
Classical Electrodynamics

Week 13

1. Relativistic Doppler effect
An electromagnetic wave is described by the fields:

E = E0 sin(ωt− k · x) , B =
1

ω
k× E , E0 · k = 0 , (1)

where ω is the frequency in the laboratory reference frame and k = ω/c ez is
wave vector. An observer moves at constant velocity v along the z-axis. Find the
frequency ω′ of the wave in the reference frame of the moving observer. Show
that

(
ω
c
,k

)
is a four-vector.

Hint: The phase of an electromagnetic wave is Lorentz invariant.

Solution

The phase of a wave is Lorentz invariant because we can identify it with the
number of wave peaks in a certain time interval. Indeed, if observer R counts n
peaks in a certain interval ∆t, observer R′ will declare the interval longer, and
the peaks more rare, but will still acknowledge that n peaks reached observer R
between the beginning and the end of the experiment. You can also check directly
the invariance of the phase: Fµν is proportional to sin(ωt − k · x), and since it
transforms as a tensor under Lorentz transformations, also F ′

µν will be. Therefore
we just have to write the argument of the sine in terms of the transformed
coordinates z′ and t′:

ct′ = γct− βγz (2)

z′ = −βγct+ γz, (3)

and so

ct = γct′ + βγz′ (4)

z = βγct′ + γz′. (5)

The phase becomes:

ωt− kz = γ(ω − kv)t′ − γ
(
k − ω

v

c2

)
z′. (6)

Now, the observer R′ measures the frequency by counting the wave peaks that
reach him, who is sitting at constant z′ in a certain time interval, therefore

ω′ = γ(ω − kv) = γω(1− β) =
ω

γ(1 + β)
, (7)

where we have used ω = ck. Notice that this is not just the effect of time dilata-
tion: the frequency is defined with respect to two different spacetime intervals
by the two observers (see spacetime diagram in fig. 1 and the comment at the
end of the solution). The frequency itself is ν = ω/(2π), so

ν ′ = ν

√
1− v

c

1 + v
c

. (8)
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If the observer R′ moves in the same direction of the wave - that is, away from
the source, with v > 0, we see that the frequency lowers, that is, the wave is
red-shifted.

The fact that kµ =
(
ω
c
,k

)
transforms as a four-vector immediately follows from

eq. (6), after defining ω′ and k′ such that ωt − kz = ω′t′ − k′z′. That same
conclusion could be reached by noticing that the phase can be written as follows:

ωt− k · x = kµgµνx
ν , (9)

with gµν the Minkowski metric. Invariance of the phase can be written as

k′µgµνx
′ν = kµgµνx

ν , (10)

which of course implies that xµ and kµ transform as four-vectors.

Alternative method The following is equivalent to observing that the phase
is Lorentz invariant, but might be more intuitive. The phase diagram 1 shows
in dotted lines the lines of constant phase, which travel at the speed of light.
The time interval between one peak and the next is cT=length(AB) in the frame
R and cT’=length(AC) in the frame R′. The frequencies are the inverse of this
time interval, so we just need to compute T’ as a function of T. The point C is
the crossing point of the following two world-lines:

light: ct = cT + z (11)

observer: ct =
c

v
z. (12)

Therefore:
cT + zC =

c

v
zC , (13)

that implies

zC =
vT

1− v
c

(14)

tC =
zC
v

=
T

1− v
c

. (15)

We are ready to compute the length of the segment AC, and we must do it with
the Minkowski metric:

cT ′ = length(AC) =
√

(ctC)2 − z2C =

√
c2 − v2

1− v
c

T = cT

√
1 + v

c

1− v
c

. (16)

Since ν = 1/T , we recover the previous result. Finally, let us stress again that, as
evident from the formula, the Doppler effect is not the result of time dilatation
on the interval T : indeed the interval would even contract, if the observer R′

had been running towards the source (v < 0). Remember, instead, that the time
interval whose length is γT is the segment AD in the spacetime diagram, as it
is easy to verify.
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Figure 1: Spacetime diagram of the situation. The dotted lines represent the trajec-
tory of points of constant phase of the electromagnetic wave.

2. A conducting loop with a rectangular shape of sides a′ and b′ supports the current
I ′ (in the reference frame where the loop is at rest). The cross section of the wire
of the loop is S ′. The loop moves at constant speed v in the direction parallel to
the side of length a′.
Find the charge distribution and currents in each side of the loop in the reference
frame of the laboratory. Comment on your results.

Solution

We know that the object transforming as a Lorentz four-vector is the current
density jµ = (cρ, j). So we will compute j′µ in the reference frame of the loop R′

and transform it to the laboratory frame R. The relation between the currents
in the two frames is:

j′µ(x′) = Λµ
νj

ν(Λ−1x′) = Λµ
νj

ν(x) (17)

which implies that
jµ(x) = (Λ−1)µν j

′ ν(x′) (18)

where Λ and Λ−1 are the matrices:

Λ =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

 , Λ−1 =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 . (19)

(The frame attached to the loopR′ moves at velocity vex in the laboratory frame
R and we define β = v/c. Λ is the transformation that takes us from R to R′

i.e x′ = Λx).

In side 1 of the loop (the side where I is in the positive x′ direction), in the loop
frame : there is no charge density ρ′1 = 0 and the current density is j′1 = I ′/S ′ex
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in the volume of the wire. In the laboratory frame, we have:{
cρ1 = γ(cρ′1 + βj′1) = γβ I′

S′

j1 = γ(βcρ′1 + j′1) = γ I′

S′

(20)

Now the wire of side 1 is positively charged and its total charge is aS1ρ1, with
a and S1 the length and section of the wire measured in R taking into account
Lorentz contraction, which is: a = a′/γ, S1 = S ′. So the total charge is:

Q1 =
a′

γ
S ′1

c
γβ

I ′

S ′ =
v

c2
a′I ′. (21)

The current in side 1 is given by:

I1 = j1S1 = γI ′. (22)

Notice that while the wire is better described by a linear charge density λ and
current I, the quantities that transform well under Lorentz boosts are the volumic
charge density ρ and current density j. In order to pass from one description to
the other, we have to introduce the section of the wire.

In side 2 of the loop (following the flow of the current), ρ′2 = 0 and j′2 = I ′/S ′ey.
Applying Lorentz transformation:{

cρ2 = γcρ′2 = 0

j2 = j′2 =
I′

S′ ,
(23)

but now the section of the wire gets Lorentz contracted. So S2 = S ′/γ and:{
Q2 = 0

I2 = j′2S2 =
I′

γ
.

(24)

We can replace I ′ by −I ′ to get the charge and current in sides 3 and 4:{
Q3 = − v

c2
a′I ′

I3 = −γI ′,
(25)

and {
Q4 = 0

I4 = − I′

γ
.

(26)

So in the laboratory frame a positive charge appears in the side where the current
flows in the direction of the movement of the loop and a negative charge appears
when the current flows in the opposite direction, the total charge of the system
staying zero. The current is not the same in the four sides : it is bigger in the
sides parallel to the movement and smaller in the sides perpendicular to the
movement.

We can interpret the result as a “real” current I ′/γ flowing in the rectangle
which corresponds to the original current where charges are slowed down by time
dilatation. The current in sides 1 and 3 is bigger (in absolute value) because of
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the charge density moving at velocity v which creates additionnal current. One
can check that:

I1 =
I ′

γ
+ γI ′

(
1− 1

γ2

)
=

I ′

γ
+ γβ2I ′ =

I ′

γ
+ ρ1S1v, (27)

which shows the current I1 as a sum of the current flowing though all the rect-
angle (first term) and the current created by the charges (second term).

An analytical solution This method has the advantage of not introducing
the section S ′ of the wire. The numbering of the sides of the loop is the same
as in the previous solution. In the reference frame of the loop R′ we write the
charge and current density:

ρ′(x′, y′, z′) = 0 (28)

and

j′(x′, y′, z′) =I ′δ(y′)δ(z′)ex [Θ(x′)−Θ(x′ − a′)] side 1

+ I ′δ(x′ − a′)δ(z′)ey [Θ(y′)−Θ(y′ − b′)] side 2

− I ′δ(y′ − b′)δ(z′)ex [Θ(x′)−Θ(x′ − a′)] side 3

− I ′δ(x′)δ(z′)ey [Θ(y′)−Θ(y′ − b′)] side 4 (29)

where the delta functions express that the wire is one-dimensional and the theta
function are here to ensure that the current is only non zero in the loop. We
then transform the four vector j′µ to the laboratory frame R:

cρ
jx
jy
jz

 =


βγj′x
γj′x
j′y
j′z

 =


βγI ′ [δ(y′)δ(z′)− δ(y′ − b′)δ(z′)] [Θ(x′)−Θ(x′ − a′)]
γI ′ [δ(y′)δ(z′)− δ(y′ − b′)δ(z′)] [Θ(x′)−Θ(x′ − a′)]
I ′ [δ(x′ − a′)δ(z′)− δ(x′)δ(z′)] [Θ(y′)−Θ(y′ − b′)]

0


The coordinates in R′ are related to coordinates in R by:

ct′ = γct− βγx

x′ = −βγct+ γx

y′ = y and z′ = z

(30)

so:

jµ =


βγI ′ [δ(y)δ(z)− δ(y − b′)δ(z)] [Θ(−βγct+ γx)−Θ(−βγct+ γx− a′)]
γI ′ [δ(y)δ(z)− δ(y − b′)δ(z)] [Θ(−βγct+ γx)−Θ(−βγct+ γx− a′)]
I ′ [δ(−βγct+ γx− a′)δ(z)− δ(−βγct+ γx)δ(z)] [Θ(y)−Θ(y − b′)]

0


We can simplify the Θ and δ functions as follows:

Θ(−βγct+ γx)−Θ(−βγct+ γx− a′) = Θ(x− vt)−Θ(x− vt− a′/γ)

δ(−βγct+ γx) = 1
γ
δ(x− vt)

δ(−βγct+ γx− a′) = 1
γ
δ(x− vt− a′/γ)

(31)
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Then we have:

ρ(x, y, z) =
βγI ′

c
δ(y)δ(z) [Θ(x− vt)−Θ(x− vt− a′/γ)]

− βγI ′

c
δ(y − b′)δ(z) [Θ(x− vt)−Θ(x− vt− a′/γ)] (32)

corresponding to the positive charge in side 1 and negative charge in side 3. The
current density is:

j(x, y, z) =γI ′δ(y)δ(z) [Θ(x− vt)−Θ(x− vt− a′/γ)] ex side 1

− γI ′δ(y − b′)δ(z) [Θ(x− vt)−Θ(x− vt− a′/γ)] ex side 3

+
I ′

γ
δ(x− vt)δ(z) [Θ(y)−Θ(y − b′)] ey side 2

− I ′

γ
δ(x− vt− a′/γ)δ(z) [Θ(y)−Θ(y − b′)] ey side 4 (33)

The x − vt dependence of the Θ functions indicate that the loop is moving in
the x direction with speed v. Also the Lorentz contraction of the section of the
wire appear as a 1/γ factor in the delta function. Everything combines to give
the same result as in the first solution.

3. The Breakthrough Starshot program
The stress tensor associated to electromagnetic fields is

T µν =
1

µ0c2

(
F µαF ν

α − 1

4
ηµνFαβF

αβ

)
,

where F µν is the field-strength tensor.

Remark: The questions are formulated using the (−,+++) convention for the
Minkowski metric.

(a) Show that, in terms of the electromagnetic fields, the components of T µν

reduce to:

T µν =

(
E S⃗/c

S⃗/c −τij

)
,

where E is the electromagnetic energy density, S⃗ is the Poynting vector and
τij are the components of the Maxwell stress tensor, defined as:

τij := ϵ0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
.

(b) Compute the divergence ∂νT
µν = −fµ and show that fµ is a 4−vector.

What physical quantities do its components represent? Hint: use Maxwell
equations in presence of charges.

The Breakthrough Starshot program aims at developing an ultra-fast spaceship
for interstellar missions. The prototype is made of a very light nanocraft attached
to a lightsail, propelled by a ground-based light beamer. You can find a sketch
of it in picture 2.
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Figure 2: Sketch of a prototype of the Breakthrough Starshot program. In blue is
depicted the lightsail, the electromagnetic wave arrives perpendicularly, to which is
attached the purple nanocraft.

(c) Assuming the incident electromagnetic wave is perfectly reflected by the
light sail (and the light sail is flat), compute the power per unit area w
transferred to the light sail by an incident electromagnetic wave of ampli-
tude |E⃗| = c|B⃗| (in the reference frame where the light sail is at rest).

(d) The project aims at pushing the nanocraft to travel at speed c/5. What is
the ratio between the power w′ which needs to be injected in the light beam
from Earth, and the power w transferred to the light sail in its reference
frame?

Solution

(a) First of all, let’s compute the contraction FαβF
αβ.

FαβF
αβ = F 0iF0i + F i0Fi0 + F ijFij =

= 2F 0iF0i + F ijFij

= 2(c2B⃗2 − E⃗2)

(34)

where we used F0i = −Ei and Fij = cϵijkBk. Then we have (remember here
η00 = −1)

T 00 = ϵ0F
0αF 0

α +
ϵ0
2
(c2B⃗2 − E⃗2)

= ϵ0F
00F 0

0 + ϵ0F
0iF 0

i +
ϵ0
2
(c2B⃗2 − E⃗2)

= ϵ0E⃗
2 +

ϵ0
2
(c2B⃗2 − E⃗2)

=
ϵ0
2
(c2B⃗2 + E⃗2) ≡ E .

(35)

Similarly,

T 0i =
1

µ0c2
F 0αF i

α =
1

µ0c2
F 0jFij =

1

µ0c
ϵijkEjBk ≡

Si

c
. (36)
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Finally,

T ij = ϵ0

(
F iαF j

α +
1

2
((c2B⃗2 − E⃗2)δij

)
= ϵ0

(
F i0F j

0 + F ikF j
k +

1

2
(E⃗2 − c2B⃗2)δij

)
= ϵ0

(
−EiEj +

1

2
δijE⃗

2

)
+

1

µ0

(
ϵiklBlϵjkmBm − 1

2
δijB⃗

2

)
= ϵ0

(
−EiEj +

1

2
δijE⃗

2

)
+

1

µ0

(
(δijδlm − δimδjl)BlBm − 1

2
δijB⃗

2

)
= ϵ0

(
−EiEj +

1

2
δijE⃗

2

)
+

1

µ0

(
−BiBj +

1

2
δijB⃗

2

)
≡ −τij .

(37)

(b) We compute here the divergence of the stress tensor ∂νT
µν .

Method 1:
For the time-component we have ∂νT

0ν = ∂0T
00 + ∂iT

0i = 1
c
∂E
∂t

+ ∂iT
0i. We

compute then

∂iT
0i =

1

c
∂iS

i

=
1

cµ0

∂i(ϵijkEjBk)

=
1

cµ0

B⃗ ·
(
∇∧ E⃗

)
︸ ︷︷ ︸

−∂tB⃗

− 1

cµ0

E⃗ ·
(
∇∧ B⃗

)
︸ ︷︷ ︸
µ0J⃗+µ0ϵ0∂tE⃗

= −1

2

1

µ0c
∂tB

2 − 1

c
E⃗ · J⃗ − ϵ0

2c
∂tE

2

= −1

c
E⃗ · J⃗ − ϵ0

2c

∂

∂t

[
E2 + c2B2

]
= −1

c
E⃗ · J⃗ − 1

c

∂E
∂t

,

(38)

and conclude that

f 0 = −∂νT
0ν = −∂0T

00 − ∂iT
0i =

1

c
E⃗ · J⃗ , (39)

which is the Joule power per unit volume.
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Now, for the spatial components we first compute

∂jτ
ij = ∂j

[
ϵ0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)]
= ϵ0

[
(∂jEi)Ej + Ei∇ · E⃗ − Ej∂iEj

]
+ µ0

[
(∂jBi)Bj +Bi∇ · B⃗ −Bj∂iBj

]

= ϵ0

Ei∇ · E⃗ − Ej (∂iEj − ∂jEi)︸ ︷︷ ︸
ϵijk(∇∧E⃗)

k



+ µ0

Bi ∇ · B⃗︸ ︷︷ ︸
0

−Bj (∂iBj − ∂jBi)︸ ︷︷ ︸
ϵijk(∇∧B⃗)

k


= ϵ0

[
Ei

ρ

ϵ0
+ ϵijkEj

∂Bk

∂t

]
− 1

µ0

ϵijkBjµ0

[
Jk + ϵ0

∂Ek

∂t

]
= ρEi −

(
J⃗ ∧ B⃗

)
i
+ ϵijk

(
Ej

∂Bk

∂t
−Bj

∂Ek

∂t

)
= ρEi +

(
J⃗ ∧ B⃗

)
i
+ ϵ0

∂

∂t

(
E⃗ ∧ B⃗

)
i

= ρEi +
(
J⃗ ∧ B⃗

)
i
+

1

c2
∂

∂t
Si.

(40)

Then we can set µ = i in the stress tensor divergence and get

f i = −∂νT
iν = −∂0T

i0 + ∂jτ
ij

= − 1

c2
∂

∂t
Si + ρEi +

(
J⃗ ∧ B⃗

)
i
+

1

c2
∂

∂t
Si

= ρEi +
(
J⃗ ∧ B⃗

)
i

(41)

which is the Lorentz force per unit volume. Therefore the components vector
fµ are the power transmitted to the sources and the force exerted on them
by the electromagnetic fields.

Method 2:
We have :

∂µT
µν = ε0

(
∂µ (F

µ
αF

να)− 1

4
ηµν∂µ

(
FαβF

αβ
))

= ε0

(
(∂µF

µ
α)F

να + F µ
α∂µF

να − 1

2
∂νFαβF

αβ

)
= ε0

(
− 1

cε0
JαF

να + F µ
α∂µF

να − 1

2
∂νFαβF

αβ

)
. (42)

Where in the last line, we used one of Maxwell equation. We can show that
the last 2 terms are zero. To do so, we need to express terms of the form
∂µF

να. We can now use the second Maxwell equation ∂µε
µνρσFρσ = 0. This

equation implies the Bianchi identity :

∂νFαβ + ∂αF βν + ∂βF να = 0 (43)
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which allows us to express ∂νFαβ = −∂αF βν − ∂βF να. Using this:

F µ
α∂µF

να − 1

2
∂νFαβF

αβ = F µ
α∂µF

να +
1

2
∂αF βνFαβ +

1

2
∂βF ναFαβ

= (∂µF να)Fµα +
1

2
(∂αF βν)Fαβ +

1

2
(∂βFαν)Fβα

= 0. (44)

Remember that contracted indices are dummy variables : one can rename
them without changing the value of the expression. You can see that the
second line is the sum of three identical terms with different dummy indices.
So we have

∂µT
µν = −1

c
JαF

να =
1

c
JαF

αν . (45)

and we can conclude that

fµ =
1

c
JαF

µα . (46)

Let us now see what the spacial and time component of this equation rep-
resent:

f 0 =
1

c
JαF

0α =
1

c
J0F

00 +
1

c
JiF

0i =
1

c
J · E (47)

f i =
1

c
JαF

iα =
1

c
J0F

i0 +
1

c
JiF

ij = ρEi + (J⃗ ∧ B⃗)i . (48)

and are respectively the Joule power and Lorentz force per unit volume.
Therefore the components vector fµ are the power transmitted to the
sources and the force exerted on them by the electromagnetic fields.

fµ is a 4−vector:
Clearly fµ is also a 4−vector since it is the result of a contraction between
a 2−tensor and the 4−derivative (or equivalently using (46)). Explicitly, we
can show that it transforms as a 4−vector: under a Lorentz transformation
Λ, we have

f ′µ = −∂′
νT

′µν

= −Λ α
ν ∂αΛ

µ
βΛ

ν
γT

βγ

= −Λµ
βΛ

ν
γΛ

α
ν ∂αT

βγ

= −Λµ
β (Λ

−1) ν
γ Λ α

ν︸ ︷︷ ︸
δαγ

∂αT
βγ

= −Λµ
β∂αT

βα ≡ Λµ
βf

β.

(49)

(c) The electromagnetic wave with amplitude E = cB can be written as E⃗ =

E⃗eik·x + cc. with |E⃗ | = E. The power absorbed by the light sail coincides

with the flux of the Poynting vector S⃗ through its surface, and since S⃗
is constant all along it, the power per unit area per unit time really just
coincides with its modulus:

winc = ⟨S⃗⟩ = cϵ0⟨E⃗2⟩ = 2cϵ0E
2. (50)
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For the reflected wave, the computation is exactly the same, since the wave
is perfectly reflected, and so the total power is

wtot = winc + wref = 4cϵ0E
2. (51)

In particular, it is important to notice that the total energy transmitted to
the light sail it is not the flux of the sum of the Poynting vectors (which

would be zero). Indeed, electromagnetic fields sum linearly, but S⃗ does not,
since it is a quadratic for of E and B, so the two contributions need to be
separately accounted for.

(d) Method 1:
We choose a cartesian system so that the spaceship and the electromagnetic
waves are travelling along the x̂ axis. This way it is enough to compute the
ratio between S ′

x and Sx, or equivalently
T ′01

T 01 , as we have seen in point (a).
Note that as we are considering plane-wave, we do not have to consider the
ratio of the time averaged quantity ⟨. . . ⟩ as the overall prefactor cancels
out.

The two reference frames R and R′ are related by a boost along the x̂ axis
of speed −β, whose Lorentz matrix is

Λµ
ν =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

 . (52)

The T ′01 component of stress tensor in R′ is related to those of R as:

T ′01 = Λ0
µΛ

1
νT

µν

= γ
(
Λ1

νT
0ν + βΛ1

νT
1ν
)

= γ2
(
βT 00 + T 01 + β2T 10 + βT 11

)
.

(53)

For a plane wave the components of the stress tensor simplify quite a bit,
since FαβFαβ = 2(c2B2 − E2) = 0 and E1 = B1 = 0 (the fields are orthog-
onal to the direction of propagation), so

T 00 (35)
=

ϵ0
2

(
c2B⃗2 + E⃗2

)
= ϵ0E

2, (54)

T 01 (36)
=

Si

c
= ϵ0E

2, (55)

T 11 (37)
= ϵ0

(
−E1E1 +

1

2
δ11E⃗

2

)
+

1

µ0

(
−B1B1 +

1

2
δ11B⃗

2

)
= ϵ0E

2. (56)

Finally,

T ′01 = γ2(1 + β)2ϵ0E
2 =⇒ T ′01

T 01
= γ2(1 + β)2 =

3

2
. (57)

Method 2:
From the answer of (c), we know that w ∝ E2 and so it is enough to

compute |E⃗ ′| = |E⃗⊥| (we also have E⃗ = E⃗⊥). The boosted electric field is

E⃗ ′
⊥ = γ(E⃗⊥ + β ∧ B⃗) (58)
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For a plane wave, we have B⃗ = 1
c
n⃗ ∧ E⃗ where n⃗ is a unit vector along the

direction of the propagation of the wave. Thus

E⃗ ′
⊥ = γ(E⃗⊥ + β ∧ (n⃗ ∧ E⃗⊥)) (59)

= γ(E⃗⊥ + (β · E⃗⊥)n⃗− (β · n⃗)E⃗⊥) (60)

= γ(1 + β)E⃗⊥ (61)

where we used that β = −βn⃗. It is now straightforward to compute the
power ratio

w′

w
=

|E⃗ ′|2

|E⃗|2
=

|E⃗ ′
⊥|2

|E⃗⊥|2
= γ2(1 + β)2 =

3

2
. (62)
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