Classical Electrodynamics

Week 10

1. Velocity's transformations in Special Relativity

In this exercise, you will study how velocities v_1 and v_2 transform from one reference frame \mathcal{R}_1 to another \mathcal{R}_2 in the context of Special Relativity, in different scenarios.

- a) The reference frame \mathcal{R}_1 is moving along the x-axis with speed v_0 in the reference frame of the laboratory \mathcal{R}_0 , and a particle is moving with speed v_1 along the x-axis in the reference frame \mathcal{R}_1 . What is the velocity of the particle in the reference frame \mathcal{R}_0 ?
- b) Two particles (with the same mass) are moving in the same direction with velocities v_1 and $v_2 > v_1$ in the reference frame \mathcal{R}_1 . At what speed should the reference frame \mathcal{R}_2 move with respect to \mathcal{R}_1 so that the center of mass condition $v'_1 + v'_2 = 0$ is obeyed? What is the value of v'_1 ? Is your result compatible with your non-relativistic intuition?
- c) The trajectory of a particle moving at constant velocity makes an angle θ with the x-axis of a reference frame \mathcal{R}_1 . Compute the corresponding angle θ' in a reference frame \mathcal{R}_2 moving with speed v along the x-axis of \mathcal{R}_1 .
- d) Consider two particles (with the same mass) moving at the same speed v. The angle between their trajectories is θ . Find a reference frame in which $\mathbf{v}'_1 + \mathbf{v}'_2 = 0$.

2. Synchrotron radiation

Consider a non-relativistic electron ($v \ll c$) in circular movement due to a magnetic field **B** orthogonal to the plane of the movement.

- a) Calculate the Poynting vector $\mathbf{S} = \epsilon_0 c^2 \mathbf{E}_e \times \mathbf{B}_e$, using the radiative part of the electromagnetic fields \mathbf{E}_e , \mathbf{B}_e produced by the accelerated electron. You can use the formulas of Liénard-Wiechert in the non-relativistic limit $(v \ll c)$.
- b) Calculate the time average of the Poynting vector

$$\langle \mathbf{S} \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, \mathbf{S}(t) \,, \tag{1}$$

and determine the total radiated power.

c) Study the angular distribution of the radiation.

3. Classical atom

Consider the classical model of the hydrogen atom:

- The proton, of charge $e = 1.60 \times 10^{-19}$ C and mass $m_p = 1.67 \times 10^{-27}$ kg, is at rest at the center of the atom.
- The electron, of charge -e and mass $m_e = 9.11 \times 10^{-31} \text{ kg} \ll m_p$, moves around the proton in a circular orbit of radius $r_0 = 5.29 \times 10^{-11} \text{ m}$.
- a) Calculate the frequency ν of this rotation.
- b) Calculate the total power radiated by the system. Recall the formula

$$\mathbf{S}(t) = \frac{e^2}{16\pi^2 \varepsilon_0 c^3} \frac{|\mathbf{a}|^2 \sin^2 \alpha(t)}{r^2} \mathbf{e}_r \tag{2}$$

for the Poynting vector of a non-relativistic electron. Here, $\alpha(t)$ is the angle between the acceleration vector \mathbf{a} of the electron and the observation direction \mathbf{e}_r .

c) Estimate the life time of the classical atom. Why are you still alive?