
Classical Electrodynamics

Week 10

1. Velocity’s transformations in Special Relativity
In this exercise, you will study how velocities v1 and v2 transform from one
reference frame R1 to another R2 in the context of Special Relativity, in different
scenarios.

a) The reference frame R1 is moving along the x-axis with speed v0 in the
reference frame of the laboratory R0, and a particle is moving with speed
v1 along the x-axis in the reference frame R1. What is the velocity of the
particle in the reference frame R0?

b) Two particles (with the same mass) are moving in the same direction with
velocities v1 and v2 > v1 in the reference frame R1. At what speed should
the reference frame R2 move with respect to R1 so that the center of mass
condition v′1 + v′2 = 0 is obeyed? What is the value of v′1? Is your result
compatible with your non-relativistic intuition?

c) The trajectory of a particle moving at constant velocity makes an angle θ
with the x-axis of a reference frame R1. Compute the corresponding angle
θ′ in a reference frame R2 moving with speed v along the x-axis of R1.

d) Consider two particles (with the same mass) moving at the same speed v.
The angle between their trajectories is θ. Find a reference frame in which
v′
1 + v′

2 = 0.

Solution

a) First method We will write x̃ = (ct, x) the coordinates in R0 and x̃′ =
(ct′, x′) the coordinates in R1. The particle is moving with speed v1 along x
in R1 so by definition:

v1 =
dx′

dt′
(1)

and we want to express the speed of the particle in R0 which is:

v =
dx

dt
. (2)

We want to express (ct, x) as function of (ct′, x′) so let’s write the change of
coordinates from R1 to R0. The laboratory frame is moving along the x-axis
with velocity −v0 in the frame R1 so:{

ct = γ0(ct
′ + β0x

′)

x = γ0(x
′ + β0ct

′)
(3)

where

β0 =
v0
c

and γ0 =
1√

1− v20
c2

. (4)
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Then we have

dx

dt
=c

dx′ + β0cdt
′

cdt′ + β0dx′ = c
v1 + cβ0

c+ β0v1

=
v1 + v0
1 + v1v0

c2

. (5)

Notice that in the non-relativistic limit, this reduces to the usual formula
v = v0 + v1.

Second method Let us call R2 the rest frame of the particle. R2 is moving
along the x-axis with speed v1 in the frame R1 and we want to express its
speed v in the frame R0.

We can express x̃′′ = (ct′′, x′′), the coordinates in R2, as function of coor-
dinates of R0 by making two successive boosts, the first of velocity v0 to
go from R0 to R1, the second of velocity v1 to go from R1 to R2. In ma-
trix notation (keeping only the (ct, x) coordinates), the transformations are
defined as

x̃′ = Λ(v0)x̃, x̃′′ = Λ(v1)x̃
′ ⇒ x̃′′ = Λ(v1)Λ(v0)x̃ . (6)

The transformation can be written as:

Λ(v1)Λ(v0) =

(
γ1 −β1γ1

−β1γ1 γ1

)(
γ0 −β0γ0

−β0γ0 γ0

)
=

(
γ0γ1(1 + β0β1) −γ0γ1(β0 + β1)
−γ0γ1(β0 + β1) γ0γ1(1 + β0β1)

)
. (7)

But Lorentz transformation form a group, which means that:

Λ(v1)Λ(v0) = Λ(v) =

(
γ −βγ

−βγ γ

)
, (8)

which corresponds to doing one boost from the frame R0 to R2

x̃′′ = Λ(v)x̃. (9)

We need to solve only one component of the matrix equation. For example,
writing Λ(v)11 using equations (8) and (7) one has:

γ = γ0γ1(1 + β0β1). (10)

After inverting and squaring this reduces to:

1− v2

c2
=

(
1− v20

c2

)(
1− v21

c2

)
(
1 + v0v1

c2

)2 , (11)

and finally

v =
v1 + v0
1 + v1v0

c2

. (12)
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b) The reference frame R2 is boosted with respect to R∞ by a velocity v in
the same direction as v1 and v2. The velocity of the particles in the reference
frame R2 was derived in the previous point:

v′1,2 =
v1,2 − v

1− vv1,2
c2

. (13)

We find v through the equation v′1 + v′2 = 0, which gives:

β1 − β

1− β1β
+

β2 − β

1− β2β
= 0 , (14)

where, as usual, we denote βi = vi/c the velocities measured in units of c.
This gives the following second order equation:

β2 − 2β

(
1 + β1β2

β1 + β2

)
+ 1 = 0, (15)

whose solutions are

β± =
1

β1 + β2

(
1 + β1β2 ±

√
(1− β2

1)(1− β2
2)

)
. (16)

It is not difficult to show that the plus sign leads to an unphysical velocity
β > 1, therefore we choose the minus sign. Equivalently, one can notice that,
when β1 → −β2, β+ → ∞ while β− → 0, which is the obvious correct result.
Plugging the solution back in eq. (13), we get

β′
1 =

1

β2 − β1

(
−1 + β1β2 +

√
(1− β2

1)(1− β2
2)

)
. (17)

In the non-relativistic limit, these formulae are reduced to the usual ones:

v =
v1 + v2

2
, v′1 =

v1 − v2
2

. (18)

c) As we know, in the reference frame R2 the positions and the time are given
by

x′ = γ(x− vt)

y′ = y (19)

t′ = γ
(
t− vx

c2

)
(20)

Therefore we have

u′
x ≡ dx′

dt′
=

ux − v

1− vux

c2

, (21)

and

u′
y ≡

dy′

dt′
=

dy

γ
(
dt− vdx

c2

) =
uy

γ
(
1− vux

c2

) . (22)

Therefore, the angles θ and θ′ are related in the following way:

tan θ′ ≡
u′
y

u′
x

=
uy

γ(ux − v)
=

u sin θ

γ(u cos θ − v)
. (23)
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d) Suppose that θ < π and choose a boost of speed v0 along a direction which
lies in the plane of the two trajectories and makes an angle θ/2 with each
one of them. We denote by x this direction and by y the orthogonal one
in the plane, and we use the result of the previous exercises to write the
condition v′

1 + v′
2 = 0 in components:

βx − β0

1− βxβ0

+
βx − β0

1− βxβ0

= 0 (24)

βy

γ (1− βxβ0)
− βy

γ (1− βxβ0)
= 0. (25)

The second equation is automatically satisfied, as a consequence of our choice
for the direction of the boost. The first equation is satisfied by the choice

v0 = vx = v cos
θ

2
. (26)

2. Synchrotron radiation
Consider a non-relativistic electron (v ≪ c) in circular movement due to a mag-
netic field B orthogonal to the plane of the movement.

a) Calculate the Poynting vector S = ϵ0c
2Ee × Be, using the radiative part

of the electromagnetic fields Ee, Be produced by the accelerated electron.
You can use the formulas of Liénard-Wiechert in the non-relativistic limit
(v ≪ c).

b) Calculate the time average of the Poynting vector

⟨S⟩ = lim
T→∞

1

T

∫ T

0

dtS(t) , (27)

and determine the total radiated power.

c) Study the angular distribution of the radiation.

Solution

a) Let us use cartesian coordinates where B points in the z direction: B = B0ẑ.
The electron has a uniform circular trajectory of coordinates:

r0(t) = r0

cos(ωst)
sin(ωst)

0

 , (28)

where ωs is the Larmor frequency:

ωs =
eB0

me

. (29)

Remember the Liénard-Wiechert formula giving the electric and magnetic
field produced by a moving point charge:

E(r) =
q

4πϵ0

1

R2

1

(1− β · n)3

(
(n− β)(1− β2) +

R

c
n×

(
(n− β)× β̇

))
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where all the quantities are evaluated at the retarded time t′ = t− R
c
, R is

the distance between the point of observation and the position of the charge
R = |r−r0(t

′)| and n is the unit vector defined as n = r−r0(t′)
R

. The magnetic
field is given by:

B =
1

c
n× E. (30)

Now we take the non-relativistic limit β ≪ 1 of this formula so we can
neglect β in front of n and we consider the radiative regime R ≫ |r0| so the
first term in the parenthesis (the Coulomb term) drops off. We are left with:

E(r) =
q

4πϵ0

1

Rc
n×

(
n× β̇

)
Far from the point charge, we have R = |r − r0(t

′)| ≈ |r| = r and n =
r−r0(t′)

R
≈ r

R
≈ r̂. Doing the cross-products explicitly, we find the formulas:

Be =
q

4πϵ0c3
a× r̂

r
Ee =

q

4πϵ0c2
(a× r̂)× r̂

r
, (31)

where a is the acceleration of the electron, in this case of a circular motion
it is simply a(t) = −ω2

sr0(t). In principle, the above formula should be
evaluated at the retarded time t′ = t − r

c
but for fixed r this is just a shift

in t so it will not change the following discussion.

The magnetic field is given by:

Be =
eω2

sr0
4πϵ0c3r

cos(ωst
′)

sin(ωst
′)

0

×

sin θ cosφ
sin θ sinφ

cos θ


=

e3B2
0r0

4πϵ0m2
ec

3r

 sin(ωst
′) cos θ

− cos(ωst
′) cos θ

− sin(ωst
′ − φ) sin θ

 (32)

and the electric field is Ee = cBe × r̂.

The Poynting vector is now:

S(t) =ϵ0c
2Ee ×Be = ϵ0c

3(Be × r̂)×Be = ϵ0c
3
(
|Be|2r̂ − (Be · r̂)Be

)
=ϵ0c

3|Be|2r̂ =
e6B4

0r
2
0

16π2ϵ0m4
ec

3r2
(
cos2 θ + sin2(ωst

′ − φ) sin2 θ
)
r̂. (33)

We can understand better the term in brackets by noticing that:(
cos2 θ + sin2(ωst

′ − φ) sin2 θ
)
= |â(t′)× r̂|2 = sin2 α(t) (34)

where α(t) is the angle between a(t′) and r.

b) The time average of the Poynting vector is:

⟨S⟩ = e6B4
0r

2
0

16π2ϵ0m4
ec

3r2
r̂

(
lim
T→∞

1

T

∫ T

0

sin2 α(t)dt

)
, (35)
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and

lim
T→∞

1

T

∫ T

0

sin2 α(t)dt = lim
T→∞

1

T

∫ T

0

(
cos2 θ + sin2(ωst

′ − φ) sin2 θ
)
dt

= lim
T→∞

1

T

[
t cos2 θ + sin2 θ

2(ωst− φ)− sin(2(ωst− φ))

4ωs

]T− r
c

− r
c

=cos2 θ +
1

2
sin2 θ

so we get

⟨S⟩ = e6B4
0r

2
0

32π2ϵ0m4
ec

3r2
(1 + cos2 θ)r̂. (36)

Notice that the Poynting vector (33) depend on θ and φ whereas the time
averaged Poynting vector (36) depend only on θ. This is because the radiated
field depend on the precise position of the electron but once we average over
the periodic trajectory we gain a cylindrical symmetry of axis z.

The Poynting vector is the flux density of radiated energy. The total power
is given by the flux of the Poynting vector through a surface enclosing the
system that we choose to be a sphere of radius R.

P (t) =

∫
S

S(t) · dσ

=
e6B4

0r
2
0

16π2ϵ0m4
ec

3R2

∫ 1

−1

dcos θ

∫ 2π

0

dφR2
(
cos2 θ + sin2(ωst

′ − φ) sin2 θ
)

=
e6B4

0r
2
0

16π2ϵ0m4
ec

3

∫ 1

−1

dcos θ 2π cos2 θ + sin2 θ

[
−2(ωst

′ − φ)− sin (2(ωst
′ − φ))

4

]2π
0

=
e6B4

0r
2
0

16π2ϵ0m4
ec

3

∫ 1

−1

dcos θ
(
2π cos2 θ + π sin2 θ

)
=

e6B4
0r

2
0

16πϵ0m4
ec

3

∫ 1

−1

dcos θ (1 + cos2 θ)

=
e6B4

0r
2
0

6πϵ0m4
ec

3
=

e2ω4
sr

2
0

6πϵ0c3
. (37)

We see that the total radiated power does not depend on time: this is because
we can see the integral over the solid angle as an average over all directions
and in this circular uniform movement, averaging over φ is equivalent to
time-averaging.

c) The angular distribution of the radiation is proportional to sin2 α(t) =(
cos2 θ + sin2(ωst

′ − φ) sin2 θ
)
where α(t) is the angle between a(t′) and r.

There is no radiation when r is parallel to a(t) and the radiation is maximum
for r perpendicular to a(t).

The time average of the radiation is maximum in a direction always per-
pendicular to a(t), this is the case in the directions θ = 0 and θ = π, i.e.
in the direction z of the external magnetic field. More generally, we can see
the angular dependence 1 + cos2 θ of the emitted power in equation (36).
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Note on coordinate systems In principle the problems can be solved in
any system of coordinates. However, in radiation problems, spherical coor-
dinates (r, θ, φ) are usually more adapted because we take the large r limit
and we often calculate the flux of the Poynting vector through a sphere.

However in order to take the scalar product and cross product of vectors,
a fixed orthonormal triplet (ex, ey, ez) is more convenient than the triplet
(er, eθ, eφ) which depend on θ and φ.

This is why in this exercise we use the parametrization r = r sin θ cosφex +
r sin θ sinφey + r cos θez in the calculation (32) before switching back to
r = rer.

3. Classical atom
Consider the classical model of the hydrogen atom:

• The proton, of charge e = 1.60× 10−19 C and mass mp = 1.67× 10−27 kg,
is at rest at the center of the atom.

• The electron, of charge −e and mass me = 9.11 × 10−31 kg ≪ mp, moves
around the proton in a circular orbit of radius r0 = 5.29× 10−11 m.

a) Calculate the frequency ν of this rotation.

b) Calculate the total power radiated by the system. Recall the formula

S(t) =
e2

16π2ε0c3
|a|2 sin2 α(t)

r2
er (38)

for the Poynting vector of a non-relativistic electron. Here, α(t) is the an-
gle between the acceleration vector a of the electron and the observation
direction er.

c) Estimate the life time of the classical atom. Why are you still alive?

Solution

a) We are considering the electron as moving in a circular orbit around a fixed
proton. Newton’s law gives us immediately:

meω
2r0 =

e2

4πε0r20
, (39)

from which we can deduce the frequency:

ν =
ω

2π
=

√
e2

16π3ϵ0mer30
= 6.57× 1015Hz . (40)

b) We have already computed the Poynting vector for an electron in a circular
motion. It is:

S(t) =
e2

16π2ε0c3
|a|2 sin2 α(t)

r2
er . (41)
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Notice that the velocity of the electron is v = ωr0 = 2.2× 106m · s−1 ≪ c so
our non-relativistic approximation is valid.

We can now compute the radiated power by integrating the flux of the
Poynting vector over a sphere of radius R (R ≫ r0):

P =

∫
SR

R2S(t) · erdΩ =
e2

16π2ε0c3
r20ω

4

R2

∫
SR

R2 sin2 α(t)dΩ

=
e2r20ω

4

16π2ε0c3

∫ 1

−1

dcos θ

∫ π

−π

dφ(cos2 θ + sin2 θ sin2(ωt′ − φ))

=
e2r20ω

4

16π2ε0c3

∫ 1

−1

dcos θ[2π cos2 θ + π(1− cos2 θ)]

=
e2r20ω

4

6πε0c3
=

e6

96π3ε30c
3m2

er
4
0

(42)

We find the same result as in exercise 1 equation (37): the power radiated
in a certain diretion depends on time but the total energy does not. This is
due to the circular unifor movement of the electron.

c) An electron in a circular motion radiates energy so we expect the electron
to spiral down towards the proton to compensate for the energy lost in
radiation. While the problem is very complicated, we can treat it with the
following approximations:

• At each time t we can consider the electron to be in a circular motion
around the proton of radius r(t), i.e. the electron falls slowly towards
the proton.

• At each time t we can approximate the radiated power to be given by
the result of question b).

At each time t the energy of the system is:

E(t) =
me

2
r(t)2ω(t)2 − e2

4πε0r(t)
= − e2

8πε0r(t)
. (43)

Then we can write:

dr

dt
=

dr

dE

dE

dt
=

(
dE

dr

)−1

(−P ) = −8πε0r
2

e2
e6

96π3ε30c
3m2

er
4

=− e4

12π2ε20c
3m2

er
2
≡ − α

r2
. (44)

This is a separable differential equation.

−r2dr =αdt[
−r3

3

]0
r0

=ατ

τ =
r30
3α

=
4π2ε20c

3m2
er

3
0

e4
. (45)

Numerically, we have τ = 1.6× 10−11 s so it seems that the hydrogen atom
is highly unstable.
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The stability of atoms and thus of the world we know cannot be explained
by classical electrodynamics. One needs to treat the problem in quantum
mechanics. In this framework, one can show that the hydrogen atom has
discrete energy levels with a lowest energy level at E = −13.6 eV which
explains why the atom is stable.

Physically, our result (45) does not make sense and should only be taken as
an order of magnitude because our approximations break down well before
the radius of the trajectory goes to zero.

• First the non-relativistic assumption becomes wrong as v ≈ c. In our
circular trajectory appriximation, this is when

v = ωr =

√
e2

4πϵ0mer
≈ c =⇒ r ≈ e2

4πϵ0mec2
≈ 3× 10−15 m. (46)

• Second, our assumption that at any moment the trajectory can be con-
sidered circular. This is true if the relative rate of change of the radius
1
r
dr
dt

is small compared to the frequency ν (or ω). This breaks down when∣∣∣∣1r drdt
∣∣∣∣ = e4

12π2ε20c
3m2

er
3
≈ ν =

√
e2

16π3ϵ0mer30

=⇒ r ≈ e2

3
√
9πϵ0mec2

≈ 1× 10−14 m. (47)

In any case there is still a large range of values r = 10−11−10−14 m where our
approximations are valid so it does not change our conclusion: the hydrogen
atom seen classically is not stable because of energy loss by radiation.
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