Classical Electrodynamics

Week 10

1. Velocity’s transformations in Special Relativity
In this exercise, you will study how velocities v; and vy transform from one
reference frame R to another R in the context of Special Relativity, in different
scenarios.

a)

b)

d)

The reference frame R; is moving along the z-axis with speed vy in the
reference frame of the laboratory Ry, and a particle is moving with speed
vy along the z-axis in the reference frame R;. What is the velocity of the
particle in the reference frame Ry?

Two particles (with the same mass) are moving in the same direction with
velocities v; and v > vy in the reference frame R,. At what speed should
the reference frame R, move with respect to R; so that the center of mass
condition v} + vy = 0 is obeyed? What is the value of v}? Is your result
compatible with your non-relativistic intuition?

The trajectory of a particle moving at constant velocity makes an angle 6
with the z-axis of a reference frame R,. Compute the corresponding angle
0" in a reference frame Ry moving with speed v along the z-axis of R;.

Consider two particles (with the same mass) moving at the same speed v.
The angle between their trajectories is 6. Find a reference frame in which
vi+ v, =0.

Solution

a)

First method We will write X = (ct, x) the coordinates in Ry and X' =
(ct’,x") the coordinates in Ry. The particle is moving with speed v; along z
in R so by definition:

dz’
"= o
and we want to express the speed of the particle in Ry which is:
dz
= . 2
v=— (2)

We want to express (ct, ) as function of (ct’, 2’) so let’s write the change of
coordinates from R, to Ry. The laboratory frame is moving along the z-axis
with velocity —vg in the frame Ry so:

ct = yo(et' + Box’)
x = (2’ + Boct’)

(3)

where
U
fo="0 and 5= . @
C vy



Then we have

dr  da'+ Bocdt’ v+ cfo
dt Cedt + Bodz' “ + Bovy
. V1 + Vo
R

(5)

Notice that in the non-relativistic limit, this reduces to the usual formula
V= Uy + V1.
Second method Let us call R, the rest frame of the particle. Ry is moving

along the z-axis with speed v; in the frame R; and we want to express its
speed v in the frame R,.

We can express X" = (ct”,z”), the coordinates in R, as function of coor-
dinates of Ry by making two successive boosts, the first of velocity vy to
go from Ry to R4, the second of velocity v; to go from R; to Rs. In ma-
trix notation (keeping only the (ct, z) coordinates), the transformations are
defined as

X' =Awy)x, X'=Aw)X = X"=A(v))A(vy)k. (6)

The transformation can be written as:

A(vl)A(UO):( " —ﬁm)( Y —5070)

—Bim il —Boo Y0
_ (7071(1 + BoB1)  —vom(Bo + 51)) ‘ (7)
—v071(Bo + B1) Yoy (1 + Bobr)
But Lorentz transformation form a group, which means that:
MeoAe) =a0) = (), )
By

which corresponds to doing one boost from the frame Ry to R,

X" = A(v)x. (9)

We need to solve only one component of the matrix equation. For example,
writing A(v)1; using equations (§) and (7)) one has:

v = Y0711+ BoBr). (10)

After inverting and squaring this reduces to:

w2 v
e (=3 (-4

and finally




b) The reference frame R, is boosted with respect to Ry by a velocity v in

the same direction as v; and v,. The velocity of the particles in the reference
frame R, was derived in the previous point:

’ U172 — U

Vip = 7 ooz (13)
c2

We find v through the equation v} + v} = 0, which gives:

=B BB _

1=0618  1=P50
where, as usual, we denote 3; = v;/c the velocities measured in units of c.
This gives the following second order equation:

0, (14)

2 1+ 6152) _
I6] 23 (—51 ey +1=0, (15)
whose solutions are
1
b= (1eamsJa-m0-®). a9

It is not difficult to show that the plus sign leads to an unphysical velocity
B > 1, therefore we choose the minus sign. Equivalently, one can notice that,
when 81 — —f,, B+ — oo while f_ — 0, which is the obvious correct result.
Plugging the solution back in eq. , we get

o= gt ((reameJumma-®). oy

In the non-relativistic limit, these formulae are reduced to the usual ones:

_Ul—i—Uz

;U1 — U2
v = 5

o= (18)

As we know, in the reference frame Ry the positions and the time are given

by

' = ~y(z — vt)
v =y (19)
, VT
r=a(t-3)
(20)
Therefore we have It
x Uy — U
U;E7:1_%a (21)
and Y y
r_ Y Uy
U= -2 — = . 22
AT (e R =
Therefore, the angles # and ¢ are related in the following way:
tan @' = 4y W usind : (23)

. y(ug —v)  y(ucosd —v)



d) Suppose that § < 7 and choose a boost of speed vy along a direction which
lies in the plane of the two trajectories and makes an angle 6/2 with each
one of them. We denote by x this direction and by y the orthogonal one
in the plane, and we use the result of the previous exercises to write the
condition v} + v} = 0 in components:

Bx_ﬁo_'_ﬁx_ﬁo —0 (24)
1 =500 1= B0
8 (1 - Bmﬁo) 8 (1 - ﬁmﬂO)
The second equation is automatically satisfied, as a consequence of our choice
for the direction of the boost. The first equation is satisfied by the choice

Vg = Uy :vcosﬁ. (26)

2. Synchrotron radiation
Consider a non-relativistic electron (v < ¢) in circular movement due to a mag-
netic field B orthogonal to the plane of the movement.

a) Calculate the Poynting vector S = ¢,c?E, x B, using the radiative part
of the electromagnetic fields E., B, produced by the accelerated electron.
You can use the formulas of Liénard-Wiechert in the non-relativistic limit
(v o).

b) Calculate the time average of the Poynting vector

T—o00

1 [T
(S) = lim ~ / dtS(t), (27)
T Jo
and determine the total radiated power.
c) Study the angular distribution of the radiation.

Solution

a) Let us use cartesian coordinates where B points in the z direction: B = By 2.
The electron has a uniform circular trajectory of coordinates:

cos(wst)
ro(t) = 1o | sin(wst) |, (28)
0
where wy is the Larmor frequency:
€BO
.= ) 29
=2 (29)

Remember the Liénard-Wiechert formula giving the electric and magnetic
field produced by a moving point charge:

g (-0 T () < )

E(r) = Ameg R2 (1 — 3 - )
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where all the quantities are evaluated at the retarded time ¢’ = ¢ — %, R is
the distance between the point of observation and the position of the charge

R = |r—r((t')| and n is the unit vector defined as n = Lfg(tl). The magnetic
field is given by:

B-lnxE. (30)

c
Now we take the non-relativistic limit § < 1 of this formula so we can
neglect 3 in front of n and we consider the radiative regime R >> |rg| so the
first term in the parenthesis (the Coulomb term) drops off. We are left with:

E(r) a in X (n X ,8>

- 4meq Re
Far from the point charge, we have R = |r — ro(t')| = |r| = r and n =
L}%(t) ~  ~ 7. Doing the cross-products explicitly, we find the formulas:
axr axr)xr
B, = 1 g, - (@ax7)x7 (31)
drege® 1 4eqc? r

where a is the acceleration of the electron, in this case of a circular motion
it is simply a(t) = —w?ry(t). In principle, the above formula should be
evaluated at the retarded time #' =t — £ but for fixed r this is just a shift
in ¢ so it will not change the following discussion.

The magnetic field is given by:

cos(wst") sin 6 cos ¢

B. = sin(wgt’) | x | sinfsing
drregc3r
0 cos 6

2
ewsTo

sin(wst’) cos 0
— cos(wst') cos § (32)
— sin(wst’ — ) sin @

engro

- 2,3
dmegmzicir

and the electric field is E, = ¢B, x 7.

The Poynting vector is now:

S(t) :6002Ee X Be = 6003(]36 % ’f’) % Be _ 6003 (|Be|2’f’ . (Be . f)Be)
eSBar?

3R 125
=¢0C°| BT = ————+—
B 16m2egmicir?

(cos? 6 + sin®(w,t’ — @) sin® @) 7. (33)

We can understand better the term in brackets by noticing that:
(cos® 0 + sin®(wst’ — @) sin® @) = |a(t') x 7|° = sin® a(t) (34)
where «(t) is the angle between a(t’) and r.

b) The time average of the Poynting vector is:

6 34,2 1 /T
(S) e L ( lim T/ sin? a(t)dt) : (35)
0

16m2egmicir? \T—oc0



and

1" I
lim — / sin® a(t)dt = lim — / (cos? 6 + sin®(wst' — ) sin® §) dt
0 0

T—o0 T—oo

(wst — ) — sin(2(wst — ¢))

1 2
= lim T {t cos? 0 + sin? 6

T—oo 4ws

1
=cos® 0 + 3 sin? 6

so we get
6 4,.2
e’ By

— W(l + cos® O)7. (36)

(S)
Notice that the Poynting vector depend on # and ¢ whereas the time
averaged Poynting vector depend only on €. This is because the radiated
field depend on the precise position of the electron but once we average over
the periodic trajectory we gain a cylindrical symmetry of axis z.

The Poynting vector is the flux density of radiated energy. The total power
is given by the flux of the Poynting vector through a surface enclosing the
system that we choose to be a sphere of radius R.

P(t) = /S S(t) - do

T—T

ol

:ﬂ /1 dcos 0 /27T dp R? (cos® 0 + sin®(w,t’ — ) sin® 6)
16m2egmic3R? |, 0 °
eSBir? 2(wst’ — @) — sin (2(wst’ — ¢))

1
/ dcos 0 27 cos® O + sin’ 6 [_ ;

T 62 i3
16m2eqgmzc® J_4

< Burg /1d 6 (27 cos® 0 +  sin® 0)
= COS 7T COS 7T S1n
16m2egmicd J_4
663617"(2) ' 2
:W /_1 dCOSQ(l"‘COS 0)

6 24,2 2 4.2
_ By ewirg

(37)

6mregmic®  6megc®

We see that the total radiated power does not depend on time: this is because
we can see the integral over the solid angle as an average over all directions
and in this circular uniform movement, averaging over ¢ is equivalent to
time-averaging.

The angular distribution of the radiation is proportional to sin®ca(t) =
(cos? 6 + sin*(w,t’ — ) sin®#) where a(t) is the angle between a(t') and r.
There is no radiation when r is parallel to a(t) and the radiation is maximum
for r perpendicular to a(t).

The time average of the radiation is maximum in a direction always per-
pendicular to a(t), this is the case in the directions # = 0 and 0 = 7, i.e.
in the direction z of the external magnetic field. More generally, we can see
the angular dependence 1 + cos? § of the emitted power in equation (36]).
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Note on coordinate systems In principle the problems can be solved in
any system of coordinates. However, in radiation problems, spherical coor-
dinates (r, 6, ¢) are usually more adapted because we take the large r limit
and we often calculate the flux of the Poynting vector through a sphere.

However in order to take the scalar product and cross product of vectors,
a fixed orthonormal triplet (e,,e,,e,) is more convenient than the triplet
(e,, ep,e,) which depend on 6§ and .

This is why in this exercise we use the parametrization r = r sin 6 cos pe, +
rsin 0 sin pe, + rcosfe, in the calculation before switching back to
r =re,.

3. Classical atom
Consider the classical model of the hydrogen atom:

e The proton, of charge e = 1.60 x 107! C and mass m, = 1.67 x 10727 kg,
is at rest at the center of the atom.

e The electron, of charge —e and mass m, = 9.11 x 1073! kg < m,,, moves
around the proton in a circular orbit of radius ro = 5.29 x 107 m.

a) Calculate the frequency v of this rotation.

b) Calculate the total power radiated by the system. Recall the formula
S(t) = e |al’sin?a(t)

i T
1672 c3 r2

(38)

for the Poynting vector of a non-relativistic electron. Here, «(t) is the an-
gle between the acceleration vector a of the electron and the observation
direction e,.

c) Estimate the life time of the classical atom. Why are you still alive?

Solution

a) We are considering the electron as moving in a circular orbit around a fixed
proton. Newton’s law gives us immediately:

62

(39)

2
MW ryg = —— ,
dmegry

from which we can deduce the frequency:

vl s k108 (40)
2 16m3egmery ' '

b) We have already computed the Poynting vector for an electron in a circular

motion. It is:
S(t) = e |a|’sin?a(t)

— -
1672eqc3 r2

(41)
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Notice that the velocity of the electron is v = wrg = 2.2 x 10°m-s™! < ¢ so
our non-relativistic approximation is valid.

We can now compute the radiated power by integrating the flux of the
Poynting vector over a sphere of radius R (R > r¢):

2 2 4
e Tow

P=[ RS() edn— —C oY
/SR (t)-e 16720 R?
_efrgwt
167203

/ R?sin? a(t)dQ
SR
1 s
/ dcos 9/ dp(cos® 6 + sin? § sin?(wt’ — ))
-1 -7

e2r2wt [t
:Wogo& /_1 dcos 02w cos? 0 + (1 — cos> 0)]
2,2 4 6
:6 Tow _ 5 4 (42)
6meocd  96m3e3c3mrd

We find the same result as in exercise 1 equation : the power radiated
in a certain diretion depends on time but the total energy does not. This is
due to the circular unifor movement of the electron.

An electron in a circular motion radiates energy so we expect the electron
to spiral down towards the proton to compensate for the energy lost in
radiation. While the problem is very complicated, we can treat it with the
following approximations:

e At each time t we can consider the electron to be in a circular motion
around the proton of radius r(t), i.e. the electron falls slowly towards
the proton.

e At each time ¢t we can approximate the radiated power to be given by
the result of question b).

At each time t the energy of the system is:

E(t) = fr(t)%u(tf " dmeor(t) - Smegr(t) (43)

Then we can write:

dr dr dE <dE>_1 (—P) _87rsor2 el

At dE dt — \dr e?  96m3edcdm2rt
el o
—_——— = — 44
1272e2c3m2r? 72 (44)
This is a separable differential equation.
—r2dr =odt
r31°
——| =ar
31,
3 Ar2e23m 23
7=20 T 0”0, (45)
3 et

Numerically, we have 7 = 1.6 x 107! s so it seems that the hydrogen atom
is highly unstable.



The stability of atoms and thus of the world we know cannot be explained
by classical electrodynamics. One needs to treat the problem in quantum
mechanics. In this framework, one can show that the hydrogen atom has
discrete energy levels with a lowest energy level at £ = —13.6 eV which
explains why the atom is stable.

Physically, our result does not make sense and should only be taken as
an order of magnitude because our approximations break down well before
the radius of the trajectory goes to zero.

e First the non-relativistic assumption becomes wrong as v ~ c¢. In our
circular trajectory appriximation, this is when

e2 2

e
v=wr=y|———rc = r~ ———~3x10"m (46)
dmegmer 4megmec

e Second, our assumption that at any moment the trajectory can be con-
sidered circular. This is true if the relative rate of change of the radius

14v is small compared to the frequency v (or w). This breaks down when
1dr et e?
_ = ~y = -
rdt| 12n%eicAm2rd 16m3egmerd
o2
= ~1x107"m. (47

"R =
VI9megm,c?

In any case there is still a large range of values r = 1071 —10~!* m where our
approximations are valid so it does not change our conclusion: the hydrogen
atom seen classically is not stable because of energy loss by radiation.



