
Classical Electrodynamics

Solutions week 1

1. Consider an infinite cylinder of radius R with a uniform charge density ρ within its volume.
Denote its linear charge density by κ.

a) Express κ in terms of ρ and give the units of these two quantites.

b) Using the symmetry of the problem, compute the electric field E using Gauss’s law and
deduce the scalar potential φ.

c) Find the scalar potential φ by solving Poisson’s equation.

Solution

a) ρ is the quantity of charge per unit volume given in C
m3 . κ is a charge per unit of lenght C

m
.

Now, if we cut a piece of the cylinder of height h it has charge

Q = ρπR2h = κh, (1)

from which we deduce
ρπR2 = κ. (2)

b) We want to find the electric field at a distance r from the axis of the cylinder. Consider an
imaginary cylinder C of radius r and height h with the same axis as the cylinder of radius
R. Let first assume r > R. Using Gauss’s law, we have that the flux of the electric field is

Φ(E) =
Q

ε0
=
κh

ε0
. (3)

By looking at the symmetry of the problem, it is clear that the electric field is orthogonal
to the lateral surface of the of the imaginary cylinder C : E = Eêr. On the other hand it is
parallel to the top and bottom faces of C. Therefore, we have

Φ(E) =

∫
dS E · n = 2πrhE . (4)

If we now plug (4) into (3), we obtain

E =
κ

2πrε0
êr . (5)

In cylindrical coordinate, the gradient of a function f is given by

∇f =
∂f

∂r
êr +

1

r

∂f

∂ϕ
êϕ +

∂f

∂z
êz . (6)

We know that in electrostatics the relation between the potential and the electric field is

∇φ = −E , (7)
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therefore the potential is the solution of the equation

∂φ

∂r
= − κ

2πrε0
, (8)

which is
φ(r) = − κ

2πε0
ln
[ r
R

]
+ C1 , (9)

where C1 is a constant that still has to be determined. We must now solve the problem in
the case r < R. Using again Gauss’s law, it is possible to show that only the portion of the
charge that is inside the cylinder of radius r contributes to the electric field in a point at
distance r from the axis. The flux is

Φ(E) = E2πrh =
κhπr2

πε0R2
=
κhr2

ε0R2
, (10)

and the electric field is
E =

κr

2πε0R2
êr . (11)

The potential is obtained in the same way as above and is given by the following expression:

φ = − κr2

4πε0R2
+ C2 . (12)

Now we need to properly choose the two constants in order to have the continuity between
the two regimes. A possible choice is C2 = 0 and C1 = − κ

4πε0
.

c) The Poisson equation for r < R is

∇2φ = − ρ
ε0

= − κ

πR2ε0
. (13)

If we write this equation in cylindrical coordinates, we have

1

r

∂

∂r

[
r
∂φ

∂r

]
= − κ

πR2ε0
. (14)

In equation (14) we have used the fact that φ depends only on r, by symmetry. After the
first integration we obtain

r
∂φ

∂r
= − κr2

2πR2ε0
+ C1 . (15)

With a second integration we get

φ = − κr2

4πR2ε0
+ C1 ln

[ r
R

]
+ C2 . (16)

We must choose C1 = 0 in order to avoid non physical divergences for r → 0. If instead
r > R, the Poisson equation becomes

∇2φ = 0 , (17)

which is, in cylindrical coordinates
∂φ

∂r
=
C3

r
, (18)
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and therefore
φ = C3 ln

[ r
R

]
+ C4 (19)

Again, we must choose the proper values of the constants. A possible choice is C2 = 0 and
C4 = − κ

4πε0
. In order to find C3, we must impose the continuity of the electric field, that is

satisfied when
∂φi
∂r

(R) =
∂φe
∂r

(R) (20)

where φi indicates the potential when r ≤ R and φe indicates the potential when r ≥ R. In
this way, we find C3 = − κ

2πε0

2. Consider a sphere of radius R with constant electric charge density ρ > 0.

a) Show that, both inside and outside of the sphere, the electric field is a power law function
of the distance from the origin, i.e. it is proportional to rn for some n. Find n for each
region. Compute the electric potential, and plot the radial dependence of the electric field
and potential.

b) Now assume there is a very narrow tunnel inside the sphere passing through the centre of
the sphere. At time t = 0, a single point-like charge with electric charge −q < 0 and mass m
is placed at rest in the tunnel at r = a < R. Neglecting the effect of radiation (v � c), find
the equation of motion of this particle and solve it.

c) Two spheres, each of radius R and carrying uniform charge densities ρ and −ρ, respectively,
are placed so that they partially overlap. Call d the vector from the positive centre to the
negative centre, with |d| < 2R. Show that the field in the region of overlap is constant and
find its value.

Solution

a) Since the set up is spherically symmetric, the electric field is in êr direction. Using the Gauss
law for the outside of the sphere:∫

dS ~E · ~n = E(4πr2) =
Qtotal

ε0
=

4πR3ρ

3ε0
(21)

~E =
ρ

3ε0

R3

r2
êr r ≥ R (22)

Similarly for the inside we have:∫
dS ~E · ~n = E(4πr2) =

Qr

ε0
=

4πr3ρ

3ε0
(23)

~E =
ρ

3ε0
r êr r ≤ R (24)

Therefore for the outside, n = −2 which means you can subsitute the sphere with a point-like
charge. Inside the electric field grows linearly n = 1 which for a test charge would be like a
spring as you will see in part b.
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The potential is defined as

~E = −∇φ ⇒ Er = −dφ

dr
. (25)

Integrating this equation in the two regions yields

φ(r) =

{
−ρr2

6ε0
+ C1 r ≤ R ,

ρR3

3ε0r
+ C2 r ≥ R .

(26)

One of the integration constants can be fixed by requiring the continuity of φ at r = R. This
yields

C1 = C2 +
ρR2

2ε0
, (27)

so finally

φ(r) =

{
ρ(3R2−r2)

6ε0
+ C2 r ≤ R ,

ρR3

3ε0r
+ C2 r ≥ R .

(28)

b) As shown above, the electric field is linear in r and so is the force on the point-like charge:

~F = m~a = −q ~E (29)

mr̈ + q
ρ

3ε0
r = 0 (30)

which with the mentioned initial conditions has the solution:

r = a cos(ωt) (31)

in which ω =
√
q ρ
3ε0m

.

c) As solved in the previous question, inside a sphere with uniform charge densities, the electric
field is proportional to the distance from the center. Let’s note ~x1 and ~x2 the position of the
center of the spheres and ~r1 = ~r− ~x1 and ~r2 = ~r− ~x2 the position relative to each center. In
the intersection the total electric field will be:

~E =
ρ

3ε0
~r1 −

ρ

3ε0
~r2 =

ρ

3ε0
~d (32)

where ~d = ~x1 − ~x2 is the distance between the spheres. Notice the result is constant in the
intersection region.

3. A mass spectrometer is an instrument used to analyse the chemical composition of a material. The
essential parts of a mass spectrometer are depicted in figure 1. At one end of the spectrometer,
the material is heated so that some atoms are ionized, then these ions are accelerated by an
electrostatic potential V , deflected by a magnetic field B and detected at the other end of the
spectrometer. In practice, one varies the magnetic field B and measures the electric current carried
by the ion beam that hits the electrode X.

a) For an ion of charge q and mass m, compute the magnetic field B necessary for the ion to
hit the electrode X. Neglect the initial thermal velocity of the ion.
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Figure 1: Schematic representation of a mass spectrometer. The ions are deflected by the magnetic
field B perpendicular to the plane of the image. In order to hit the electrode X the ions have to
follow a circular trajectory of radius R in the region with magnetic field (light blue region).

b) In the analysis of a pure substance in a spectrometer with potential V = 1 kV and R = 35 cm,
the magnetic field required to observe an electric current at X was B = 98mT . What was
the substance?

c) Challenge: The ions created by thermal heating have random initial velocities. This will
introduce some uncertainty in the measurement of the ratio q/m using the mass spectrometer.
Can you estimate this uncertainty? Can you think of a strategy to select the initial velocity
of the ions and reduce this uncertainty?

Solution

a) First, one has to find the velocity of the ion after the electric field region. Let’s call this
velocity ve. We use energy conservation: at the beginning, the ion has zero velocity and thus
has only potential energy qV . At the end V = 0 but the kinetic energy is Ec = 1

2
mv2e .

Equating the two expressions, we get:

ve =

√
2qV

m
. (33)

Then the ion enters the magnetic field region with a velocity orthogonal to the magnetic
field. So it has a circular trajectory, of radius

r =
vem

qB
. (34)

(To get this, you can write that the radial magnetic force qveB is equal to the mass times

the acceleration in a circular moving frame mv2e
R

by Newton’s law). In order for the ion to hit
X, one must have r = R. Solving for B, one gets:

B =
1

R

√
2mV

q
. (35)

b) What we actually measure is the ratio m
q

. Inverting the previous equation:

m

q
=
R2B2

2V
(36)
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and putting in the numbers, in S.I. units :

m

q
=
R2B2

2V
= 5.88× 10−7 kg · C−1 . (37)

But the moving charge is an ion, so atomic units are more appropriate. In terms of the
electron charge e = 1.602× 10−19 C and the atomic mass unit u = 1.661× 10−27 kg :

m

q
=
R2B2

2V
= 56.7 u · e−1 . (38)

An ion has a charge of an integer times e. From the direction of the magnetic field, we can
see that the ion is positive. If it has a charge +1, it has a mass of 56.7 u, corresponding to
56Fe (or 57Fe, but this is more rare), and iron has a +1 ion. If it has a charge +2, it has a
mass of 113.5 u, in that case it would correspond to 114Cd or 114Sn, which both exists in a +2
state. In this case, we should also be able to observe the +1 ions by increasing the magnetic
field by a factor of

√
2.

Most likely the ion is a 56Fe+.

c) The particles of a substance at temperature T , assuming they are free, will follow the Maxwell-
Boltzmann distribution:

p(v)dv ∝ v2e
− mv2

2kbT dv . (39)

where p(v)dv is the probability of finding a particle with speed between v and v + dv, kb is
the Boltzmann constant and m is the mass of a particle. The exponential factor in equation
(39) ensures that the uncertainty in v will be of order σ with

σ2 =
kbT

m
. (40)

Here we are considering a one dimensional problem because the ions with non-zero transverse
velocities due to thermal fluctuations are filtered by the aperture to the region with magnetic
field. Since faster particles escape the hole more rapidly, the distribution of the escaped

particles will favour higher speeds (with p(vx) ∝ vxe
− mv2x

2kbT ). Nevertheless, as long as the
exponential factor is present, the uncertainty in the longitudinal velocity vx will be of the
order of σ given in equation (40). From the previous results, we can propagate the uncertainty
over v to the ratio m/q.

Equation (33) is modified into

ve =

√
2qV

m
+ v2 . (41)

Thus we can again derive from (34)

R2B2 =
m2v2e
q2

=
m

q

(
2V +

mv2

q

)
(42)

⇒ m

q
=

R2B2

2
(
V +

1
2
mv2

q

) ' R2B2

2V

(
1− mv2

2qV

)
. (43)

From which it follows

η ≡ ∆ (m/q)

m/q
=

m

2qV
σ2 =

kbT

2qV
. (44)
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If we assume that, after ionization, the ion has an energy of the order of a few eV , and that
the potential energy is qV = 103eV , we have η ∼ few %.

In order to select the velocity, ions are submitted to a magnetic field B1 and an electric field
E1, perpendicular to each other and to the direction of the ion, after being accelerated by
the potential V . In this way, we have

qE1 + qv ×B1 = ma . (45)

By properly choosing E1 and B1 it is possible to select a particular velocity v1 = E1

B1
, the

only velocity at which the particles are not deflected. For instance, if v = v(0, 0, 1), we can
set E1 = E1(1, 0, 0) and B1 = B1(0, 1, 0), so that

ma = qE1(1, 0, 0)− qvB1(1, 0, 0) , (46)

and when v = E1

B1
we have a = 0.

4. Scalar and vector potentials.

a) Show that a vector field V obeying ∇×V = 0 can be written as V = −∇φ, for some scalar
potential φ. Check that this applies to the electric field E in electrostatics.

b) Similarly, show that a vector field V obeying ∇ ·V = 0 can be written as V = ∇×A, for
some vector potential A. Check that this applies to the magnetic field B in magnetostatics.

c) Show that a general vector field V can be written as a sum V = V‖+V⊥, with ∇×V‖ = 0
and ∇ ·V⊥ = 0.

Solution

a) Consider the relation1 (∇×V(x))k ≡ ∂iVj εijk = 0. If we evaluate the Fourier transform, we
obtain2

(k× Ṽ(k))k ≡ kiṼj εijk = 0 , (47)

where k is the variable in Fourier space and Ṽ is the Fourier transform of V. Equation (47)
can be demonstrated with an integration by parts, using the hypothesis that V at infinity
converges to a constant that we can set to 0:

F [∂iVj εijk] =
1

(2π)3

∫ ∞
−∞

d3x eikixi ∂iVj εijk =

= − 1

(2π)3

∫ ∞
−∞

d3x ∂ie
ikixi Vj εijk = = − 1

(2π)3

∫ ∞
−∞

d3x eikixi ikiVj εijk = (48)

= −ikiṼj εijk ,

The implication of (47) is that k and Ṽ are parallel. As a consequence, we can write Ṽ in
the following way:

Ṽ(k) = ikα̃(k) for every k (49)

1From now on, we will often use the Einstein notation, where aibi is a short notation for
∑

i aibi.
2Here the letter i and k appear with two different meanings. Do not confuse k as an index referring to a spatial

coordinate with the three dimensional variable ki of the Fourier space. Also i as an index refers to spatial coordinates
whereas i is the imaginary unit.
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where α̃ is a scalar. If we now anti-transform both sides of equation (49) we obtain:

Vi(x) = F−1 [ikiα̃(k)] =

∫ ∞
−∞

d3k (e−ikjxj iki)α̃(k)

=

∫ ∞
−∞

d3k

(
−∂e

−ikjxj

∂xi

)
α̃(k) = − ∂

∂xi
F−1 [α̃(k)] (50)

= − ∂α
∂xi

(x) , (51)

where α(x) is the anti-transform of α̃(k). If we define φ = α we have demonstrated that we
can write the potential as V = −∇φ. If we identify V with the electric field, we can see that
∇φ = −E naturally follows from the Maxwell’s equation ∇× E = 0.

b) The relation ∇ ·V ≡ ∂iVi = 0 becomes, under Fourier transform,

−ik · Ṽ ≡ −ikiṼi = 0 . (52)

The derivation is similar to the one of the previous exercise:

F [∂iVi] =
1

(2π)3

∫ ∞
−∞

d3x eikixi ∂iVi = − 1

(2π)3

∫ ∞
−∞

d3x ∂ie
ikixi Vi = (53)

= − 1

(2π)3

∫ ∞
−∞

d3x eikixi ikiVi = −ikiṼi .

The implication of (52) is that −ik and Ṽ are perpendicular. If two vectors are perpendicular,
it is possible to write one as a cross product between the other and a certain vector Ã(k):

Ṽ = −ik× Ã(k) . (54)

We can now anti-transform on both sides equation (54) and obtain

Vl(x) = F−1
[
−ikiÃj(k)εijl

]
= −

∫ ∞
−∞

d3k (e−ikjxj iki)Ãj(k)εijl =

= −
∫ ∞
−∞

d3k

(
−∂e

−ikjxj

∂xi

)
Ãj(k)εijl =

∂

∂xi
F−1

[
Ãj(k)

]
εijl =

=
∂Aj
∂xi

(x)εijl ,

where A(x) is the anti-transform of Ã(k). For the case of magnetostatics, we must identify
V with B and interpret A as the vector potential. Indeed, we can see that ∇ · B = 0 is
one of the Maxwell’s equation and we can write the magnetic field as the curl of the vector
potential: B = ∇×A.

c) We consider, again, the Fourier transform Ṽ(k). The vector Ṽ can be decomposed in two
components, one perpendicular to k, that we call Ṽ⊥, and one parallel to k, that we call Ṽ‖

3.

Let us call V⊥ and V‖ the anti-transforms of Ṽ⊥ and Ṽ‖ respectively. Using the previous
results, we see that

∇×V‖ = 0 , (56)

3Explicitly:

Ṽ‖ =
Ṽ · k
k · k

k, Ṽ⊥ = Ṽ − Ṽ‖. (55)
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and
∇ ·V⊥ = 0 . (57)

We still have to prove that V = V‖+V⊥. This can be done using the linearity of the inverse
Fourier transform:

V = F−1
[
Ṽ
]

= F−1
[
Ṽ⊥ + Ṽ‖

]
= F−1

[
Ṽ⊥

]
+ F−1

[
Ṽ‖

]
(58)

= V⊥ + V‖ .
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