
Classical Electrodynamics

Week 5

1. Consider the interior V of a spherical shell with radius R centred at point x0.
There is no electric charge inside the shell and there is an arbitrary profile of
electrostatic potential on the shell Φ(x)

∣∣
|x|=R = V (θ, ϕ).

a) Using the Green’s identity for two scalar Φ and Ψ:∫
V
d3r (Φ∇2Ψ−Ψ∇2Φ) =

∮
∂V

dS · (Φ∇Ψ−Ψ∇Φ), (1)

show that the potential at center x0 is the average of potential V (θ, ϕ) over
the shell:

Φ(x0) =

∫
∂V
V (θ, ϕ) dΩ , (2)

with dΩ = 1
4π

sin θ dθ dϕ.

Hint 1: Introduce a function Ψ that simplifies the l.h.s of equation (1) to
the potential at center i.e. Φ(x0).

Hint 2: Use
∮
∂V dS · ∇Φ(x) = 0 to simplify the r.h.s of equation (1).

b) Use this result to argue that maxima or minima of a solution to Laplace
equation can only be at the boundary of the domain.

2. Consider a sphere of radius R with a fixed potential Φ(R, θ, ϕ) = V (θ, ϕ) on its
surface.

a) Find an integral expression for the potential Φ(r, θ, ϕ) in all space outside
the sphere. Hint: Start by finding the appropriate Green function G(r, r′)
for this problem. Recall the general solution of Poisson equation

Φ(r) =
1

ε0

∫
V

ρ(r′)G(r′, r)d3r′+

∫
∂V

[G(r′, r)∇r′Φ(r′)− Φ(r′)∇r′G(r′, r)]·dσ′ .

b) What is the leading behaviour of the potential Φ(r, θ, ϕ) far away from the
sphere, i.e. for r � R?

c) Consider now the following experiment. We take a metallic ball, cut it in
half and glue it back together using an insulating glue. Then we establish a
potential difference V0 between the two half-balls (keeping the total charge
of the ball equal to zero). Find an integral expression for the potential Φ
outside the ball. How does Φ behave far away from the ball?

d) Estimate the total charge accumulated in each half-ball assuming that the
thickness d of the insulating glue is much smaller than the radius of the ball.
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e) Assume that the interior of the sphere is empty and the potential on the
surface is given by Φ(R, θ, ϕ) = V (θ, ϕ). Find an integral expression for the
potential Φ(r, θ, ϕ) inside the sphere. What is the potential at the center of
the sphere?

3. Consider the general expressions for the potentials Φ and A using the retarded
Green function,

Φ(x, t) =
1

4πε0

∫
d3x′

ρ
(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

, (3)

A(x, t) =
µ0

4π

∫
d3x′

J
(
x′, t′ = t− 1

c
|x− x′|

)
|x− x′|

. (4)

Show that the Lorenz gauge condition is implied by the continuity equation, i.e.
charge conservation.

Hint: Recall that the continuity equation reads

∂ρ

∂t
(x, t) +∇x · J(x, t) = 0 , (5)

and the ∇x should be understood as partial derivative on the spatial component.
You will also need the property

(∇x′ +∇x)f(x− x′) = 0 . (6)

4. The Faraday disk is a simple electrical generator. The basic ingredients are de-
picted in figure 1. There is a metallic annulus with internal radius r1, external
radius r2 and width h. The annulus is placed in a region with a constant mag-
netic field perpendicular to the plane of the annulus. The metal of the annulus
has electrical conductivity σ.

a) When the annulus is rotating with angular velocity ω and the external circuit
is open, what is the electrostatic potential difference V0 between the internal
and the external circumference of the annulus?

b) This potential difference can be used as an electrical generator if we connect
the internal and the external circumference of the annulus to a circuit as
shown in figure 1 (assume that the connection to the external circuit does
not break the cylindrical symmetry of the system). What is the potential
difference V (between r1 and r2) when there is a current I flowing through
the circuit?
Hint 1: Recall the microscopic definition of the conductivity σ,

J = σ (E + v ×B) . (7)

Hint 2: It might be useful to determine the resistance of the annulus.
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c) What is the maximum output of electrical power of this generator? What is
the efficiency of the generator when working at the maximal output power?

d) Assume that the metallic annulus is mechanically connected to the wheels
of a train so that they rotate with the same angular velocity ω. Assume also
that the external electrical circuit acts as an effective resistance R. In this
case, we can use the annulus as a regenerative braking system of the train.
Start by showing that the total kinetic energy of the train can be written as
E = 1

2
Ieffω

2 and estimate the effective moment of inertia Ieff . Then, using
conservation of energy, find an equation for the time evolution of the angular
velocity ω when the brakes are on, i.e. the circuit is closed. How long does
it take to reduce the velocity of the train by a factor of 2?

e) Challenge: Suppose the annulus is made of 300 kg of iron, the train weighs
400 ton and it is travelling at 200 km/h. If we brake the train by short-
circuiting the internal and the external circumference of the annulus, will
the annulus melt? Is the braking event safe for the passengers?
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Figure 1: Metallic annulus rotating in a constant magnetic field B.

3


