
Classical Electrodynamics

Week 7

1. Calculate the leading behaviour of the electrostatic potential Φ(x) at large dis-
tances |x| ≫ a for the following charge distributions:

a) One charge q at the point x0 = a ex and one charge q at the point −x0.

b) One charge q at the point x0 = a ex and one charge −q at the point −x0.

c) Two charges q at the points x1 = a ex + a ey and x2 = a ex − a ey and two
charges −q at the points −x1 and −x2.

d) Two charges q at the points x1 = a ex + a ey and −x1 and two charges −q
at the points x2 = a ex − a ey and −x2.

e) Four charges q and four charges −q placed at the eight vertices of a cube of
side a, such that any two charges at distance a have opposite sign.

f) The following linear charge density along a ring of radius a:

ρ(r, φ, z) =
q

2πa
cos (nφ) δ(z)δ(r − a) , (1)

where n = 0, 1, 2, . . . and we used cylindrical coordinates (r, φ, z).

Hint: The following identity may be useful, at small x we have

1√
1 + x2 − 2xy

=
l∑

k=0

Pk (y)x
k +O

(
xl+1

)
(2)

=
l∑

k=0

[
(2k − 1)!!

k!
yk +O(yk−2)

]
xk +O

(
xl+1

)
,

where Pk(y) is the Legendre polynomial of degree k and we wrote explicitly
the leading term in the last line.

2. Consider a particle of charge q moving with constant velocity v = (0, 0, v) along
the z-axis. In a previous exercise, we have found that the retarded potentials are
given by

Φ(t,x) =
qγ

4πε0

1√
x2 + y2 + γ2(z − vt)2

, A(t,x) =
v

c2
Φ(t,x) , (3)

where γ = 1√
1−v2/c2

is the Lorentz factor.

a) Starting from the potentials, determine the electromagnetic fields E and B.
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b) Write the electromagnetic fields in terms of the norm of the vectorRt (vector
between the charge q and the observer at time t) and the angle θ = ∢(Rt,v).
Study the fields in the non-relativistic (v ≪ c) and ultra-relativistic (v ≈ c)
limits.

3. A linearly polarised electromagnetic wave travels along the z-axis. It propagates
in vacuum for z < 0 until it reaches a conductor, with conductivity σ, that fills
the space for z > 0. The electric field of the incident wave is given by

Ein = Re
[
E0e

i(kz−ωt)
]
ex (4)

where k = ω/c.

a) Show that the local Ohm’s law J = σE and Maxwell equations imply that

1

c2
∂2B

∂t2
−∇2B+ µ0σ

∂B

∂t
= 0 , (5)

inside the conductor. For simplicity, we have assumed that the conductor
has the electric permittivity and magnetic permeability of the vacuum.

b) Use the last equation to derive the form of the magnetic field inside the
conductor,

B = Re
[
Aei(k

′z−ωt)
]
ey , z > 0 , (6)

where A is an integration constant and k′ =
√

k2 + iωµ0σ.

c) What is the form of the electric field inside the conductor? How deep inside
the conductor does the wave penetrate?

d) The electric field outside the conductor (z < 0) is a superposition of the
incident and the reflected wave,

E = Re
[
E0e

ikz−iωt + E1e
−ikz−iωt

]
ex , z < 0 . (7)

Determine E1 and A imposing continuity of the electric field and its first
derivative at the interface z = 0. Notice that these follow from Maxwell
equations in the absence of surface charge density and surface current. Show
that the fraction of incident power reflected by the conductor is given by∣∣∣∣k′ − k

k′ + k

∣∣∣∣2 . (8)

e) Verify that the rest of the incident power is dissipated in the conductor.
Recall that the power dissipated per unit volume is given by J · E.

f) Discuss your previous results in the high and low frequency limits (ω ≫
σ/ϵ0 and ω ≪ σ/ϵ0). What is the relevant regime for light incident over
aluminium?
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