Classical Electrodynamics

Week 11

0. Léuvi-Civita symbol
The Lévi-Civita symbol is defined by

1 if (uvpo) is an even permutation of (0123)
P’ = ¢ —1 if (uvpo) is an odd permutation of (0123) (1)
0 otherwise

a) Defining the Lorentz transformation of e#*#7 by
T = NN A )
show that £ = det(A)e**” and that det(A) = +1.

b) Verify the following identities and find the value of the constants Nj, Ny

and Ns:
eMP e pe = N1 (3)
"’ qupe = No 0% (4)
M’ ppe = N3 (555; - 5’5(5;) (5)
Solution

a) The Lorentz transformation of 7 is a completely antisymmetric object:
M7 = A N NP N0
= Ay A* AP N5 (—707)
= g/’ (6)
and the same can be verified for every pair of indices. This implies that

g'hvrr — Celvr?  with C' some constant. In order to determine the value of
this constant, we can consider the entry {0123}:

e = A0 AT,AZ APeoP = det(A) = C (7)
by definition of the determinant of a matrix. Taking the determinant of
AnAT =n
we see that (det(A))? =1, det(A) = £1.
b)

ghvpo aﬂq/dg/u/pa

Euvpos = NuaTlvplpyTes€

The only non vanishing terms are the ones for which p = o, v = 3, p =
v, 0 = 0, with a # B # v # ¢: this corresponds to summing over all
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permutations of {0123}, which are in the number of 4!. For each of these
terms 7,a7,5MmMes = NooTn1722733 = —1. One obtains:

ghvpo

Epps = — Z(gﬁ(o)ﬂ(l)ﬁﬂ)ﬂ(i%))? = 4l =N, (8)

™

For the second identity we have:

v 6 v
et 'Mﬁm,pg — nacnuﬁﬁm%égcm ghvpo

The only non vanishing terms are the ones for which v = 3, p =, 0 = 6,
with o« # 6 # v # 0 and a = p. Given a fixed p this corresponds to
summing over all permutations of the three remaining indices, there are 3!
such permutations:

eMP e qupe = — E ghvPagarPs = 316k (9)

v,p,0

Ny = —6.

Finally when two indices are left uncontracted,
E'uypaga,é’pa — E g/u/pagaﬂpo
PO

The only non vanishing terms are the ones with u # v and the other two
indices are either { = a, v = B} or {u = B, v = a}. There are two possible
permutations for two fixed indices, we then obtain:

M e = —2(510 — 51467) (10)

1. Mazwell equations
Using the definition of the field strength F),, = 0,4, — 0,A,, where A* =
(@, cA)T, verify that the equations

1
0, F" = ——j" 11
H csoj (11)
0" Foy =0 (12)
describe Maxwell equations. Show that equations and are Lorentz in-
variant.
Solution



We start with the first equation. It may be a good idea to consider separately
the spatial and the temporal components. For the temporal component, namely
v = 0, the left hand side can be written in this way:

OHF® + 9,F® = 9,(—F") = -V - E (13)
The right hand side is
L o P
—— == 14
o - (14)

As a consequence, if we use and , we obtain

v E="L (15)

€0

If instead, for example, v = 1, we obtain a component of another equation:
1
FO" + O F™ + 0, F? 4+ 03 F* = —0,F, — c0,B, + c0.B,, (16)
c
and this is the x component of the term
1 - .
-0, F —cV x B. (17)
c
On the right hand side we simply have
o) = T Je = —CHoJ - (18)

A similar derivation can be done for the other components, so that we end up
with ]
It is now time to derive the other two. When v = 0, the second equation becomes
auf':quano- = @eioijjk
— _azg(]ljkﬁvjk
= —8i€iijjk =
= —28i€ijk8jAk
= —ZCaiﬁijkaj (E)k (20)
= —2682' (V X ff)
— ~2cV - (V x )
= 2V B.

Therefore, we have derived the relation

V-B=0. (21)



If v =1, we have

Dy 7,y = 00 I By + 0,21 By + 0,20 Fg =
= 0p”" Fyj + 20, Fyy =
= By + 9012 By 1 20,210 g 4+ 20,302, —
— 20012 Fyg + 20,570 Fyy + 20452y =

=2 <80F23 — 82F03 + 83F02) =2 (8t§1 + [V X E:| 1) . (22)
If we also do an analogous calculation for the other components, we obtain

We must show that the equations are Lorentz invariant, namely that after a
Lorentz transformation the equation does not change its structure. We can write

6;F/W _ 77MpalpF/uu _ nupApaA“ﬁA”yaaFm (24)
—= naﬁAl//yaOéFﬁ"/ (25)
_ Au’yaﬂFﬁ’Y (26)
1
— AV i 27
WCE()] ( )
1,
= - v . 28
o (28)

This shows the first equation is Lorentz invariant. The second tells us
0=0,e""F,, = A%(‘?ﬁ,g“”””[\o‘p/\ﬁa o (29)
We can contract this with A°, and use what we proved in exercise 2.a):
0= EWPUA‘SVAVMAQPABJ@; v (30)
= det(A)e** P F ;. (31)

Since det(A) = £1, we get
& PFl, =0, (32)

which shows the second equation is Lorentz invariant.

Note: A previous version of this solution used the notation of (A~7),” as the
matrix transforming covariant tensors. This year we avoided introducing it, but
let us explain it here in case you encounter this notation in other references.

One can define (A~7),” by lowering and raising indices of our usual A*, :
(AiT)uV = ﬁupUVUApa . (33)

Then this object is what transforms covariant vectors. Indeed, for V# a con-
travariant vector, the covariant V,, defined by lowering index transforms as:

V=1V’ — V;: = nuvvly = NN, VP =0, N 0V, = (AiT)uUVU . (34)



Here is the proof that (A~7),” is the inverse transpose of A*,:
(AiT)uyAup = UuanyﬁAaﬁAMP = 77”57759 =0,, (35)

where we have used the usual property of A matrices in the second-to-last equal-
ity. As a consequence, the four following equations can be used, but in this course
we use only the first line:

VI = AF VY A"V =V, (36)
V= (A1), (A1) v =yH (37)

0

Using the inverse transformation, we can write

Buad™ " = (A7) 20 (AT) (AT L F7 (38)
Now we can use
nua(A_T)»? = ﬁqui (39)
and write
Bua (A7) 20 (AT AT = 1y A% (AT HAT) Y P =
= (A7) 0L 7. (40)
As we know, the four-current transform as any other four vector:
1
(A1) 0L F" = —— (A7) 5. (41)
Ce€g

If we now multiply on both sides by A", we conclude our demonstration:

1
a;F/aT — __le- (42)
C€q
For the second equation we will use
1
Hepe — A AV AP N B0 43
€ det(A) att piry s€ ) ( )
and
A(ATT)f =07 (44)
We can proceed with the derivation:
et F p’a =
1 v o - T — _
= ey M AL AN 0, (AT ATy =
1 (03 T
:det(A) A e 576(55 5?; 03 0. Fyy = (45)
1

- AR coTong B = ().
det(A)" °° &

2. Lorentz invariants



a) Using the field strength F),, build two Lorentz invariants quadratic in the
fields E and B.

b) Given a tensor T" build a Lorentz invariant linear in this tensor.
Solution

a) The only two Lorentz scalars quadratic in E and B that we can build from
the field-strength tensor F,,, the Levi-Civita symbol ¢##? and the metric
T are:

i.
FHVFMV = 2F0iF0i + FZJFU = 2(C2B2 — E2)
This quantity is Lorentz invariant since:
FWF" = F W NN FYP = Fog P
ii. 1
F,, B = & FuFpy = 26F [ Fiyy = —4cE - B
The Lorentz transform of this quantity is:
2FIW,F//'W — éT,uz/po]_;1/‘ul/};-|/pg

1
~ det(A)
1

uvpo 1/ /
eMPrF W oy

_ v o _afvyé
~ det(A) NN GNP N5 T F o

= — P F 4F
det(A)- 0
1

= 9F sF. 46
det(A) 7 (46)

Then the quantity F, WF M is invariant under Lorentz transformations
such that det(A) = +1.

b) The only Lorentz invariant linear in 7% is the trace n,,T"":

M T = 0 T = 0 A N T = 1 g TP (47)

. Stress-energy tensor
The electromagnetic stress-energy tensor is given by

1
T = ¢, (F‘;F”a — ZnWFaﬁFaﬁ) : (48)

where F),, is the field-strength tensor and 7, is the Minkowski metric.

a) Compute the trace 7, T"".



b) Verify that

€0 1
T =y = ZE*+ —B? 49
U 5 + 2 (49)
is the electromagnetic energy density.
c) Verify that X
T = =(S);, (50)
c

where S is the Poynting vector. Notice that %T % is also the momentum
density (component 7) in the electromagnetic field.

d) Using Maxwell equations and show that
v 1 . (6774
G“T“ = E]aF . (51)

Rewrite the v = 0 component of this equation using the relations and

. What is the physical meaning of this equation? What about the spatial

components v = 1,2, 37
Solution
a) The trace of the electromagnetic stress-energy tensor is:

v |73 niZe} 1 177 a3
NuwT" =ceo | F'oF" 1, — 177 FogF"n,,

=co (FyaF"* — FopFP)

=0. (52)
b) Let us calculate :
T% = ¢ (Fanoa - }anOFaﬁFQf’) (53)
— eo(F2 + %2(0252 _ ) (54)
= 25+ 2%052 —u, (55)
where we used fy; = —FE; to obtain the first term and the result of ex.2 for

the second. In the last line we used the relation equgc® = 1 to obtain the
usual energy.

c) Now :

TOZ = &0 (Fanza . ZT/OlFaﬁFaB> — 60]_;100(}720:

™

(]FOJF” = €0ch€ijkBk = 800(5 X é)l

(S)" (56)

Q-

where we have used that F}; = ceijkBk.
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d) We have :
1
T = 2o (0, (FLF™) = 310, (Fos™)
1
=gy ((auF/fX)Fua + FlfxauFVa o §auFaBFOcB)
1 ; Vo vo 1 v [o76]
=¢co | ——JaF"* + F1 O, F" — 20" Fo3F ) (57)
CEQ 2

In these manipulations, it is important to specify on which term the deriva-
tive acts. When we write 0, F* F'*, we mean (0,F*,)F* i.e. the derivative
only acts on the first term and not on the second one.

We now want to show that the extra terms that we got are zero. To do so,
we need to express terms of the form 9,F"*. Since we already used the first
Maxwell equation, we should use the second equation 9,e"*F,, = 0. We
will show later that this equation implies the Bianchi identity :

O'FP 4 9°FP 4 9P F = (58)

which allows us to express 0" F*® = —9*F# — 98 F»*_ Using this:
1 1 1
F*0,F — §8VFQ5FC“'B = F"0,F"™ + §aaFﬁVFa5 + 585FWF&5

1 1
= (0"F")Fyo + 5(8“F5V)Fa5 + é(aﬂFW)Fﬁa
=0. (59)

Remember that contracted indices are dummy variables : one can rename
them without changing the value of the expression. You can see that the
second line is the sum of three identical terms with different dummy indices.

Now we can conclude :
1 1
O T = —=jo F" = —j . (60)
c c

Let us write the zeroth component of the equation above:

OuTH0 = 9T + 9T = 19 + 1V . S
1 a0 _ 1 00 4 1; i 15 (61)
“JoF = g0 BT 4 i = =) E
(You can check that T is symmetric, j; = (7); and F©© = —(E),). So:
ou
—~4+V-S=—-i-E 62
il ] (62)

expressing the fact that the variation of electromagnectic energy density (u)
is due to the flux of energy density (Poynting vector) and the dissipation of
energy via Joule effect (right-hand side).

The v = 0 component expresses the variation of the electromagnetic energy.
The spatial components v = 1, 2,3 will express the time variation of elec-
tromagnetic momentum density %%—f in terms of the flux of electromagnetic
momentum (stress components 7%) and an external force term (right-hand
side).



Proof of the Bianchi identity Starting from the Maxwell equation ,
we prove the Bianchi identity . The LHS of Maxwell equation is a four-
vector whereas the one of the Bianchi identity is a rank 3 tensor. In order
to pass from one to the other we can do:

0 = €uap P70 F o (63)
We can use a method similar to exercise 2 to show that
EpapyeP? o 55526§ — 5;525;’ — 5:5552 — 555§5§ + 555@2 + 6555;5; (64)

When the above is contracted with 0,F),, half of the terms simplify (per-
mutations of p and o just give a minus sign because of F),). We get that:

(620505 — 050607 — 040407 — 0n0505 + 050800, + 620505)0, Fpe = 0
= aaFB—y + 8,3F,YOC + &YFaﬁ =0. (65)
Another way to prove the identity is to write Maxwell’s equation e#**? 9, F,, =
0 in components. For p = 0 it is:

01Fy3 — 09 F13 — O3F9 — 01 F59 + 03 F 51 + 03 F19 = 2(01 Fos + 02 F31 + O3F12) =0

This is exactly the Bianchi identity forv=1 a=2, =3 Wecan do
the same with ¢ = 1,2, 3 and see that the expression 0, Fg+0,Fp,+0sF,q is
zero when two indices are the same, because of the antisymmetry of the F),,
tensor. Thus we have proven the Bianchi identity component by components.



