
Classical Electrodynamics

Week 2

1. Show that

a) δii = 3

b) δijϵijk = 0

c) ϵijkϵimn = δjmδkn − δjnδkm

d) ϵimnϵjmn = 2δij

Solution

Remember that we use Einstein notation and sum over repeted indices. Moreover,
i, j, k are used for euclidean space indices. We furthermore remind you that

δij =

{
1 if i = j
0 if i ̸= j

(1)

and that

ϵijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2)
−1 if (i, j, k) is (1, 3, 2), (2, 1, 3) or (3, 2, 1)
0 otherwise

(2)

ie. it measures the sign of the permutation.

a) Explicitly δii = δ11 + δ22 + δ33 = 3

b) We can proceed explicitly δijϵijk =
∑3

i=1 δiiϵiik because of (1). And then∑3
i=1 δiiϵiik = 0 using (2).

Note that this is true more generally if we contract a symmetric with an
antisymmetric tensor. Here δij = δji is symmetric in i, j and ϵijk = −ϵjik is
antysimetric. Remembering that for a symmetric tensor Sij = Sji whereas
for antisymmetric tensor Aij = −Aji, it follows that

SijAij = −SijAji = −SjiAji = −SijAij =⇒ SijAij = 0, (3)

where in the last step of the equalities we relabelled the indices i ↔ j.

c) One can write all terms explicitly, or we can also understand it as follows.
From (2), we have a non-zero situation only in the following two configura-
tion

� j = m, k = n and i ̸= j, k

� j = n, k = m and i ̸= j, k

In the first situation the two epsilon have the same ordering whereas in the
second they differ. Thus

ϵijkϵimn = δjmδkn − δjnδkm (4)
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d) We can use the previous identity

ϵimnϵjmn = ϵmniϵmnj = δkn(ϵmniϵmkj)

= δkn(δnkδij − δnjδik) = δknδnkδij − δknδnjδik

= 3δij − δij = 2δij (5)

2. Vector idenities
By looking at a component and without writing the vectors explicitly, prove the
following identities:

a) A ∧ (B ∧C) = B(A ·C)−C(A ·B)

b) ∇ · (A ∧B) = (∇∧A) ·B−A · (∇∧B)

c) ∇∧ (A ∧B) = A (∇ ·B)−B (∇ ·A) + (B · ∇)A− (A · ∇)B

d) (A ∧∇) ·B = A · (∇∧B)

Solution
Here we use that

(A ∧B)i = ϵijk(A)j(B)k = ϵijkAjBk (6)

A ·B = (A)i(B)i = AiBi (7)

We also use the notation ∂
∂xi

= ∂i and thus (∇)i = ∂i

a)

(A ∧ (B ∧C))i = ϵijkAj(B ∧C)k (8)

= ϵijkAj(ϵklnBlCn) = ϵijkϵklnAjBlCn = ϵkijϵklnAjBlCn (9)

(4)
= (δilδjn − δinδjl)AjBlCn (10)

= AjBiCj − AjBjCi (11)

= (B)i(A ·C)− (C)i(A ·B) (12)

b)

∇ · (A ∧B) = ∂i(ϵijkAjBk)
Leibniz rule

= (ϵijk∂i(Aj)Bk) + (ϵijkAj∂i(Bk)) (13)

= ϵkijBk∂i(Aj)− ϵjikAj∂i(Bk) (14)

= Bk(ϵkij∂iAj)− Aj(ϵjik∂iBk) (15)

= (∇∧A) ·B−A · (∇∧B) (16)
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c)

∇∧ (A ∧B) = ϵijk∇∧ (AiBj êk) = (17)

= ϵijkϵlkn∂l(AiBj)ên = (18)

= ϵkijϵknl [Bj∂lAi + Ai∂lBj] ên = (19)

(4)
= (δinδjl − δilδjn) [Bj∂lAi + Ai∂lBj] ên = (20)

= Bj∂jAiêi + Ai∂jBj êi − ∂iAiBj êj − Ai∂iBj êj = (21)

= (B · ∇)A+ (∇ ·B)A− (∇ ·A)B− (A · ∇)B. (22)

d)

(A ∧∇) ·B = (ϵijkAj∂k) êi ·Blêl = (23)

= δil (ϵijkAj∂k)Bl = (24)

= ϵijkAj∂kBi = ϵjkiAj∂kBi = (25)

= A · (∇∧B) (26)

3. Gauge transformations

a) Show that the potentials

ϕ = 0 A =
B

2
(−y, x, 0) (27)

ϕ′ = 0 A′ = B(0, x, 0) (28)

are equivalent and represent the same magnetic and electric fields. Find the
gauge transformation that relates them. Here B is a constant and (x1, x2, x3)
represent the explicit components of a vector.

b) Show that the potentials

ϕ = −E0 · r sin(ωt) A = 0 (29)

ϕ′ = 0 A′ = E0
1

ω
cos(ωt) (30)

are equivalent and represent the same magnetic and electric fields. Find the
gauge transformation that relates them.

Solution

a) We start with the magnetic field:

B = ∇×A = (0, 0, B)

B′ = ∇×A′ = (0, 0, B) . (31)

Now we compute the electric field:

E = −∇ϕ− dA

dt
= 0

E′ = −∇ϕ′ − dA′

dt
= 0 . (32)
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A possible gauge transformation is χ(x, y, z) = B
2
xy. So we have

∇χ =
B

2
(y, x, 0) , (33)

and
A → A+∇χ = A′ . (34)

The electric potential does not change under this transformation:

ϕ → ϕ− ∂χ

∂t
= 0 = ϕ′ . (35)

b) Again, we start by computing the electric and magnetic field to see if both
potentials are equivalent.

E = −∇ϕ− ∂A

∂t
= E0 sin(ωt) B = −∇×A = 0 , (36)

E′ = −∇ϕ′ − ∂A′

∂t
= E0 sin(ωt) B′ = −∇×A′ = 0 . (37)

We see that both fields are equal, so there must be a gauge transformation
relating the potentials. Such a gauge transformation χ would satisfy:

ϕ′ = ϕ− ∂χ

∂t
, A′ = A+∇χ . (38)

The first equation implies

χ = E0 · r
1

ω
cos(ωt) + f(r) , (39)

and the second implies ∇f = 0. Therefore, we can simply set f(r) = 0.

4. Gradient in spherical coordinates Starting from the expression of the gra-
dient in cartesian coordinates

(∇f)cartesian =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

derive the expression for the gradient in spherical coordinates

(∇f)spherical =

(
∂f

∂r
,
1

r

∂f

∂θ
,

1

r sin θ

∂f

∂ϕ

)
.

Solutions Let us use the coordinates xi for the cartesian coordinate and yi for
the spherical. As usual

x1 = r sin θ cosϕ = y1 sin y2 cos y3

x2 = r sin θ sinϕ = y1 sin y2 sin y3

x3 = r cos θ = y1 cos y2

(40)
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or the inverse relation

r = y1 = (x2
1 + x2

2 + x2
3)

1/2 = (xixi)
1/2

θ = y2 = arccos

(
x3

(xixi)1/2

)
ϕ = y3 = arctan

(
x2

x1

) (41)

Now we know that xi(y), thus

∂f

∂xi

=
∂yj
∂xi

∂f

∂yj
(42)

Moreover, using the shorthand ρ2 = x2
1 + x2

2, the versors transform according to
the map

T : {ŷi} → {x̂i} s.t.


x̂1 =

x1

r
ŷ1 +

x1

ρ
x3

r
ŷ2 − x2

ρ
ŷ3;

x̂2 =
x2

r
ŷ1 +

x2

ρ
x3

r
ŷ2 +

x1

ρ
ŷ3;

x̂3 =
x3

r
ŷ1 − ρ

r
ŷ2.

At this point we can write the gradient operator as

∇ =
(
∇cart

)
i
x̂i =

(
∂

∂xi

)
x̂i =

=

(
∂yj
∂xi

∂f

∂yj

)
x̂i =

=

(
∂yj
∂xi

∂f

∂yj

)
Tikŷk

The k−th component of the gradient in spherical coordinates is then

Tik

(
∂yj
∂xi

∂

∂yj

)
. (43)

At this point we only have to substitute all the relevant pieces and perform the
sums (over i and j, the repeated indices in the expression).

Let’s derive the radial component for example: k = 1, and let’s compute sepa-
rately the part proportional to ∂

∂y1
= ∂

∂r
, ∂

∂y2
= ∂

∂θ
and ∂

∂y3
= ∂

∂ϕ
.

� ∝ ∂
∂r
: it’s enough to set k = 1 and j = 1 in equation (43) (and sum over i).

T11
∂r

∂x1

+ T21
∂r

∂x2

+ T31
∂r

∂x3

=

=
x1

r
· x1

r
+

x2

r
· x2

r
+

x3

r
· x3

r
= 1

� ∝ ∂
∂θ
: corresponds to k = 1 and j = 2

T11
∂θ

∂x1

+ T21
∂θ

∂x2

+ T31
∂θ

∂x3

=

x1

r
· 1
ρ

x1

r
+

x2

r
· 1
ρ

x2

r
− x3

r
· 1

x3

ρ

r
=

=
ρ

r2
− ρ

r2
= 0
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� ∝ ∂
∂ϕ
: finally corresponds to k = 1 and j = 3

T11
∂ϕ

∂x1

+ T21
∂ϕ

∂x2

+ T31
∂ϕ

∂x3

=

− x1

r
· 1
ρ

x2

x1

+
x2

r
· 1
ρ
+

x3

r
· 0 = 0.

So the radial component of the gradient in spherical coordinates is r̂ · ∇ = ∂
∂r
.

All the other components can be computed analogously, by considering k = 2, 3.

Alternative solution
We first start from the expression of the gradient in cartesian basis (ex, ey, ez) =
(e1, e2, e3) and cartesian coordinates (x, y, z, ∂

∂x
, ∂
∂y
, ∂
∂z
) and will note (x, y, z) =

(x1, x2, x3) too to make notation simpler:

∇f(x, y, z) =
∂f(x, y, z)

∂x
ex +

∂f(x, y, z)

∂y
ey +

∂f(x, y, z)

∂z
ez =

∂f

∂xi

ei (44)

where the last equality uses Einstein’s summation convention.

We want to both change basis to (er, eθ, eϕ) = (ẽ1, ẽ2, ẽ3) and coordinates to
(r, θ, ϕ, ∂

∂r
, ∂
∂θ
, ∂
∂ϕ
) where will use (r, θ, ϕ) = (x̃1, x̃2, x̃3) again. The goal is now to

express the same vector field in a different basis and in different coordinates:

∇f = D1(f)er +D2(f)eθ +D3(f)eϕ = Di(f)ẽi, (45)

where the D’s are combinations of derivatives and coordinates x̃j’s and ∂
∂x̃k

’s.
It should be reminded that, contrary to the cartesian basis, the spherical basis
vectors depend on (r, θ, ϕ) and are not constant.

Let’s start by a useful definition of the ẽi’s (no summation implied on the right-
hand side):

ẽi(r, θ, ϕ) =

∂p(r,θ,ϕ)
∂x̃i

∥∂p(r,θ,ϕ)
∂x̃i

∥
, (46)

where p = xiei is just the position vector. We could use this expression to
compute explicitly each spherical basis vector in term of the cartesian basis
vectors, but we’;; take a different route here.

Since (er, eθ, eϕ) form a orthonormal basis, we can find each components of any
vector expressed in that basis by taking the dot product: v = ṽiẽi ⇒ ṽi = v · ẽi.
Thus, we get

Di(f) = (∇f) · ẽi =
∂f

∂xj

ej · ẽi =
∂f

∂xj

ej ·

(
∂p
∂x̃i

∥ ∂p
∂x̃i

∥

)
(47)

=
1

∥ ∂p
∂x̃i

∥
∂f

∂xj

ej ·
∂(xkek)

∂x̃i

. (48)

Now, because ek are constant, we can pull them out of the derivative, and by
the linearity of the dot product, we get

Di(f) =
1

∥ ∂p
∂x̃i

∥
∂xk

∂x̃i

∂f

∂xj

(ej · ek). (49)
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We finally use (ej · ek = δjk) to get

Di(f) =
1

∥ ∂p
∂x̃i

∥
∂xk

∂x̃i

∂f

∂xj

δjk =
1

∥ ∂p
∂x̃i

∥
∂xj

∂x̃i

∂f

∂xj

=
1

∥ ∂p
∂x̃i

∥
∂f

∂x̃i

, (50)

where in the last equality we use the multivariable chain rule. Finally we need
to compute the normalization factors. We can do that in cartesian basis: v =
viei ⇒ ∥v∥ =

√
vivi, and so, using p = xjej, the normalization factors are given

by ∥∥∥∥ ∂p∂x̃i

∥∥∥∥ =

√√√√∑
j

(
∂xj

∂x̃i

)2

, (51)

which leads to

∇f =
1√∑

j

(
∂xj

∂x̃i

)2 ∂f

∂x̃i

ẽi. (52)

5. Dirac δ-function

a) Show that

lim
α→0+

α

π(α2 + x2)
(53)

is a representation of the δ-function by verifying that
∫∞
−∞ dxδ(x)f(x) =

f(0), where f is a smooth test function that does not grow at infinity.

b) Prove the following identity

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi) , (54)

where the sum is over all the zeros f(xi) = 0 and we assume that f ′(xi) ̸= 0.

c) Prove the following identity in Rn∫
dnxf(x)∇xδ

n (x− x0) = − ∇xf |x=x0
. (55)

d) Let g(x) be a bounded smooth function. Compute
∫
dxg(x)θ′(x − x0) and

derive a relation between the Heaviside θ-function and the Dirac δ-function.

e) Evaluate the following integrals∫
dxg(x)δ′(x− x0) ,

∫
dxg(x)δ′′(x− x0) . (56)

f) Calculate exp
(
x0

d
dx

)
δ(x).

g) Show that δ(t) = 1
2π

∫∞
−∞ dω eiωt .

7



Solution

a) In exercises of this kind it is very important to remember that the integral
must be evaluated before the limit. We must solve the following integral:

I(α) =

∫ +∞

−∞
dx

α

π(α2 + x2)
f(x) . (57)

We can do this by extending the integral to the complex plane. Indeed, we
have

I(α) = lim
R→∞

∮
γ(R)

dz
α

π(α2 + z2)
f(z) , (58)

where γ(R) is a semi-circle in the complex plane with a diameter which goes
from −R to R. After the integral is calculated, R is sent to infinity. We
choose to write the semi-circle in the positive semi-plane1. The reason why
equation (58) is legitimate is the behavior of the integrand for |z| → ∞:
it goes to zero faster than 1/|z| in every direction. Inside the contour γ(R)
there is one pole at z = iα plus other possible poles of the function f at
z = zi. The integral can be evaluated with the method of residues:

I(α) = 2πi
∑

Res
α

π(α2 + z2)
f(z) = f(iα) +

∑
j

2iα

α2 + z2j
Resf(zj) . (59)

Therefore, we can see that∫ +∞

−∞
dx lim

α→0

α

π(α2 + x2)
f(x) = lim

α→0
f(iα) = f(0) =

∫ ∞

−∞
dx δ(x) f(x) .

(60)

b) First method: In order to prove the identity, we must understand what hap-
pens when we apply δ(f(x)) to a test function h(x). More precisely, we must
find the result of

I =

∫ +∞

−∞
dx δ(f(x))h(x) . (61)

We know that the delta function is different from zero only when its argu-
ment is zero, therefore we can write the integral as a sum of contributions
in the proximity of the zeros of f :

I =
∑
i

∫ xi+ϵ

xi−ϵ

dx δ(f(x))h(x) ≡
∑
i

Ii , (62)

where ϵ is a positive infinitesimal parameter. Consider a single term Ii. We
do the change of variables

x → y ≡ f(x) ,

xi ± ϵ → f(xi ± ϵ) ≃ ±ϵf ′(xi) , (63)

dx =
df−1

dy
(y)dy .

1in this particular case, both the semi-planes were possible.
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The integral thus becomes

Ii =

∫ +ϵf ′(xi)

−ϵf ′(xi)

dy δ(y)h(f−1(y))
df−1

dy
(y) =

= ±h(f−1(0))
df−1

dy
(0) . (64)

We have written “ ± ” because the sign is positive if f ′(xi) > 0 and negative
otherwise2. We must now remember the theorem of the inverse function:
if y = g(x) is a monotonic differentiable function, in a point x1 so that
g′(x1) ̸= 0, the following equality holds:[

dg−1

dy

]
y=g(x1)

=
1

g′(x1)
. (65)

Using this theorem, and the fact that f−1(0) = xi, we can write

Ii = ±h(xi)
1

f ′(xi)
= h(xi)

1

|f ′(xi)|
. (66)

Collecting all the results, we have:

I =

∫ +∞

−∞
dx δ(f(x))h(x) =

=
∑
i

h(xi)
1

|f ′(xi)|
= (67)

=

∫ +∞

−∞
dx
∑
i

δ(x− xi)

|f ′(xi)|
h(x) .

Comparing the first and the third lines of (67) we can deduce that

δ(f(x)) =
∑
i

δ(x− xi)

|f ′(xi)|
. (68)

Second method: Even in this case, we must treat separately the neighbor-
hood of each zero xi. We use the definition of the Dirac δ of the previous
exercise and Taylor expand the function f around each zero xi:

lim
α→0

α

π(α2 + (f(x))2)
≃ lim

α→0

α

|f ′(xi)|
1

|f ′(xi)|π
((

α
f ′(xi)

)2
+ (x− xi)2

)
= lim

β→0

β

π(β2 + (x− xi)2)

1

|f ′(xi)|

= δ(x− xi)
1

|f ′(xi)|
. (69)

When we sum over i we obtain

δ(f(x)) =
∑
i

δ(x− xi)

|f ′(xi)|
. (70)

2Indeed, from the definition of the Dirac δ, we can deduce that
∫ −∞
+∞ dxδ(x)g(x) = −g(0).
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c) We treat each component i of the gradient vector separately. Suppose that
the interval of the integral for the coordinate xi is ζ = (ai, bi), where ai and
bi can be either finite or infinite. We integrate by parts:∫

dnxf(x)∂iδ
n (x− x0) =

=

∫
dn−1x [f(x)δn (x− x0)]

ai
bi
−
∫

dnx∂if(x)δ
n (x− x0) = (71)

=− ∂if |x=x0 .

We have put equal to zero the first term in the second line of (71) because
the δ function is zero for xi ̸= xi0, and this is the case when xi = ai and
xi = bi. This is valid for all i so in vectorial form:∫

dnxf(x)∇xδ
n (x− x0) = − ∇xf |x=x0

. (72)

d) As in the previous case, we need an integration by parts:∫ +∞

−∞
dx f(x)∂xθ(x− x0) =

= lim
R→∞

[f(x)θ(x− x0)]
+R
−R − lim

R→∞

∫ +R

x0

dx ∂xf(x) = (73)

= lim
R→∞

[f(+R)− f(+R) + f(x0)] =

=f(x0) .

Therefore, the derivative of the Heaviside function is the Dirac δ.

e) By integration by parts, we have:∫
dxg(x)δ′(x− x0) = −

∫
dxg′(x)δ(x− x0) = −g′(x0) . (74)

In the first equality the boundary term vanishes because g(x)δ(x− x0) goes
to zero at infinity, the second equality comes from the definition of the Dirac
δ function.

For the second integral, two successive integrations by parts gives us:∫
dxg(x)δ′′(x−x0) = −

∫
dxg′(x)δ′(x−x0) =

∫
dxg′′(x)δ(x−x0) = g′′(x0) .

(75)

f) Let’s take a smooth test function f :∫
dxf(x) exp

(
x0

d

dx

)
δ(x) =

∫
dxf(x)

∞∑
n=0

xn
0

n!

dnδ(x)

dxn
(76)

=
∞∑
n=0

xn
0

n!

∫
dxf(x)

dnδ(x)

dxn

=
∞∑
n=0

xn
0

n!
(−1)nf (n)(0) =

∞∑
n=0

(−x0)
n

n!
f (n)(0)

= f(−x0) . (77)
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The first equality comes from the definition of the exponential and the third
from an immediate generalisation of the results obtained in question e).
The last line comes from the Taylor expansion formula. This is valid for all
smooth test functions so we can conclude:

exp

(
x0

d

dx

)
δ(x) = δ(x+ x0) . (78)

g) First method: by Fourier transform. We write f as the anti-transform of its
Fourier transform:

f(t2) =

∫ +∞

−∞
dωeiωt2

1

2π

∫ +∞

−∞
dt1e

−iωt1f(t1) =

=

∫ +∞

−∞
dt1

[
1

2π

∫ +∞

−∞
dωeiω(t2−t1)

]
f(t1) . (79)

Now, compare the term in square brackets in (79) with a delta function:

f(t2) =

∫ +∞

−∞
dt1f(t1)δ(t2 − t1) . (80)

Therefore, we can write

δ(t2 − t1) =
1

2π

∫ +∞

−∞
dωeiω(t2−t1) , (81)

and, in particular, when t1 = 0,

δ(t2) =
1

2π

∫ +∞

−∞
dωeiωt2 . (82)

Second method: we use a regulator to compute the integral explicitly.

1

2π

∫ ∞

−∞
dω eiωt = lim

ϵ→0

1

2π

∫ ∞

−∞
dω eiωte−ϵ2ω2

(83)

= lim
ϵ→0

1

2π

√
π

ϵ
exp

(
− t2

4ϵ2

)
= lim

ϵ→0

1√
4πϵ2

exp

(
− t2

4ϵ2

)
.

which is a representation of the Dirac delta. This can be checked as follows:
let f(x) be a smooth test function admitting a Taylor expansion in x = 0.
The statement we need to show is

lim
ϵ→0

∫ ∞

−∞
dt

1√
4πϵ2

f(t) exp

(
− t2

4ϵ2

)
= f(0) . (84)

We proceed by splitting the integral into two regions: one close to t = 0 (say
at distance δ) and its complement

lim
ϵ→0

(∫
|t|≤δ

+

∫
|t|>δ

)
dt

1√
4πϵ2

f(t) exp

(
− t2

4ϵ2

)
. (85)
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The second integral has limit 0 for any fixed δ when ϵ → 0. While in the
first one, we can choose δ so that f(t) can be Taylor expanded.

lim
ϵ→0

1√
4π

∫
|t|≤δ

dt
1

ϵ

∞∑
n=0

f (n)(0)

n!
tn exp

(
− t2

4ϵ2

)
. (86)

Here actually the terms for odd n are zero. After a simple change of variables
we can recast this expression in a way that the limit is easy to take

lim
ϵ→0

1√
4π

∫
|t|≤δ/ϵ

dt
∞∑
n=0

ϵ2n
f (2n)(0)

(2n)!
t2ne−t2/4 =

= f(0)
1√
4π

∫ ∞

−∞
dt e−t2/4 . (87)

A simple computation shows that the result is indeed f(0).

Third method: by using another type of regulator. First, we separate the
integral into two parts

1

2π

∫ ∞

−∞
dω eiωt =

1

2π

∫ 0

−∞
dω eiωt +

1

2π

∫ ∞

0

dω eiωt (88)

Next, with the intention of suppressing the integrands at ω → ±∞, we shift
t to t− iϵ in the first integral and to t+ iϵ in the second integral. Doing so
allows us to compute the integrals explicitly

1

2π

∫ ∞

−∞
dω eiωt =

1

2π
lim
ϵ→0

[∫ 0

−∞
dω eiωt+ϵω +

∫ ∞

0

dω eiωt−ϵω

]
=

1

2π
lim
ϵ→0

[
1

ϵ+ it
+

1

ϵ− it

]
= lim

ϵ→0

ϵ

π(ϵ2 + t2)
(89)

which is exactly the representation of the δ-function we introduced in prob-
lem 2.a), and thus it follows that 1

2π

∫∞
−∞ dω eiωt = δ(t).
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