Classical Electrodynamics

Week 8

- **1.** Consider the region z > 0 above an infinite conducting plane at z = 0.
 - a) There is a charge q at the position $\mathbf{x}_1 = h \, \mathbf{e}_z$ and a charge -q at the position $\mathbf{x}_2 = \mathbf{x}_1 a \, \mathbf{e}_x$. Find the electrostatic potential Φ in the region z > 0.
 - **b)** There is a dipole $\mathbf{d} = d \mathbf{e}_x$ at a distance h from the conducting plane.
 - i. Determine the electrostatic potential Φ in the region z > 0. **Hint**: Use the previous question in the limit $a \to 0$ with d = aq fixed.
 - ii. Show that at large distances the potential is dominated by a quadrupole and determine the corresponding quadrupole tensor Q_{ij} .
- 2. Antenna

A simple model of an antenna is given by the following current density:

$$\mathbf{J}(\mathbf{x},t) = I\cos(\omega t)\Theta(a+z)\Theta(a-z)\delta(x)\delta(y)\mathbf{e}_z. \tag{1}$$

- a) Use the continuity equation to calculate the charge density $\rho(\mathbf{x}, t)$, assuming the initial condition $\rho(\mathbf{x}, 0) = 0$. Verify that the total charge is conserved.
- **b)** Calculate the total power radiated by the system. Recall that for this purpose it is sufficient to calculate the vector potential at very large distances $|\mathbf{x}| \gg \max(a, \lambda)$, where $\lambda = c/\omega$ is the wavelength of the emitted radiation. This is given by

$$\mathbf{A}(\mathbf{x},t) \approx \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{x}|} \int d^3 x' \, \mathbf{J} \left(\mathbf{x}', t - \frac{1}{c} |\mathbf{x}| + \frac{1}{c} \mathbf{n} \cdot \mathbf{x}' \right) \,, \qquad \mathbf{n} = \frac{\mathbf{x}}{|\mathbf{x}|} \,. \tag{2}$$

Simplify your final result assuming that the source is slow: $\lambda \gg a$.

- **3.** Consider the vacuum region z > 0. At the surface z = 0, the electrostatic potential is given, $\Phi(x, y, 0) = \phi_0(x, y)$. Assume that $\phi_0(x, y)$ goes to zero rapidly when $r = \sqrt{x^2 + y^2} \to \infty$, or equivalently, that it has compact support.
 - a) Find an integral expression for the potential Φ in terms of the boundary data ϕ_0 .

Hint: Use an appropriate Green function as discussed in previous exercises.

b) Study the potential Φ for large values of $R = \sqrt{x^2 + y^2 + z^2}$. Show that the leading term in the large R expansion is the potential of a dipole. Write the dipole \mathbf{d} in terms of ϕ_0 .

1

- c) Assuming that the dipole $\mathbf{d} = 0$, show that the leading term has the form of a quadrupole. Determine the quadrupole in terms of ϕ_0 .
- d) How do the these results change if we consider the potential ϕ in the region z>0 and y>0, with boundary values ϕ_0 given on the two semi-planes $(z=0 \land y>0)$ and $y=0 \land z>0)$ that bound the region. What is the leading multipole (in general) in this case?

- **4.** We propose here a few questions to help you develop intuition about electrostatic multipoles.
 - a) Find a charge distribution $\rho_1(\mathbf{x})$ which has monopole q but dipole $\mathbf{d} = \mathbf{0}$. You can take it as simple as possible, but what follows works for any such charge distribution.
 - b) Consider the following charge distribution: $\rho_2(\mathbf{x}) = -\rho_1(\mathbf{x}) + \rho_1(\mathbf{x} a\mathbf{e}_x)$. How does it look like? Compute its monopole and dipole. Is the result surprising?
 - c) Now consider the charge distribution $\rho_3(\mathbf{x}) = \rho_1(\mathbf{x}) + \rho_2(\mathbf{x})$. How does it look like? Compute its monopole and dipole. Is the result surprising?
 - d) Under what conditions are the monopole, the dipole or the quadrupole of a charge distribution invariant under translation of the charge density? Can you generalize the result?
 - e) Find a charge distribution which has zero monopole, zero dipole, and with only non-zero quadrupole components $Q_{12}=Q_{21}\neq 0$. Do the same with only $Q_{23}=Q_{32}\neq 0$, and also with only $Q_{13}=Q_{31}\neq 0$. Can you have only $Q_{11}\neq 0$? Find one with only $Q_{11}=-Q_{22}\neq 0$, one with only $Q_{22}=-Q_{33}\neq 0$ and finally one with only $Q_{11}=-Q_{33}\neq 0$.
 - f) If not already done, complete exercise 2. of last week.