Classical Electrodynamics

Week 12

1. Symmetries of the wave equation — Lorentz Boost
During the lecture, you derived the symmetries of the wave equation using Wick
rotation. Here, you will rederive them independently. For simplicity, we will
consider only one spacial dimension to focus on the symmetry involving space

and time.

The d’Alembertian operator can be written in matrix notation
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and the most general linear transformation of spacetime is
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a) Suppose that U(z,t) is a solution of OW(xz,t) = 0. What if the constraints
on A such that ¥'(z,t) = U(z/,t') is also a solution?

b) Show that the constraints imply that
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with y a free parameter.

c) By studying the trajectory of the origin 2’ = 0, relate the rapidity x to

f=v/cand vy =

L__ where v is the velocity of (0.

d) Write A in term of 3,v. Do you recognize the familiar Lorentz boost?

Solutions

a) We are asked to show that OW'(z,t) = 0 knowing that OWU(z,t) = 0 (The

latter implies that O'W(2’,¢') = 0).

We can straightforwardly relate the derivatives
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and we obtain



Thus we have

If n = ApAT then the right hand side become O'¥(2/,#') = 0. The symme-
tries are thus generates by all transformations such that n = AnAT.

b) In component, n = AnAT is

—1= _A%1 + A%Q
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which is solved by
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with y a free parameter.

c) The trajectory described by the ' = 0 in the (z,t) coordinate correspond
to the trajectory of the reference frame O’ seen by O.
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So we get

B = E:tanhx,
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d) We then obtain
A= <—Z'3’V _57) (1)

And in component we see that
ct’ = y(ct — Bzx)
z' = ~(x — Pet)

the familiar Lorentz transformation.

2. Invariance of Electric potential
Consider a scalar potential ¢.

a) In electrostatics in the absence of charges, the scalar potential ¢ satisfies
the Laplace equation A¢ = 0. Find the set of transformations of space that
leave this equation invariant.



b) In electrodynamics in Lorenz gauge, the scalar potential satisfies the wave
equation O¢ = 0. Find the set of transformations of space and time that
leave this equation invariant.

Note: This exercise is similar in spirit as . Here try to derive to work
in tensor notation and in 3 4+ 1 dimensions.

Solution

a) The translation
x—x =x+a, (16)

where a is a constant, is a transformation that leaves the Laplace equation
invariant. This feature is pretty easy to show: we can see that the derivative
does not change under a translation:
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Therefore, we have

A=A (18)

Now, we can try with the rotation. As we have seen during the course of
linear algebra, the rotation can be defined with an orthogonal matrix O:

x = x' = 0x, (19)

with OTO = 1. The rotation is determined by three parameters. Indeed,
two parameters are needed to select the axis around which the system will
rotate and one parameter determines the angle of rotation. Since the relation
between x and x’ is linear (O does not depend on x), we can see that
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Using the chain rule, we can find the relation between the derivative with
respect to the old and the new variables:

0 oz 0 0
2 - 19— G 21
0z, zl: Oz, Ox, Z Qi o, (21)

%

In vector notation, (21]) can be written in the following way:

Ve=0"Vu, (22)
and the direct implication is

Vo =0V, (23)

where we have just applied O on both sides of . The Laplacian A can
be written as
A=VIv,=VIv,. (24)

Using , we can find the new Laplacian:

A =vVLv, =V, ov, =vioTov, = VIV, = A. (25)
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Therefore, also the rotation leaves the the Laplace equation invariant. The
translation and the rotation together form a group of six parameters that is
called Euclidean group in three dimensions. []

b) Let us define for simplicity the four dimensional vector X = (ct,x). A generic
affine transformation of spacetime can be defined by a matrix A € R*** and
a vector a € R* through:

%% =A% +a (26)

The D’Alambert operator is trivially invariant under the class of inhomoge-
neous transformations:

XX =x+a (27)
corresponding to translations in space and time.
We then need to find the class of matrices A such that the D’Alambert

operator is invariant under the homogeneous transformation:

% — % =A% (28)
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We can define the vector of derivatives 9 = (Cvat) and write the D’Alambert

operator as L
0=0"no

where 7 is the Minkowski metric n = diag(—1,1,1,1).

By applying the chain rule we notice that:

L R - -
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By imposing invariance we then obtain:
0= T B = TGN = = 5T
This results into the condition:

AnAT =q (29)

The matrices satisfying form a group noted O(1,3), the Lorentz group.
We also define the proper orthochronous Lorentz group, noted SO*(1,3),
as the subgroup of the Lorentz group such that det(A) = +1 and Agy > 1:
this subgroup is connected and every element of the Lorentz group can
be obtained by combining an element of SO*(1,3) and an element of the
discrete group {I, P,T, PT}, where P =n, T = —n.

The Lorentz group has six parameter (eq. gives 10 constraints, since
AnAT is a symmetric matrix): three of them define the spacial rotations,
three the boosts, one for each independent direction.

The Lorentz group together with spacetime translations forms the Poincaré
group (ten parameters).

!Dilatations x — Ax is also a symmetry of the Laplace equation. However, we do not consider
it because it is usually broken by the presence of sources.
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3. Determine the potentials (¢, A) of a charge ¢ at rest at the origin of a reference
frame R. Then consider a reference frame R’ moving with uniform velocity v with
respect to R. What are the electromagnetic potentials (¢, A’) in the reference
frame R'? Compare your results with the Liénard-Wiechert potentials.

Solution

In the reference frame R, a charge ¢ is sitting at rest at the origin. The potentials
are the usual expressions:
¢ = 47rz r
or | (30)

A=0

Let us move to the reference frame R’ moving with uniform velocity v chosen to
be in the z direction with respect to R. We know that the potentials A* = (¢, cA)
transform as a Lorentz four-vector:

A’“(x') = A“VA”(A_lx’) = A AV (2) (31)
where A is the matrix of the boost in the z direction:
vy =By 00
=By ~+ 00
A= 0 0 1ol (32)
0 0 01

Using this, and the coordinate relation z = v(z' + fBet’),y = v/, 2 = 2/, one can
write:
q Y

¢ (t,x') =vo(t,x) — BeyA,(t,x) = 33
( ) (t,%) (t,x) Ameo \/2 (2 + Bet')? + y? + 22 (33)
and for the vector potential:
A,(t/,X/) —_ q B7 e, (34)
Ameoc \/2(2! + Bet')? + y? + 272
In the frame R', the charge is moving at a constant velocity v = —ve,. We

find exactly the same result as the Liénard-Wiechert formula that we derived in
exercise 1 of Week 5, but with considerably less effort !

4. The predictions of special relativity are often counter-intuitive because our daily
experience is limited to velocities much smaller than the speed of light. The goal
of this exercise is to develop your relativistic intuition through the discussion of
several thought experiments.

Suggestion: You are not expected to do long computation. Reflect on the sit-
uation and draw a spacetime diagram describing each experiment.

a) Two identical rockets are at rest connected by a rope of length 100 m. The
rope is stretched and cannot be extended beyond 101 m without breaking.
The two rockets are programmed to start accelerating exactly at the same
time along the direction parallel to the rope. They stop accelerating when
they reach the velocity 0.8c. Did the rope break?



b)

John wants to put a 10 m long ladder inside his garage, which also has length
10 m. The garage has doors at both ends that can be closed simultaneously
by pressing a button in the middle of the garage. Paul tells John to run
with the ladder towards the garage while he stays next to the button. Since
John can run at the speed 0.8c the ladder will be Lorentz contracted and
Paul will easily be able to close the garage doors with the ladder inside. On
the other hand, for John it is the garage that gets Lorentz contracted and
therefore it will not be possible to close the garage doors. Who is right?

Consider two LED’s and two photo-detectors placed at the four vertices of
a vertical square of side 10 m. The LEDs are placed in the bottom vertices
of the square and the photo-detectors on the top vertices. Each LED emits
light towards the photo-detector just above it (on the the same side of the
square) and the two photo-detectors are connected to an electronic NOR
that will ring an alarm if and only if none of the photo-detectors detects
light at the same time. Now consider an opaque bar of length 10 m that
crosses the square horizontally at the speed ¢/2 (and at mid height). From
the point of view of the square the bar gets Lorentz contracted and will not
be able to block the light of both LEDs at the same time. However, from the
point of view of the bar, the square gets Lorentz contracted and both LEDs
will be blocked at the same time during some time. Will the alarm ring?

Solution

a)

b)

The key point of this problem is that the two rockets remain at distance
L = 100 m in the laboratory frame during the whole motion. Indeed, they
are two independent objects with identical laws of motion. If we call z4(t)
and z5(t) the law of motion of the first and the second rocket respectively,
we may write

21(t) = 21(0) + f(2) (35)

where f(t) is a function describing the motion of the object, with the prop-
erties that f(0) =0 and f(¢t) = 0.8¢(t —t*) + f(t*) for ¢t > t*. The distance
between the rockets in the laboratory frame is z5(t) —x1(t) = L at all times,
as advertised. Now, let us consider the situation at some time ¢ > t*. The
rockets are moving at constant velocity, and we can go to the rest frame via a
Lorentz transformation. Because of length contraction, the distance between
the rockets is vL in this frame. The resistance of the rope to stretching is
defined at rest, and at the end of the period of acceleration the rope should
be v times longer than at the beginning in order to be still attached to both
rockets. In conclusion, if the rope cannot be extended, it did break at some
point during the motion.

As we know, if the ladder is of length [; in John’s reference frame, it will
be of length I, = % in the reference frame of the garage, therefore for an
observer at rest with respect to Paul the ladder is shorter than the garage.
The opposite is true for an observer that is instead at rest with respect to
John. In that case, the Lorentz contraction must be applied to the garage

and not to the ladder.



The key point to understand this apparent contradiction is that in special
relativity two events that happen at the same time in a given reference frame
do not happen at the same time in another reference frame. In our particular
case, the doors of the garage close at the same time only in the reference
frame of Paul. In the reference frame of John, the time interval between the
closing of each door is

v v

At =t, —t) = 1% (xg —x1) = —VC—QAx , (37)
where Az is the length of the garage at rest. Therefore, the exit door closes
earlier than the entrance door. In the time |At| the extremes of the ladder

cover the distance )
dy = v|At| = ’y%Am. (38)
c

This distance is larger than the distance between the back of the ladder and
the entrance door at the moment when the front of the ladder reaches the

exit door, that is

A
d1>d2:ll—7x. (39)

So if the exit door closes when the front of the ladder arrives, the back of the
ladder has time to reach the entrance door before it closes. One can check
that condition (39) is precisely equivalent to Az > [; /7.

The alarm will ring if the two photo-detectors don’t receive any signal si-
multaneously in the frame where they are at rest (where the measurement
is taken).

Let’s call this frame R and its spacetime coordinates (ct, z). As anticipated
in the text of the exercise, in this frame the bar gets Lorentz contracted and
we have:

Lo

Lframe =Ly =10m Lyar = —— < Lo

7(v)
so that there exists no time ¢ such that both LEDs will be blocked. Consid-
ering what we stated above, the alarm will not go off.

Let us now consider the frame R’ where the bar is at rest and its spacetime
coordinates (ct’,z’). In this frame we have:

Lo
v(v)
There is then a time interval §t’ = W such that both LED’s will be
blocked. What seems like a contradiction is easily explained by looking at the
spacetime diagram in : in the frame where the bar is at rest (green area),
the square frame crosses the bar from left to right (red area) at v = —0.5¢.
The time interval T' corresponds to ty = tg < t' < tp = tg. Lines joining
events that are simultaneous in R’ are parallel to the 2/ axis, lines joining
events that are simultaneous in R are parallel to the x axis: we can see that
while event A is simultaneous to B in R/, it is simultaneous to C' in R, and
since t}; < t5, the two extremities of the bar never simultaneously cover the
two photo-detectors in R as we had concluded in the beginning.

Lbar = LO =10m Lframe = < LO
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Figure 1: Spacetime diagram of the LED thought experiment.




