Classical Electrodynamics

Week 11

Note: Exercise **0.** marked by (*) is optional and is similar to exercise **1.** of week 2. We suggest that you start with exercise **1.** We left it there as it provide a good exercise to practice the tensor notation and the formula can be useful for the rest of the problem sheet.

We use the metric $\eta_{\mu\nu} = \text{diag}(-,+,+,+)$.

0. (*) Lévi-Cività symbol

The Lévi-Cività symbol is defined by

$$\varepsilon^{\mu\nu\rho\sigma} = \begin{cases} 1 & \text{if } (\mu\nu\rho\sigma) \text{ is an even permutation of (0123)} \\ -1 & \text{if } (\mu\nu\rho\sigma) \text{ is an odd permutation of (0123)} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

a) Defining the Lorentz transformation of $\varepsilon^{\mu\nu\rho\sigma}$ by

$$\varepsilon'^{\mu\nu\rho\sigma} = \Lambda^{\mu}_{\ \alpha} \Lambda^{\nu}_{\ \beta} \Lambda^{\rho}_{\ \gamma} \Lambda^{\sigma}_{\ \delta} \varepsilon^{\alpha\beta\gamma\delta} \,, \tag{2}$$

show that $\varepsilon'^{\mu\nu\rho\sigma} = \det(\Lambda)\varepsilon^{\mu\nu\rho\sigma}$ and that $\det(\Lambda) = \pm 1$.

b) Verify the following identities

$$\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\mu\nu\rho\sigma} = -4! \tag{3}$$

$$\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\alpha\nu\rho\sigma} = -6\,\delta^{\mu}_{\alpha} \tag{4}$$

$$\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\alpha\beta\rho\sigma} = -2\left(\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta} - \delta^{\mu}_{\beta}\delta^{\nu}_{\alpha}\right) \tag{5}$$

1. Maxwell equations

Using the definition of the field strength $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, where $A^{\mu} = (\Phi, c\mathbf{A})^{T}$, verify that the equations

$$\partial_{\mu}F^{\mu\nu} = -\frac{1}{c\varepsilon_0}j^{\nu} \tag{6}$$

$$\partial_{\mu} \varepsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} = 0 \tag{7}$$

describe Maxwell equations. Show that equations (6) and (7) are Lorentz invariant.

2. Lorentz invariants

- a) Using the field strength $F_{\mu\nu}$ build two Lorentz invariants quadratic in the fields **E** and **B**.
- b) Given a tensor $T^{\mu\nu}$ build a Lorentz invariant linear in this tensor.

3. Stress-energy tensor

The electromagnetic stress-energy tensor is given by

$$T^{\mu\nu} = \varepsilon_0 \left(F^{\mu}_{\ \alpha} F^{\nu\alpha} - \frac{1}{4} \eta^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right) , \tag{8}$$

where $F_{\mu\nu}$ is the field-strength tensor and $\eta_{\mu\nu}$ is the Minkowski metric.

- a) Compute the trace $\eta_{\mu\nu}T^{\mu\nu}$.
- **b)** Verify that

$$T^{00} = u = \frac{\varepsilon_0}{2} \mathbf{E}^2 + \frac{1}{2\mu_0} \mathbf{B}^2 \tag{9}$$

is the electromagnetic energy density.

c) Verify that

$$T^{0i} = \frac{1}{c} (\mathbf{S})_i \,, \tag{10}$$

where **S** is the Poynting vector. Notice that $\frac{1}{c}T^{0i}$ is also the momentum density (component i) in the electromagnetic field.

d) Using Maxwell equations (6) and (7) show that

$$\partial_{\mu}T^{\mu\nu} = \frac{1}{c}j_{\alpha}F^{\alpha\nu} \,. \tag{11}$$

Rewrite the $\nu=0$ component of this equation using the relations (9) and (10). What is the physical meaning of this equation? What about the spatial components $\nu=1,2,3$?