Classical Electrodynamics

Solutions week 1

1. Consider an infinite cylinder of radius R with a uniform charge density p within its volume.
Denote its linear charge density by k.

a)
b)

c)

Express k in terms of p and give the units of these two quantites.

Using the symmetry of the problem, compute the electric field E using Gauss’s law and
deduce the scalar potential ¢.

Find the scalar potential ¢ by solving Poisson’s equation.

Solution

a)

b)

p is the quantity of charge per unit volume given in % k is a charge per unit of lenght %

Now, if we cut a piece of the cylinder of height h it has charge
Q = prR*h = kh, (1)

from which we deduce
prR? = k. (2)

We want to find the electric field at a distance r from the axis of the cylinder. Consider an

imaginary cylinder C of radius r and height h with the same axis as the cylinder of radius

R. Let first assume r > R. Using Gauss’s law, we have that the flux of the electric field is
Q kh

(I)(E) :g: €

(3)

By looking at the symmetry of the problem, it is clear that the electric field is orthogonal
to the lateral surface of the of the imaginary cylinder C' : E = Eé,. On the other hand it is
parallel to the top and bottom faces of C'. Therefore, we have

O(F) = /dS E-n=2mrhE . (4)

If we now plug (4) into (3), we obtain

E=_" ¢ . (5)
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In cylindrical coordinate, the gradient of a function f is given by

Of; 191, [ Of, (6)
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We know that in electrostatics the relation between the potential and the electric field is

Vo =-E, (7)



therefore the potential is the solution of the equation
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which is K r
6(r) = —grn | B +C1 (9)

where (] is a constant that still has to be determined. We must now solve the problem in
the case r < R. Using again Gauss’s law, it is possible to show that only the portion of the
charge that is inside the cylinder of radius r contributes to the electric field in a point at
distance r from the axis. The flux is

khar? rkhr?
®(E) = E2nrh = — 1
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and the electric field is
KT

= ¢, . 11
2meg R2 (11)
The potential is obtained in the same way as above and is given by the following expression:
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Now we need to properly choose the two constants in order to have the continuity between

the two regimes. A possible choice is Cy = 0 and C; = —ﬁ.

The Poisson equation for r < R is

V=L - (13)
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If we write this equation in cylindrical coordinates, we have
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In equation (14) we have used the fact that ¢ depends only on 7, by symmetry. After the
first integration we obtain

0o K12
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With a second integration we get
b= 1oy =] +c (16)
= — n|— .
47 R3¢ ! R 2

We must choose €7 = 0 in order to avoid non physical divergences for r — 0. If instead
r > R, the Poisson equation becomes

V=0, (17)
which is, in cylindrical coordinates
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or r’ (18)



and therefore

6= Csln | =] +C, (19)

Again, we must choose the proper values of the constants. A possible choice is Cy = 0 and

Cy = —ﬁ. In order to find C3, we must impose the continuity of the electric field, that is
satisfied when 96 96

“(R) = ==(R 20

SR) = S (R) (20)

where ¢; indicates the potential when » < R and ¢, indicates the potential when r > R. In
this way, we find C5 = — 5=

o 2meq

2. Consider a sphere of radius R with constant electric charge density p > 0.

a)

b)

Show that, both inside and outside of the sphere, the electric field is a power law function
of the distance from the origin, i.e. it is proportional to r" for some n. Find n for each
region. Compute the electric potential, and plot the radial dependence of the electric field
and potential.

Now assume there is a very narrow tunnel inside the sphere passing through the centre of
the sphere. At time ¢ = 0, a single point-like charge with electric charge —¢ < 0 and mass m
is placed at rest in the tunnel at r = a < R. Neglecting the effect of radiation (v < ¢), find
the equation of motion of this particle and solve it.

Two spheres, each of radius R and carrying uniform charge densities p and —p, respectively,
are placed so that they partially overlap. Call d the vector from the positive centre to the
negative centre, with |d| < 2R. Show that the field in the region of overlap is constant and
find its value.

Solution

a)

Since the set up is spherically symmetric, the electric field is in é, direction. Using the Gauss
law for the outside of the sphere:
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Similarly for the inside we have:
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E = 3%07“ ér r<R (24)
Therefore for the outside, n = —2 which means you can subsitute the sphere with a point-like

charge. Inside the electric field grows linearly n = 1 which for a test charge would be like a
spring as you will see in part b.



The potential is defined as

- do
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Integrating this equation in the two regions yields
pr?
—e— + Cl r<R
r) = Geo - 26
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One of the integration constants can be fixed by requiring the continuity of ¢ at r = R. This
yields
pR?
Ci =0+ — 27
1 2 + 260 ) ( )
so finally
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b) As shown above, the electric field is linear in 7 and so is the force on the point-like charge:

—

F=mid=—qE (29)

mit + qu;OT =0 (30)

which with the mentioned initial conditions has the solution:
r = a cos(wt) (31)
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in which w = /¢

c) As solved in the previous question, inside a sphere with uniform charge densities, the electric
field is proportional to the distance from the center. Let’s note z7 and x5 the position of the
center of the spheres and 1 = ¥ — 27 and r, = 7 — x5 the position relative to each center. In
the intersection the total electric field will be:

E=Llpm_Pm_Pr7

= — 32
360 360 2 360 ( )

where d = 21 — Z5 is the distance between the spheres. Notice the result is constant in the
intersection region.

3. A mass spectrometer is an instrument used to analyse the chemical composition of a material. The
essential parts of a mass spectrometer are depicted in figure 1. At one end of the spectrometer,
the material is heated so that some atoms are ionized, then these ions are accelerated by an
electrostatic potential V', deflected by a magnetic field B and detected at the other end of the
spectrometer. In practice, one varies the magnetic field B and measures the electric current carried
by the ion beam that hits the electrode X.

a) For an ion of charge ¢ and mass m, compute the magnetic field B necessary for the ion to
hit the electrode X. Neglect the initial thermal velocity of the ion.
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Figure 1: Schematic representation of a mass spectrometer. The ions are deflected by the magnetic
field B perpendicular to the plane of the image. In order to hit the electrode X the ions have to
follow a circular trajectory of radius R in the region with magnetic field (light blue region).

b) In the analysis of a pure substance in a spectrometer with potential V' = 1kV and R = 35 cm,
the magnetic field required to observe an electric current at X was B = 98 mT. What was
the substance?

c) Challenge: The ions created by thermal heating have random initial velocities. This will
introduce some uncertainty in the measurement of the ratio ¢/m using the mass spectrometer.
Can you estimate this uncertainty? Can you think of a strategy to select the initial velocity
of the ions and reduce this uncertainty?

Solution

a) First, one has to find the velocity of the ion after the electric field region. Let’s call this
velocity v.. We use energy conservation: at the beginning, the ion has zero velocity and thus
has only potential energy ¢V. At the end V' = 0 but the kinetic energy is F, = %mvg.

Equating the two expressions, we get:
2qV
ve =1/ 2 (33)
m

Then the ion enters the magnetic field region with a velocity orthogonal to the magnetic
field. So it has a circular trajectory, of radius
_vem
=B

(To get this, you can write that the radial magnetic force qu.B is equal to the mass times

r

(34)

the acceleration in a circular moving frame m% by Newton’s law). In order for the ion to hit
X, one must have r = R. Solving for B, one gets:

B=——. (35)

b) What we actually measure is the ratio %. Inverting the previous equation:

m R2B?

q 2V

(36)
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and putting in the numbers, in S.I. units:

R2B?
% = S~ =588x107kg - O (37)

But the moving charge is an ion, so atomic units are more appropriate. In terms of the
electron charge e = 1.602 x 107 C and the atomic mass unit u = 1.661 x 10727 kg :
m R?B?

PREY; =56.7u-e " . (38)

An ion has a charge of an integer times e. From the direction of the magnetic field, we can
see that the ion is positive. If it has a charge +1, it has a mass of 56.7 u, corresponding to
%Fe (or °"Fe, but this is more rare), and iron has a +1 ion. If it has a charge +2, it has a
mass of 113.5 u, in that case it would correspond to "4Cd or *4Sn, which both exists in a +2
state. In this case, we should also be able to observe the 41 ions by increasing the magnetic

field by a factor of V2.
Most likely the ion is a *Fe*.

The particles of a substance at temperature 7', assuming they are free, will follow the Maxwell-
Boltzmann distribution:

m'[)2
p(v)dv o< v?e” 2T du . (39)

where p(v)dv is the probability of finding a particle with speed between v and v + dv, k is
the Boltzmann constant and m is the mass of a particle. The exponential factor in equation
(39) ensures that the uncertainty in v will be of order o with

2 _ Rl
.

o (40)

Here we are considering a one dimensional problem because the ions with non-zero transverse

velocities due to thermal fluctuations are filtered by the aperture to the region with magnetic

field. Since faster particles escape the hole more rapidly, the distribution of the escaped
2

particles will favour higher speeds (with p(v,) o Uxe_ﬁ). Nevertheless, as long as the
exponential factor is present, the uncertainty in the longitudinal velocity v, will be of the
order of o given in equation (40). From the previous results, we can propagate the uncertainty

over v to the ratio m/q.
2qV
ve:\/q——l—?ﬂ. (41)
m

Equation (33) is modified into

Thus we can again derive from (34)

2.2 2
Rl (2v ' ﬂ) (12)
q q q
m R2B? R2B? mu?
( 2qV) (43)

From which it follows




If we assume that, after ionization, the ion has an energy of the order of a few eV , and that
the potential energy is ¢V = 103V, we have n ~ few %.

In order to select the velocity, ions are submitted to a magnetic field B; and an electric field
E;, perpendicular to each other and to the direction of the ion, after being accelerated by
the potential V. In this way, we have

qE1 + qv x By =ma . (45)

By properly choosing E; and B it is possible to select a particular velocity vy, = %, the
only velocity at which the particles are not deflected. For instance, if v = v(0,0, 1), we can
set E; = F1(1,0,0) and By = B4(0, 1,0), so that

ma = qu(LOaO) _qUBl(LOa 0) ) (46)

and when v = % we have a = 0.

4. Scalar and vector potentials.

a) Show that a vector field V obeying V x V = 0 can be written as V. = —V ¢, for some scalar
potential ¢. Check that this applies to the electric field E in electrostatics.

b) Similarly, show that a vector field V obeying V -V = 0 can be written as V =V x A, for
some vector potential A. Check that this applies to the magnetic field B in magnetostatics.

c) Show that a general vector field V can be written as a sum V=V +V, with Vx V| =0
and V-V, =0.

Solution

a) Consider the relation’ (V x V(x))r = 9;V; €1 = 0. If we evaluate the Fourier transform, we
obtain?
(kx V(K))p = kiV e =0, (47)
where k is the variable in Fourier space and V is the Fourier transform of V. Equation (47)
can be demonstrated with an integration by parts, using the hypothesis that V' at infinity
converges to a constant that we can set to 0:

1 ° :
F[@ZV} Eijk] = —/ dg.Z' €Zkixi @V} eijk =
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== —W d :E(?ie ‘/J €ijk = = —W d’re Zkz‘/} €ijk = (48)
= —ik;V; €ijr. |

The implication of (47) is that k and V are parallel. As a consequence, we can write V in
the following way:

V(k) = ika(k) for every k (49)

'From now on, we will often use the Einstein notation, where a;b; is a short notation for Zi a;b;.

2Here the letter i and k appear with two different meanings. Do not confuse k as an index referring to a spatial
coordinate with the three dimensional variable k; of the Fourier space. Also 7 as an index refers to spatial coordinates
whereas ¢ is the imaginary unit.



where @ is a scalar. If we now anti-transform both sides of equation (49) we obtain:

Vi(x) = Fikia(k)] = / h Bk (e7 ™% ik;)a (k)

_ / Z &k (—ae(;;:xj) a(k) = — (;Lf—l (k)] (50)
Oa
= _8fL'i (X) ) (51)

where a(x) is the anti-transform of @(k). If we define ¢ = a we have demonstrated that we
can write the potential as V = —V¢. If we identify V with the electric field, we can see that
V¢ = —E naturally follows from the Maxwell’s equation V x E = 0.

b) The relation V -V = 9;V; = 0 becomes, under Fourier transform,
—ik -V =—ikV.=0. (52)

The derivation is similar to the one of the previous exercise:

1 3 ikix; _ 1 3 ikix; Y/
FloVi] = (27r) / d’re o;V; = (27r) / d’x ;e V= (53)
1 3. ikizi .
:_(277)3 /_Ooda:e zkiVi:—zkiV; .

The implication of (52) is that —ik and V are perpendicular. If two vectors are perpendicular,
it is possible to write one as a cross product between the other and a certain vector A (k):

V = —ik x A(k) . (54)

We can now anti-transform on both sides equation (54) and obtain

Vi(x) = F [—ikiﬁj(k)eiﬂ] _— / &k (e~ M0k A (K)eyy =

—00
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where A(x) is the anti-transform of A (k). For the case of magnetostatics, we must identify
V with B and interpret A as the vector potential. Indeed, we can see that V-B = 0 is
one of the Maxwell’s equation and we can write the magnetic field as the curl of the vector
potential: B =V x A.

c) We consider, again, the Fourier transform V (k). The vector V can be decomposed in two
components, one perpendicular to k, that we call V|, and one parallel to k, that we call V”
Let us call V; and V| the anti-transforms of V., and V|| respectively. Using the previous
results, we see that

VXVH:O, (56)

3Explicitly: }
- V- -
V)= Tk k, Vi=V-YV, (55)
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and
V-V, =0. (57)

We still have to prove that V = V| + V. This can be done using the linearity of the inverse
Fourier transform:

V=Ft V] = VoV = F V] Y (58)
—V, 4V



