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Quantum mechanics II, Problems 11 : Irreps

Solutions

TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard
Puig, Sacha Lerch, Samy Conus, Tyson Jones

Problem 1 : Irreps of two qubits

Consider a representation U, of SU(2). Now consider the representation of the tensor product
R(g) = Uy @ U, (1)

can we decompose this in the direct sum of two representations ? That is, can you find the irreducible
representations of this?
Notice that this tensor product commutes with the SWAP gate [U; ® Uy, SWAP] = 0. This means
that is possible to block diagonalise U, ® U, in the same basis as the SWAP.

We can deduce (or recall) that the symmetric space has eigenvalue 1 for the SWAP operator.
That is

SWAP [00) = |00) )
SWAP [11) = [11) (3)
SWAP—(|01) + |10)) =—(|01) + |10)) (@)

V2 V2

However, the antisimetric space has eigenvalue -1. That is

1 1

\/5(|01> 10)) = \/5(|01> 10)) (5)
Therefore, this means that U, ® U, can be block diagonalised by the symmetric-antisymmetric

decomposition.

Notice that this is only valid for the representation of a spin—%. If we take the spin-1 representation

of SU(2), R(g) will be a 9 dimensional representation and the permutation with SWAP will not be

enough to fully reduce the representation.

However, we can write down the general decomposition into irreducible representations using Clebsch

Gordon theory. First note that the irreducible representations of SU(2) of dimension d are the spin-

representations (e.g. the spin-1/2 representation is given by the pauli matrices etc.). Lets denote

this representation by Uj /5. Then we have by Clebsch Gordon :

SWAP

Uip@Uyjp =Ur @ Up (6)

You can see this by looking at the possible states that you obtain from summing two spin-1/2 :

1. Spins are aligned : The total spin is 1 and you have three different projections onto the z-axis :
m=0,+1.

2. Spins are anti aligned : The total spin is 0 and you have one possible projection m = 0.



The first case above corresponds to the irreducible representation of spin-1 : U, while the latter
corresponds to the spin-0 representation Uy.

For two irrducible representations Uy, , U;, we have :

L1+l
U, U, = @ U; (7)

i=|l1—ls|

Problem 2 : Irreps of the Cyclic group

The aim here is to become familiar with the irreducible representations of the cyclic group.

1. Show that all irreducible representations of an Abelian group are of dimension n; = 1.
Suppose, for the sake of contradiction, that there exists an irreducible representation R; of
dimension d # 1. We know that there is at least one element of the group y € H that is
represented by a non-diagonal matrix R(y). Indeed, if all elements are diagonal, then the
dimension of the representation is not appropriate and can be reduced to 1. Moreover, the
group H is abelian, so we have the property :

R(z)R(y) = R(x xy) = R(y xz) = R(y)R(z),Vx € H (8)
and for Schur’s Lemma, this implies that R(y) = A1, contradicting the initial assumption.

2. Consider the cyclic group Z3 = {e, a, b} of order 3. Recall its multiplication table.
The multiplication table of Z3 is constructed very easily by filling in the trivial first rows and
columns. The remaining 4 elements are immediately found by respecting the cyclicity of the
group a® =e :

3. There are 3 irreducible representations for Z3 = {e, a,b} group. What dimension are they ?

As the cyclic group Z3 is also Abelian we know from question 1 that every irreducible repre-
sentations are of dimension 1.
Here the number of irreducible representations was given, but if you were asked to find the
number of irreducible representations, you should have used Burnside lemma. From question
1 we know that all irreducible representation are of dimension 1. Then using Burnside lemma
and as as Z3 is a group of order 3 we have

> 12=3 (9)

and we can deduce that n =3. So there is 3 irreducible representations.
4. Compute the irreducible representations for Z3 = {e,a,b}. Verify that these representations
are indeed irreducible.

Hint : recall Schur’s Theorem.
The first irreducible representation R° is the trivial representation R%(e) = 1, R%(a) = 1,



RO CL2 = 1. The two other irreducible representations are based on the cube root of unity, 623i
4

7

and e 3 . R! will be R'(e) = 1, R'(a) = e’ and R'(a?) = e%, and R? will be R?(e) = 1,

R%*(a) = s, R%*(a?) = 5"
To check that these representations are indeed irreducible we can use the Schur’s Theorem. If
we take

AR(g) = R'(9)A Vg€ Z3 (10)

the only possible value of A is 0. Then these two representations are irreducible. We can do

the same with
AR%(g) = R*(9)A Vg € Zs (11)

and
AR'(g) = R*(9)A Vg € Zs (12)

and we conclude that R, R! and R? are irreducible.
R3 can be a bit hard to find, we can also use Schur’s lemma to help us. As R? is 1-dimensional
R3(e) = 1, then we can write using R and R! :

Al=1A Al = R*(a)A Al = R*(a®)A
Bl=1B  Bes =Ra)B  Be's = R*d®)B

In order to have only A = 0 and B = 0 we must have R%(a) # 1, R%(a) # e%, R?(a?) # 1,
R%*(a?) # 5" and [R%(a)]? = R%*(a?), [R*(a)]®> = 1. The only solution is then R?(e) = 1,
R%*(a) = e%, R?(a?) = =
5. What are the irreducible representations of Z,, 7
It will be the trivial representation and for the n-1 other irreducible representations we will
have e = 1, and for the other terms all the cyclic permutations of the n*-root of 1. YOu can
also see it in the solution of the problem 3.1.

Problem 3 : Particle in a periodic potential

Consider Hamiltonian 1D :
N K2 9?2 v
H=——— 7
2m 042 +V(2)

where V (z) is a periodic potential of period a, ie :
V(z+a)=V(z).

Suppose that the system is confined to a region of width L = la (periodic boundary conditions),
where [ is a positive integer. The aim of this exercise is to find what can be said on the form of the
eigenfunctions of H by using the symmetries of the problem.

1. Find the symmetry group G of H and write the [ irreducible representations of this group.
In the general case, the only symmetry transformations of H are the translations Ul = (Uy)"
which translate the coordinate x by —na, where n is an integer multiple. The operator Py
corresponding to the translation U} and acting on the wave functions ¢ (x) is defined by :

Pyni)(z) = Y(x + na).



To determine the group G of these translations, it suffices to observe that, given the finite size
L = la, the non-equivalent translations are [, and that each translation is equal to a power of
the translation by a, Uy, i.e. :

G - {Ua, Us, US, ...Uclbil, U(ll = e}_

Therefore, the group G is the cyclic group of order [.

To determine the irreducible representations of G, we need to find groups of matrices satisfying
the composition law of the cyclic group G. For a cyclic group, the search is very simple. In
fact, it is immediate to find [ non-equivalent irreducible representations of G of dimension 1,
by considering that the [-th roots of unity and their powers satisfy the composition law of
the cyclic group G. In particular, we consider the representation R, and we consider a vector
v € V(™ in the subspace V(™ relative to this representation. Then the fundamental element
of the group U, is represented by an operator whose action on v is :

R"(Ug)v = e2mily n=1,..,1
(the representation R' is the trivial representation). Finally, we can use Burnside’s theorem to
assert that there are no other non-equivalent irreducible representations.

. Determine the transformation law of the eigenfunctions of H under the transformations of the
symmetry group G.

We can separate the space of eigenfunctions of H into subspaces (™, n = 1,...,1 of dimension
1, relative to the [ representations R"™. The eigenfunction ¢, (z) € H(™) transforms according
to the transformation law of the representation R", i.e. :

Punth(x) = R (U)o () = 2™/, () = e*n9,, (x) = o(x + na),
where k,, = (2m/L)n. Given this correspondence, it is more intuitive to use the wave vector k
as an index for the subspaces instead of n.

. Show that the eigenfunctions of H are of the form :
Up(z) = up(z)e*®  (k=2mn/L, n=1,2,...1).

where the functions wug(z) are periodic with period a. This result is, in one dimension, the
Bloch theorem for electronic states in a crystal.
We write the function ¢y (z) as :

Up(z) = up(z)e*®  (k=2rn/L,n=1,2,..,1)
and using the transformation law of 1. We find :
uk(x)eik(w-l-a) _ eikawk(x) _ lbk(fl? + CL) _ uk(az + a)eik(m—&—a)’

So the functions uy are periodic : ug(z + a) = ug(x).

. Suppose that the potential V(z) has the form V(z) = 201 u(x — na), where u(x) is a deep
potential well. The total potential V' (z) is then a “chain” of potential wells. (recall that, due
to the use of periodic boundary conditions, the coordinates z and = — la coincide). Assume
that the ground state of a single-well has wavefunction ¢g(z) and energy €, so that

n? 0?2

= 55 T ul@)| (@) = copo(w) -



Within the tight-binding approximation, we can assume that the lowest energy states of the
full problem, with the chain potential V(z) = quj_:lo u(x — na) are given approximately by
linear combinations of the “atomic” ground state orbitals localized at the different wells :
Y = Zln_:lo Cno(x—na). This approximation is justified by the fact that, when the potential
wells are very deep, the wavefunctions of the lowest states must be composed mostly of the
lowest atomic states and not of the excited levels of a single well.

4a. What is the Bloch wavefunction uy assuming the tight-binding approximation ?
(Questions 4a and 4b are non-examinable)

As it was shown above, the Bloch theorem implies that the stationary states can be taken
in the form 1y (x) = uy(z)e’ ™. This property is a completely general result, which has its
origin in group theory and in the symmetry properties of the system and, thus, it remains true
also in the tight-binding approximation. This implies that, also in the framework of the tight-
binding approximation, the wave functions can be chosen in the form wuy(x)e’**. At the same
time, in tight binding, the stationary states can be taken in the form of linear superpositions

5;:10 C, ppo(x — pa), where the index p runs over the [ sites of the lattice. In this expression
~ is an index specifying different solutions of the tight binding problem. In other words, we
are considering solutions which are in the form of quantum superpositions of states localized
near different atoms. We are thus approximating the wavefunctions as if they were living in
an [-dimensional Hilbert space : instead of considering all possible functions we take only
superposition of the [ basis states ¢o(z — pa). In this [-dimensional Hilbert space we can find
[ tight-binding states which are approximations to [ stationary states of the full Schrodinger
equation. The index v labels these [ distinct tight-binding superpositions.

Since we know that the functions can be written as uy(z)e?*® we can match
] n—1
up(@)e™™ =3 Cyppo(x — pa) - (13)
p=0

Since according to the Bloch theorem wug(x) is periodic, we have that
n—1 )
Z C%p@ﬂkx‘PO(x — pa) = ug(x) (14)
p=0

must also be periodic with a period a (the lattice spacing).
Then we must have

Z Cw,pe_“”cpo (v —pa) = Py, Z C%pe_ikx‘PO (z — pa)
p p
=2 Crpe M gp(z — (p— 1)a) (15)

p
= Z C’y,p+1€_ik(x+a)800(m —pa) ,
p

where in the last step we shifted the dummy summation index p via the change of variables
p — p+ 1. The equation implies that

C%erle_ika =Cyp (16)

and thus that '
Crp X erhe (17)



up to a proportionality constant.

This shows that the index -, which labels different solutions, can be identified with the number
k, which identifies different representations of the translation groups. For each k we have a
different corresponding solution. Thus, in the following, we identify v = k to simplify the
notation.

Introducing explicitly a normalization factor in Eq. , we can then write

1

Z}?

eipka (18)

Crp =
Then the tight-binding wavefunction with wavenumber k is
1 .
Yp(x) = —i Z ePRepo(z — pa) | (19)
Z,' " P
and the corresponding Bloch wavefunction is

1 ipka—ikx 1 —ik(z—pa
uy(z) = S Y PRy (¢ — pa) = S S e Py (2 — pa) . (20)
k p k P

The fact that ug(z) is periodic can be seen from the fact that the terms in the sum depend
only on x — pa. Thus, the translation x — x + a, is cancelled by a shift p — p+ 1 of the dummy
index p, leading to a periodic result. In group theoretic language uy(z) transforms according
to the trivial representation of the translation group (all translations are represented simply
by the identity : the function ug(x) is invariant under translations). The wavefunction ¢ (x),
by contrast, transforms according to a nontrivial representation of the group. The translation
U, is represented by the multiplication of a phase factor e?*¢, and a translation of m steps,
U™ is represented accordingly by ek,

To simplify the main derivation, we have slightly shortened the discussion of the effects of
periodic boundary conditions. One possible way to represent the problem is to visualize it as
if it was defined on a ring whose total circumference is L. This representation implements
automatically that the coordinates x and x + L are identified, as these correspond to the same
point, after a complete turn around the circle. The problem on the circle, is then equivalent
to the one-dimensional problem with periodic boundary conditions.

In this representation, the atoms are located at points whose polar coordinates are (r, =
L/(27),0, = 2mp/l), p =0,...,l — 1 and the continuous coordinate x corresponds to L§/2,
where 6 is the polar angle. Writing the wavefunction as

1 -1 )
¢k(33) = 1/2 Z ezpkaSOO(x - pa) ) (21)
Zk p=0



we can then verify, with a more explicit treatment of boundary conditions,

-1
Py, r(z) = Yp(z +a) = % > ePMgg(z — (p - 1)a)
2y p=0

-2

I—1

1 ) 1 i
PEYE] Z e go(z — (p—1)a) = We”w Z e o (x — pa)
Zk p=0 Zk p=-1

-2
1 . . 1 ) .
— 7 ezka Z ezpka(po(x . pa) + 7 ezkae—zka(po(x + CL)
Zy p=0 Z, (22)
-2
1, . 1
— Z1/2 ezka Z elpka(po(l‘ _ pa) + Zl/2 6zka€ Zka(po(l‘ + a)
k p=0 k
-2
— 1 eikzazeipk:a (.%' _ a) + 1 eikae—ikza ( — L+ )
- 1/2 ®0 p 1/2 wolr a
A — V4
k p=0 k
-1
1 . .
= e X e ol —pa) = ().
k p=0

Here, it was used that x and z — L are identified so that it can be assumed that ¢o(z + a) =
wo(z — L + a). It was also assumed that k takes one of the values k = 27wn/L, labeling the
representations of the group, so that e~#e = ¢ill=1ka,
4b. Calculate the average energy of the state 1, = uze**® in the tight-binding approximation.
To calculate the energy we need first to compute the normalization Zj. This can be done
imposing that the function v is normalized. The required normalization constant is :

-110-1 .7

=35 [ de 0 ga — qaygole - pa) (23)

p=04=0""0
Physically, the orbitals located at different atoms have a small overlap, especially in a limit
of "tight" binding, where the electrons are assumed to be strongly bound. Thus, the dominant
term in the sum is p = ¢, which gives

-1 .7
Zy, = Z/o dz ¢z — pa)po(x —pa) ~1 . (24)
p=0

We have assumed that the single-atom orbital are normalized to one and that the total size
L of the system is much larger than the characteristic extension of a single atomic orbital.
We then see that, keeping only the term, p = ¢, the normalization does not depend on k.
In general, however, the corrections from terms p # ¢ introduce a correction which depends
explicitly on k.
Having calculated the normalization factor, the average energy can be derived as :
1 -11-1 ., ) .
Ep=—->> / da P02 (@ — ga) Hpo(z — pa)]
Zk p=0¢g=0 0
Ly [t ik(p—qla | ,* ]
= ZkZZ/O dz e [wo(zr—qa+pa)Hg00(m—pa —I—pa)} (25)
p=04=0
1 -110-1 .7 k(o) i R
=5 X3 [Md i+ (o - g)a) (o)

p=04¢=0



where we used translational invariance and periodic boundary conditions (you can think of
the representation of the problem on a ring).

The sum depends only on p — g. Making the change of variables p — p 4 ¢ gives

I=1-q .r,
I o .
E, = Z E /0 dz e'kpre [(,00(.%' —|—pa)Hcp0(a;)}
p=—q
(26)

where we used again the boundary conditions. The energy receives contribution from "hopping"
processes, in which the particle jumps between different potential wells.

As a remark, the tight-binding problem could also be defined on a line segment, assuming
periodic boundary conditions for the wavefunction (). In this case, the potential V' (x) should
be defined by summing over infinitely many lattice sites V(z) = >-02_  u(x — pa), in order

pP=—00
to have the translation-invariance property V(z) = V(z + a).



