _— lim / dw ezwt+5w + / dw ezwt—sw
2r J_ o 2m =0 | J_ o 0

1 . 1 1
= —lim — 4+ :
2me=0 e+t €—it
. €
=l e e 59

which is exactly the representation of the §-function we introduced in prob-
lem 2.a), and thus it follows that 5= [7 dwe™' = §(t).
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