
Classical Electrodynamics

Week 11

0. Lévi-Cività symbol
The Lévi-Cività symbol is defined by

εµνρσ =


1 if (µνρσ) is an even permutation of (0123)
−1 if (µνρσ) is an odd permutation of (0123)
0 otherwise

(1)

a) Defining the Lorentz transformation of εµνρσ by

ε′
µνρσ

= Λµ
αΛ

ν
βΛ

ρ
γΛ

σ
δε

αβγδ , (2)

show that ε′µνρσ = det(Λ)εµνρσ and that det(Λ) = ±1.

b) Verify the following identities and find the value of the constants N1, N2

and N3:

εµνρσεµνρσ = N1 (3)

εµνρσεανρσ = N2 δ
µ
α (4)

εµνρσεαβρσ = N3

(
δµαδ

ν
β − δµβδ

ν
α

)
(5)

Solution

a) The Lorentz transformation of εµνρσ is a completely antisymmetric object:

ε′
µνρσ

= Λµ
αΛ

ν
βΛ

ρ
γΛ

σ
δε

αβγδ

= Λν
βΛ

µ
αΛ

ρ
γΛ

σ
δ(−εβαγδ)

= −ε′
νµρσ

(6)

and the same can be verified for every pair of indices. This implies that
ε′µνρσ = Cεµνρσ, with C some constant. In order to determine the value of
this constant, we can consider the entry {0123}:

ε′
0123

= Λ0
αΛ

1
βΛ

2
γΛ

3
δε

αβγδ = det(Λ) = C (7)

by definition of the determinant of a matrix. Taking the determinant of

ΛηΛT = η

we see that (det(Λ))2 = 1, det(Λ) = ±1.

b)
εµνρσεµνρσ = ηµαηνβηργησδε

αβγδεµνρσ

The only non vanishing terms are the ones for which µ = α, ν = β, ρ =
γ, σ = δ, with α ̸= β ̸= γ ̸= δ: this corresponds to summing over all
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permutations of {0123}, which are in the number of 4!. For each of these
terms ηµαηνβηργησδ = η00η11η22η33 = −1. One obtains:

εµνρσεµνρσ = −
∑
π

(επ(0)π(1)π(2)π(3))2 = −4! = N1 (8)

For the second identity we have:

εµνρσεανρσ = ηαζηνβηργησδε
ζβγδεµνρσ

The only non vanishing terms are the ones for which ν = β, ρ = γ, σ = δ,
with α ̸= β ̸= γ ̸= δ and α = µ. Given a fixed µ this corresponds to
summing over all permutations of the three remaining indices, there are 3!
such permutations:

εµνρσεανρσ = −
∑
ν,ρ,σ

εµνρσεανρσ = −3!δµα (9)

N2 = −6.

Finally when two indices are left uncontracted,

εµνρσεαβρσ = −
∑
ρ,σ

εµνρσεαβρσ

The only non vanishing terms are the ones with µ ̸= ν and the other two
indices are either {µ = α, ν = β} or {µ = β, ν = α}. There are two possible
permutations for two fixed indices, we then obtain:

εµνρσεαβρσ = −2(δµαδ
ν
β − δµβδ

ν
α) (10)

N3 = −2.

1. Maxwell equations
Using the definition of the field strength Fµν = ∂µAν − ∂νAµ, where Aµ =
(Φ, cA)T , verify that the equations

∂µF
µν = − 1

cε0
jν (11)

∂µε
µνρσFρσ = 0 (12)

describe Maxwell equations. Show that equations (11) and (12) are Lorentz in-
variant.

Solution
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We start with the first equation. It may be a good idea to consider separately
the spatial and the temporal components. For the temporal component, namely
ν = 0, the left hand side can be written in this way:

∂0F
00 + ∂iF

i0 = ∂i(−Ei) = −∇ · E⃗ (13)

The right hand side is

− 1

cϵ0
j0 ≡ − ρ

ϵ0
. (14)

As a consequence, if we use (13) and (14), we obtain

∇ · E⃗ =
ρ

ϵ0
. (15)

If instead, for example, ν = 1, we obtain a component of another equation:

∂0F
01 + ∂1F

11 + ∂2F
21 + ∂3F

31 =
1

c
∂tEx − c∂yBz + c∂zBy , (16)

and this is the x component of the term

1

c
∂tE⃗ − c∇× B⃗ . (17)

On the right hand side we simply have

− 1

cϵ0
j1 ≡ − 1

cϵ0
jx = −cµ0jx . (18)

A similar derivation can be done for the other components, so that we end up
with

∇× B⃗ = µ0J⃗ +
1

c2
∂tE⃗ . (19)

It is now time to derive the other two. When ν = 0, the second equation becomes

∂µε
µ0ρσFρσ = ∂iε

i0jkFjk

= −∂iε
0ijkFjk

= −∂iε
ijkFjk =

= −2∂iε
ijk∂jAk

= −2c∂iε
ijk∂j(A⃗)k (20)

= −2c∂i

(
∇× A⃗

)i

= −2c∇ ·
(
∇× A⃗

)
= −2c∇ · B⃗ .

Therefore, we have derived the relation

∇ · B⃗ = 0 . (21)
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If ν = 1, we have

∂µε
µ1ρσFρσ = ∂0ε

01ijFij + ∂iε
i10jF0j + ∂iε

i1j0Fj0 =

= ∂0ε
01ijFij + 2∂iε

i10jF0j =

= ∂0ε
0123F23 + ∂0ε

0132F32 + 2∂2ε
2103F03 + 2∂3ε

3102F02 =

= 2∂0ε
0123F23 + 2∂2ε

2103F03 + 2∂3ε
3102F02 =

= 2 (∂0F23 − ∂2F03 + ∂3F02) = 2
(
∂tB⃗1 +

[
∇× E⃗

]
1

)
. (22)

If we also do an analogous calculation for the other components, we obtain

∇× E⃗ = −∂tB⃗ . (23)

We must show that the equations are Lorentz invariant, namely that after a
Lorentz transformation the equation does not change its structure. We can write

∂′
µF

′µν = ηµρ∂
′ρF ′µν = ηµρΛ

ρ
αΛ

µ
βΛ

ν
γ∂

αF βγ (24)

= ηαβΛ
ν
γ∂

αF βγ (25)

= Λν
γ∂βF

βγ (26)

= −Λν
γ
1

cε0
jγ (27)

= − 1

cε0
j′ν . (28)

This shows the first equation is Lorentz invariant. The second tells us

0 = ∂µε
µνρσFρσ = Λγ

µ∂
′
γε

µνρσΛα
ρΛ

β
σF

′
αβ . (29)

We can contract this with Λδ
ν and use what we proved in exercise 2.a):

0 = εµνρσΛδ
νΛ

γ
µΛ

α
ρΛ

β
σ∂

′
γF

′
αβ (30)

= det(Λ)εγδαβ∂′
γF

′
αβ . (31)

Since det(Λ) = ±1, we get
∂′
γε

γδαβF ′
αβ = 0 , (32)

which shows the second equation is Lorentz invariant.

Note: A previous version of this solution used the notation of (Λ−T )µ
ν as the

matrix transforming covariant tensors. This year we avoided introducing it, but
let us explain it here in case you encounter this notation in other references.

One can define (Λ−T )µ
ν by lowering and raising indices of our usual Λµ

ν :

(Λ−T )µ
ν := ηµρη

νσΛρ
σ . (33)

Then this object is what transforms covariant vectors. Indeed, for V µ a con-
travariant vector, the covariant Vµ defined by lowering index transforms as:

Vµ = ηµνV
ν −→ V ′

µ = ηµνV
′ν = ηµνΛ

ν
ρV

ρ = ηµνΛ
ν
ρη

ρσVσ = (Λ−T )µ
σVσ . (34)
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Here is the proof that (Λ−T )µ
ν is the inverse transpose of Λµ

ν :

(Λ−T )µ
νΛµ

ρ = ηµαη
νβΛα

βΛ
µ
ρ = ηνβηβρ = δνρ , (35)

where we have used the usual property of Λ matrices in the second-to-last equal-
ity. As a consequence, the four following equations can be used, but in this course
we use only the first line:

V ′µ = Λµ
νV

ν Λν
µV

′
ν = Vµ (36)

V ′
µ = (Λ−T )µ

νVν (Λ−T )ν
µV ′ν = V µ (37)

Using the inverse transformation, we can write

ηµα∂
αF µν = ηµα(Λ

−T )αγ ∂
′γ(Λ−T )µδ (Λ

−T ) νσF
′δσ . (38)

Now we can use
ηµα(Λ

−T )αγ = ηγαΛ
α
µ (39)

and write

ηµα(Λ
−T )αγ ∂

′γ(Λ−T )µδ (Λ
−T ) νσF

′δσ = ηγαΛ
α
µ∂

′γ(Λ−T )µδ (Λ
−T ) ν

σ F
′δσ =

= (Λ−T ) ν
σ ∂

′
αF

′ασ . (40)

As we know, the four-current transform as any other four vector:

(Λ−T ) ν
σ ∂

′
αF

′ασ = − 1

cϵ0
(Λ−T ) ν

σ j
′σ . (41)

If we now multiply on both sides by Λτ
ν we conclude our demonstration:

∂′
αF

′ατ = − 1

cϵ0
j′τ . (42)

For the second equation we will use

εµνρσ =
1

det(Λ)
Λµ

αΛ
ν
βΛ

ρ
γΛ

σ
δ ε

αβγδ , (43)

and
Λθ

ζ(Λ
−T ) ζ

π = δθπ . (44)

We can proceed with the derivation:

εµνρσ∂′
νF

′
ρσ =

=
1

det(Λ)
Λµ

αΛ
ν
βΛ

ρ
γΛ

σ
δ ε

αβγδ(Λ−T ) τ
ν ∂τ (Λ

−T ) ϕ
ρ (Λ

−T ) η
σ Fϕη =

=
1

det(Λ)
Λµ

αε
αβγδδτβ δ

ϕ
γ δ

η
δ ∂τFϕη = (45)

=
1

det(Λ)
Λµ

αε
ατϕη∂τFϕη = 0 .

2. Lorentz invariants
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a) Using the field strength Fµν build two Lorentz invariants quadratic in the
fields E and B.

b) Given a tensor T µν build a Lorentz invariant linear in this tensor.

Solution

a) The only two Lorentz scalars quadratic in E and B that we can build from
the field-strength tensor Fµν , the Levi-Civita symbol εµνρσ and the metric
ηµν are:

i.
FµνF

µν = 2F0iF
0i + FijF

ij = 2(c2B2 − E2)

This quantity is Lorentz invariant since:

F ′
µνF

′µν = F ′
µνΛ

µ
αΛ

ν
βF

αβ = FαβF
αβ

ii.

FµνF̃
µν =

1

2
εµνρσFµνFρσ = 2εijkF0iFjk = −4cE ·B

The Lorentz transform of this quantity is:

2F ′
µνF̃

′µν = εµνρσF ′
µνF

′
ρσ

=
1

det(Λ)
ε′µνρσF ′

µνF
′
ρσ

=
1

det(Λ)
Λµ

αΛ
ν
βΛ

ρ
γΛ

σ
δε

αβγδF ′
µνF

′
ρσ

=
1

det(Λ)
εαβγδFαβFγδ

=
1

det(Λ)
2FαβF̃

γδ. (46)

Then the quantity FµνF̃
µν is invariant under Lorentz transformations

such that det(Λ) = +1.

b) The only Lorentz invariant linear in T µν is the trace ηµνT
µν :

η′µνT
′µν = ηµνT

′µν = ηµνΛ
µ
αΛ

ν
βT

αβ = ηαβT
αβ. (47)

3. Stress-energy tensor
The electromagnetic stress-energy tensor is given by

T µν = ε0

(
F µ

αF
να − 1

4
ηµνFαβF

αβ

)
, (48)

where Fµν is the field-strength tensor and ηµν is the Minkowski metric.

a) Compute the trace ηµνT
µν .
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b) Verify that

T 00 = u =
ε0
2
E2 +

1

2µ0

B2 (49)

is the electromagnetic energy density.

c) Verify that

T 0i =
1

c
(S)i , (50)

where S is the Poynting vector. Notice that 1
c
T 0i is also the momentum

density (component i) in the electromagnetic field.

d) Using Maxwell equations (11) and (12) show that

∂µT
µν =

1

c
jαF

αν . (51)

Rewrite the ν = 0 component of this equation using the relations (49) and
(50). What is the physical meaning of this equation? What about the spatial
components ν = 1, 2, 3?

Solution

a) The trace of the electromagnetic stress-energy tensor is:

ηµνT
µν = ε0

(
F µ

αF
ναηµν −

1

4
ηµνFαβF

αβηµν

)
= ε0

(
FναF

να − FαβF
αβ
)

= 0. (52)

b) Let us calculate :

T 00 = ε0

(
F 0

αF
0α − 1

4
η00FαβF

αβ

)
(53)

= ε0(E⃗
2 +

1

4
2(c2B⃗2 − E⃗2)) (54)

=
ε0
2
E⃗2 +

1

2µ0

B⃗2 = u , (55)

where we used F0i = −Ei to obtain the first term and the result of ex.2 for
the second. In the last line we used the relation ε0µ0c

2 = 1 to obtain the
usual energy.

c) Now :

T 0i = ε0

(
F 0

αF
iα − 1

4
η0iFαβF

αβ

)
= ε0F

0
αF

iα

= ε0F
0
jF

ij = ε0Ejcϵ
ijkBk = ε0c(E⃗ × B⃗)i

=
1

c
(S⃗)i (56)

where we have used that Fij = cϵijkB
k.
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d) We have :

∂µT
µν = ε0

(
∂µ (F

µ
αF

να)− 1

4
ηµν∂µ

(
FαβF

αβ
))

= ε0

(
(∂µF

µ
α)F

να + F µ
α∂µF

να − 1

2
∂νFαβF

αβ

)
= ε0

(
− 1

cε0
jαF

να + F µ
α∂µF

να − 1

2
∂νFαβF

αβ

)
. (57)

In these manipulations, it is important to specify on which term the deriva-
tive acts. When we write ∂µF

µ
αF

αν , we mean (∂µF
µ
α)F

αν i.e. the derivative
only acts on the first term and not on the second one.

We now want to show that the extra terms that we got are zero. To do so,
we need to express terms of the form ∂µF

να. Since we already used the first
Maxwell equation, we should use the second equation ∂µε

µνρσFρσ = 0. We
will show later that this equation implies the Bianchi identity :

∂νFαβ + ∂αF βν + ∂βF να = 0 (58)

which allows us to express ∂νFαβ = −∂αF βν − ∂βF να. Using this:

F µ
α∂µF

να − 1

2
∂νFαβF

αβ = F µ
α∂µF

να +
1

2
∂αF βνFαβ +

1

2
∂βF ναFαβ

= (∂µF να)Fµα +
1

2
(∂αF βν)Fαβ +

1

2
(∂βFαν)Fβα

= 0. (59)

Remember that contracted indices are dummy variables : one can rename
them without changing the value of the expression. You can see that the
second line is the sum of three identical terms with different dummy indices.
Now we can conclude :

∂µT
µν = −1

c
jαF

να =
1

c
jαF

αν . (60)

Let us write the zeroth component of the equation above:{
∂µT

µ0 = ∂0T
00 + ∂iT

i0 = 1
c
∂u
∂t

+ 1
c
∇ · S

1
c
jαF

α0 = 1
c
j0F

00 + 1
c
jiF

i0 = −1
c
j · E

(61)

(You can check that T µν is symmetric, ji = (⃗j)i and F i0 = −(E⃗)i). So:

∂u

∂t
+∇ · S = −j · E (62)

expressing the fact that the variation of electromagnectic energy density (u)
is due to the flux of energy density (Poynting vector) and the dissipation of
energy via Joule effect (right-hand side).

The ν = 0 component expresses the variation of the electromagnetic energy.
The spatial components ν = 1, 2, 3 will express the time variation of elec-
tromagnetic momentum density 1

c
∂S
∂t

in terms of the flux of electromagnetic
momentum (stress components T ij) and an external force term (right-hand
side).

8



Proof of the Bianchi identity Starting from the Maxwell equation (12),
we prove the Bianchi identity (58). The LHS of Maxwell equation is a four-
vector whereas the one of the Bianchi identity is a rank 3 tensor. In order
to pass from one to the other we can do:

0 = εµαβγε
µνρσ∂νFρσ (63)

We can use a method similar to exercise 2 to show that

εµαβγε
µνρσ ∝ δναδ

ρ
βδ

σ
γ − δνβδ

ρ
αδ

σ
γ − δνγδ

ρ
βδ

σ
α − δναδ

ρ
γδ

σ
β + δνβδ

ρ
γδ

σ
α + δνγδ

ρ
αδ

σ
β (64)

When the above is contracted with ∂µFρσ, half of the terms simplify (per-
mutations of ρ and σ just give a minus sign because of Fρσ). We get that:

(δναδ
ρ
βδ

σ
γ − δνβδ

ρ
αδ

σ
γ − δνγδ

ρ
βδ

σ
α − δναδ

ρ
γδ

σ
β + δνβδ

ρ
γδ

σ
α + δνγδ

ρ
αδ

σ
β)∂νFρσ = 0

⇔ ∂αFβγ + ∂βFγα + ∂γFαβ = 0. (65)

Another way to prove the identity is to write Maxwell’s equation εµνρσ∂νFρσ =
0 in components. For µ = 0 it is:

∂1F23 − ∂2F13 − ∂3F21 − ∂1F32 + ∂2F31 + ∂3F12 = 2(∂1F23 + ∂2F31 + ∂3F12) = 0

This is exactly the Bianchi identity (58) for ν = 1, α = 2, β = 3. We can do
the same with µ = 1, 2, 3 and see that the expression ∂νFαβ+∂αFβν+∂βFνα is
zero when two indices are the same, because of the antisymmetry of the Fµν

tensor. Thus we have proven the Bianchi identity component by components.
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