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Quantum mechanics II, Chapter 4 : Fermions and Bosons

TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard
Puig, Sacha Lerch, Samy Conus, Tyson Jones
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Problem 1 : Warm up

Boson. Imagine we have two photons in two spatial modes labelled |ki) or |ks) with horizontal
and /or vertical polarizations. Which of these is a valid symmetric state for the two photons?

(1> |¢1> = \% (‘k17k2> + |k27k1>) ® % (’Hv V> + ‘Va H>)
To see if the state is symmetric, we can apply the permutation operator P1s on it and see if
the eigenvalue of that state is +1 or —1.

1
P12 Y1) = 5( ko, k1) ® [V, H) + |ko, k1) ® |[H,V) + |ki, ko) ® |V, H) + ki, ko) @ |H,V))
(1)

_ L (|H,V) + |V, H)) = |¢1) (2)

V2
So [11) is symmetric.

(2) i) = 5 (k. ko) — ko, o)) ® 5 (|H, V) — [V, H))
We can do the same thing we did for the first part for the following states and whether they
are symmetric. [1g) is symmetric.

(3) Is) = ki, ko) ® % (|H,V)+|V,H))
None of them.

(4) vha) = % (Ik1, ko) + ko, k1)) ® |H, V)
None of them.

1

([k1, ko) + [ko, k1)) ® 7%

Fermions. Consider two electrons in Helium which are in two different orbital states (one in the
ground state, one in an excited state), such as we labelled |a), |b) above with up and/or down spins.
Which 2 of the following 6 states are possible states of the two electrons ? Justify.

) 1) = Z(la.b) +[b.a)) © L5 (11,1 + |4 )

For the Fermions, the total state has to be asymmetric under the exchange of the two particles.

P12 [¢1) = [¢1) (3)

So the state is symmetric and not possible for two Fermions.


https://youtu.be/_bXSVc8lN7o?t=8

(2) o) = 5(1a,b) + [b,@)) © L5 (11,4) + [1,1))
Symmetric.

(3) t6s) = Ly(la.b) — [b.0)) © L5 (11,1) + 1. 4)
Antisymmetric.

(4) [a) = J5(la,0) = [b,a)) ® (11, 4) = 14, 1))
Symmetric.

(5) th5) = Ly(lab) — [b.a)) © L5 (1.4) + 1. 1))
Antisymmetric.

(6) I6) = la.b) ® (11 1) — [1.1))

None of them.

Problem 2 : Bosonic wavefunction

Consider the possible basis states for a system of n Bosons. It can be written as

) =N D Play,mg, oyan) =N Y lapa))lape) - [2pm), (4)
PeSn, PeS,
where x = (z1, 2, ...,%,), N is a normalization factor, and S,, is the symmetric group on n elements.
Prove that the normalization factor is
1
N=——mo— (5)

\/H\/ Hk ny!

where ny, is repeated entries and ), ng = n.
To find the normalization constant, we compute the norm of the state and set it equal to 1 :

1 = (¢x|thx) (6)

=N2Y 0> (aplzea)) (el Te@) (o) Ters) - (Tom) TR () (7)
PeS, P'eS,,

= N2> (m]wpop-r(r)) (mo|Tprop-12)) (T3] Tprop-1(3)) -+ (@n|TRrop-1(n)) (8)
PeS, P'eS,,

=Nl > (i ]epqy) (w2|zpe)) (ws]zp@) - - (2nlzp@m)) » 9)

where in the third line we rearranged the terms and in the last term used that ZPP, PoP' =n!l>pP
In the case, where all the single-particle states are orthogonal (i.e. every state has occupation number
ni = 1), only the term P = 1 is non-zero and the claim is verified.

If some states are multiply occupied, |z;) = |z;) for some i # j and other terms in the sum have a
non-zero contribution. In fact, we find that all the terms evaluate to 1, where P permutes the indices
in a way that Vi we have |z;) = ‘xp(i)>. This is the case, if

P e S(ny) x S(ng) x -+ x S(nkg) C S(n), (10)

i.e. P only permutes particles occupying the same state. Here, n; denotes the occupation number of
the K orthogonal single-particle states. The size of each permutation group S(ny) is ng! and thus
we find

1=N2%n!|S(ny) x S(ng) x --- x S(ng)| = N?n! an' (11)



Then we have 1
N=——rreex (12)

\/m\/ Hk nk!.

Problem 3 : Eigenspectra of fermions and bosons

We are familiar with simple harmonic oscillators from Quantum Physics 1. A particle with mass

m in one-dimensional harmonic potential V(x) = %mqu:Q has the following eigenenergies.

En:hw<n+;>, n=20,1,... (13)
and we call ¢, () the associated eigenfunctions which we suppose normalized.
Now consider that we want to study a system of identical particles that do not interact so that
we can consider the total Hamiltonian of these systems as a sum of one particle Hamiltonian.
Bosons
We take the particles as Bosons of zero spin here. So the eigenfunction of Bosons needs the spatial
part which must be symmetrical and we know the one particle case of them from ¢, (x).
1. Consider the case of 2 bosons. Find the first 3 energy levels, their degeneracy, and the associated
eigenfunctions.
(Hint : Use ¢, (x)s to make two-particle symmetric wavefunctions.)
In this section, we assume that the particles are spinless bosons. The wave function of the
system therefore consists solely of a spatial part, which must be symmetrical. For a system of
two bosons, the total energy of the system is given by

E= En1 + Enz, (14)

where each E,, is given by E,, = hw (nZ + %)
The lowest energy level is the one with both bosons in the n; = ny = 0 level. We can have
this energy just with this combination of n;s and so the degeneracy is 1. The ground state

energy Eground state 18
Eground state = Lo + Eop = Tuw (15)

and the symmetric eigenfunctions is
wground state(mla 51:2) = 900(:1:1)900(‘%2) (16)

The first excited state corresponds to the state with a boson in n = 0, and the other one in
n = 1. The eigenenergy is

Elst excited state — EO + El = 2hw (17)
The symmetric eigenfunction is
1
P1st excited state (L1, T2) = 7z [po(x1)p1(x2) + @1(x1)po(x2)] (18)

and the degeneracy is still 1.
The second excited state corresponds to either the boson in n = 0, and the other in n = 2,
or to the state with both bosons in n = 1. The eigenenergy is

E2nd excited state — EO + E2 = El + El = 3hw (19)



and the symmetric eigenfunction in the case of bosons in two different energy levels

1 1
Vi excted stare (71 72) = 5 [po(1)ip2(2) + 22l o )] (20)
and in the case where bosons are in the same energy levels

d}gi)d excited state (:Ch x2) = 1 (xl)spl (‘TQ) (21)

It means that we have two eigenfunctions for one energy so the degeneracy is 2.
. We are now interested in the case of 3 bosons. Find the first 3 energy levels, their degeneracy
and the associated eigenfunctions.
We now look at the 3 boson case. For a system of three bosons, the total energy of the system
is given by

E=E, +E,+Ep,. (22)
The lowest energy level is the one with the 3 bosons in the energy level Ey. The eigenenergy
is

3
Eground state = Fo + Eo + Ep = 57?1.;) (23)
and the symmetric eigenfunction is
wground state(wla x2, 1'3) = SOO(wl)(PO(xQ)SOO(w?))? (24>

so the degeneracy is 1,

The first excited state corresponds to the state with 2 bosons in Fj, and the third one in
FE. The eigenenergy is

5
Elst excited state — EO + EO + El — ihﬂ) (25)
The symmetric eigenfunction is
1
Y1t excited state (L1, T2, T3) = 7 [po(z1)po(z2)e1(r3) + wolx1)p1(x2)po(xs) + @1 (x1)po(r2)po(r3)]

(26)
and the degeneracy is still 1.

The second excited state corresponds to the state with one Boson in Fy, and two Bosons
in Fy or two Bosons in Ej, and one Boson in Es. The eigenenergy is

7
Eond excited state = 0 + Eo + B2 = Eg + By + By = 57?40 (27)

The symmetric eigenfunction in the case of two Bosons in Ej, and one Boson in Fj is

VS excited state (1 72, 73) = jg [po(1)o(w2)p2(x3) + Pol@1)ea(w2)0(xs) + pa(1)po(w2)p0(3)]

(28)

The symmetric eigenfunction in the case of one Boson in Ey, and two Bosons in E is

Y5 excited state(F1: 72, 73) = jg [po(1)en (22) 01 (3) + @1(@1)po(22) 01 (23) + @1(21)1 ()0 (3)]

(29)
and the degeneracy is 2.



Fermions
In this section, we are interested in the case of two electrons, i.e. two fermions of spin of spin 1/2,
and we are looking for the eigenfunctions of two particles in the form

Y(x1, 12, 51, 82) = p(1,72)X (51, 52), (30)

where x; denote the position of the particles and s; € {+%, —%} their spins. ¢(z1,z2) is the spatial
part and x(s1, s2) is the spin part of the wavefunction.
1. x(s1,s2) means that the first particle has spin s; and the second particle has spin s3. What is
the dimension of the space of functions x(si, s2) ?
The wave functions live in the Hilbert space spanned by the tensor product of two spin 1/2
particles H = ’H% ®”H%. Thus dimH = (di]fn’z'-[%)2 =22=4

2. We define in this space, the operators P (permutation) and S* (total spin in the 2 direction)
by :

Px(s1,82) = x(s2,51)
S*x(s1,82) = (s1+ s2)x(s1,52) (31)

In other words, we know that x(si1,s2) is the eigenfunction of S* with eigenvalue s; + so.

(a) Demonstrate that we can diagonalize P and S in a common basis.

We show that the two operators commute :

PS*x(s1,82) = P(s1 + s2)x(s1,52) = (51 + s2)x(52,51) = S*x(s2,51) = S*Px(51, 52),

where we used that s, ss € R commute.

(b) Using the previous result find the common eigenstates of P and S*.
(Hint : S* is already diagonal in the basis of x(s1, $2) so try to diagonalize P in this basis.)
To find the mutual eigenfunctions of P and 5%, we diagonalise P in each eigenspace of

S#. The eigenspace of S* is given by x(s1, $2), here we write all eigenvectors and their
eigenvalues.

The first eigenvalue is 1 with the following eigenvector.

P R O B
S X(+§a+§) = X(+23+2) (32)

The second eigenvalue is —1 with the following eigenvector.

1 1 1 1
z - - _ - -
5°x(~5:~3) = ~Xx(~3,~3) (33)
The third eigenvalue is 0 which has degeneracy 2 and the following vectors are its eigen-
vectors.
1 1
S* - —=)=0 34
X(+3:—3) (34)
1 1
S*x(—=,+=)=0 35
X(=5:+3) (35)



Let’s also find the effect of P on this basis.

PX(+3,+3) = X(+3,+3) (30)
Px(~3—5) = x(~3:~3) (37)
PX(+5,—3) = X(~5,+3) (39)
Px(~3:+3) = x(+3,~3) (39)

Here we can see that x(+1,+3) and y(—3,—3) are also eigenvectors for P. So we just
need to diagonalize P in the subspace of {x(+1, %), x(—%,+3)}. We can see that P maps
X(+%, —%) to X(—%, —l—%) and vice-versa. Then two eigenvectors of P in this subspace are
namely the symmetric eigenstate % (x(+3,—3) + x(—3,+2)) and the antisymmetric

eigenstate % (x(+%, —%) - X(—%d‘%))- Finally, the common eigenstates of P and S%

are as follows.

=

X+ (s1,82) = x(H3,+3) (10)
X (s1,2) = x(—5,—5) (a1)
Xams1.00) = 5 (g 5) (-5 )) (42)
Koo (o1,52) = 5 (x4 —3) ~ x(-5+3) (43

3. We now come back to the two electrons in a harmonic potential problem. Find the first 3
energy levels, their degeneracy, and the associated eigenfunctions.
(Hint : Find antisymmetric wavefunctions by trying the possible combination of spatial and
spin parts.)
We know that for two Fermions, the total wave function needs to be antisymmetric. This means
that the total wave function is composed either of a symmetric spatial part and antisymmetric
spin part or an antisymmetric spatial part and symmetric spin part.

Similar to the Bosons part of this question, for a system of 2 electrons, the total energy of the
system is given by
E = E,, + Ep,. (44)

The lowest energy level is achieved when both electrons are in n = 0.
Eground state = Lo + Eo = Fuw (45)

In this case, the spatial part Yground state(Z1,72) = @o(1)®o(22) is symmetric so the spin part
needs to be antisymmetric. With the above derivations, we can thus write

wground state(l'lv T2, 51, 52) = (PO(-Tl)QOO(l'Q) Xantisym(sla 52) (46)

which has degeneracy 1.

The first excited state The first excited energy Fist excited state 18 achieved when one electron
occupies the first excited state n = 1 and the other one is in n = 0.

Elst excited state = EO + El = 2hw (47)



To achieve antisymmetry, we can choose either the spin or spatial part to be antisymmetric.
The solutions are

1
wgsz excited state(xl’ L2, 51, SQ) = (()00('%'1)901 (%2) + 900($2)(P1(.’L'1)) Xantisym(sla 52) (48)

wgz excited state(ml’ L2, 51, 82) = ((,00(311)901 (:UQ) - @0(%2)(,01(3}1)) Xsym(517 52) (49)

D) e state (102, 51, 82) = —=(0(m1)01(2) — Po(@2)p1 (1)) X 44 (51, 52) (50)

-l

D ited state( @1, T2, 51, 52) = —=(0(21)¢1 (22) — po(z2)e1 (1)) x—— (51, 52) (51)

S

(52)

so the degeneracy of the first excited state is 4.

The second excited state The second excited energy Fond excited state 1S achieved when one
electron occupies the second excited state n = 2 and the other one is in n = 0 or when both of
the electrons are in the first excited state n = 1.

E2nd excited state — EO + E2 = El + El = 3hw (53)

To achieve antisymmetry, we can choose either the spin or spatial part to be antisymmetric.
Let’s first consider the case that both electrons are in n = 1. The solution is

1
wén)d excited state(w17 L2, 51, 52) = (,01(.%'1)901 (:UQ) Xantisym(sla 52) (54)
The second case is when one electron occupies the second excited state n = 2 and the other

one is in n = 0. the solutions are

2
wén)d excited state(‘rl’ L2, 51, 82) = ((100(:51)(102(372) + ‘PO($2)<P2(IL‘1)) Xantisym(sla 52)

3
wén)d excited state(‘rl’ L2, 51, 82) = (900(:51)%02(332) - SOO(xQ)SOQ(lil)) Xsym(sla 52)

wéi)d excited state(xl’ L2, 81, ‘92) = (‘po(gcl)@?(x?) - @0(332)4102(1‘1)))X++(517 52)

-l

wéi)d excited state(‘rl’ 12,51, 82) = ((po(%l)gOz(Ig) - wo(xQ)(p?(xl)))X——(Sla 52)

N

so the degeneracy of the second excited state is 5.
Problem 4 : Mach-Zehnder interferometer

The Mach-Zehnder interferometer consists of two 50 :50 beamsplitters with a phase shifter in one
arm, arranged as follows :

When working in the second quantization it is often helpful to work in the Heisenberg picture
and consider the action of any unitary process on the creation and annihilation operators rather
than on a given state directly. The phase shift of ¢ in the upper arm in the Heisenberg picture
acts as dzz — ei‘pdzz. It follows that the total unitary matrix on the mode operators describing the

apparatus is
1/1 1 1 0 1 1
U = Ups2 Uphaseshift Ups1 = 5 <1 _1> <0 eW’> <1 _1) - (55)
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Where Upgo = U;Sl and Upggy is the effect of beamsplitter on the mode operators (dzl,dL). In
other words, we know that in the Heisenberg picture, the creation operators are changed as follows

So we can write it in the following way

. A Loat 4 ot
a% Bsi 1 (1 1 ) a%l _ ?(a;ﬁ + GITCQ) ‘
ay, V2 AL =1/ \ay, (A, —ay,)

We can also see the same calculations to find the unitary matrix of the phase shift.

N hase
CLT —>p CLT
k1 k1

N hase PN
al P ivgt
k‘g k2

So we can write it in the following way

&Ll phase 1 0 &};1 _ &1];1
al 0 e¥) \af eeal |
2 2 2

(56)

(57)

(61)

(i) Suppose one photon is input into the mode kj. What is the probability as a function of ¢ of

finding it at each of the detectors D1 and Dy ?

Consider that |0), ~and [0),, are the vacuum states of modes k; and ka. Then [n), means

that we have n photons in mode k;.

We suppose that we have one photon in the mode k; as input. So it means that our initial
state is &1];1 0)), 10)y,- To find the final state after the effect of beamsplitters and the phase

8



shifter, we work in the Heisenberg picture and find the evolution of the creation operator. To
do this, we can use the unitary that is given in the question and we can write

4 U 1 o - N
af, = (L +eP)af, +(1-e¥)aj,), (62)
4 U 1 o A o
af, = 5((1—e®)af, + (1 +e¥)al,). (63)

In the detectors, we are calculating the probability of having photons in that mode. So in
detector D1 we want to calculate the probability of having one photon in mode ki. In other
words, if our output state is [1)o,;) We can find the probability of having one photon in detector
D7 using the Born rule as follows.

p(n1 = 1,m5 = 0) = |(Wout| (|1, 10)1,)]7 = [ (thont | 10)]? (64)

So we just need to compute the output state.

—_

A A U i\ A i\ A
[in) = df, 10)x, 0, = af, 00) = o ((1+e*)af, + (1 - e'?)aj,) |00) (65)
1 . 1 :
=S+ ¢')a), |00) + 51~ ¢'#)a), |00) (66)
1 . 1 )
= SO +E9)10)+ 2(1—€9) 01) = [Yous)  (67)
Now, for the first detector, we have
2 1 g2 _ 1 2 ¥
p(n1 = 1,19 = 0) = [{Yout|10)] :Z]1+e“0| 25(1+cosg0):cos 5 (68)

and accordingly, the probability of having one photon in the detector Dy is given by p(ny =
0,no =1)=1—p(ng =1,ny =0) =sin? £.

(ii) Suppose one photon is input into mode k; and one photon is input into mode ko. What are
the probabilities of finding 2, 1 or 0 photons at each of the detectors D; and Dy ?

We suppose that we have one photon in the mode k; and one photon in the mode ks as input.
So it means that our initial state is dL dZ 10)x, 10}, To find the final state after the effect of
beamsplitters and the phase shifter, we work in the Heisenberg picture and find the evolution

of the creation operator. So we just need to compute the output state.

i) = af, @l |0), 10y, = af, af, [00) (69)
1 . .
% S+ eP)af, + (1 e*)af,) (1 - eP)af, + (14 ¢*)aj,) [00) (70)
1 7 7 A~ A~ 7 A~ ~
=7 ((1 e? ‘p)aL aL +2(1+¢? ‘P)a,tlazz + (1 — €2 ‘p)aZQQLQ) |00) (71)
\/i 7 1 7 \/i 7
= (1RO 45+ ) + S50 =) [02) = o) (72)

Where in the last line we use the fact that af |n) = v/n + 1|n +1).
Now we want to compute the following probabilities at the detectors.

p(n1 = 0,2 = 2) = | Wout| (100, [20i,)|* = [(Woutl 02} (73)
p(n1 = 1,m2 = 1) = | Woul (1D, [Die)|* = [(Goul 1)) (74)
p(n1 = 2,m2 = 0) = | Wout| (120, 10)ie,)|* = |(out] 20} (75)



Now, using |¥u:), we can compute the probabilities.

1 ) 1 .

p(n1 = 0,n = 2) = [(Poue|02)]> = g’l — P = 3 sin®(¢) (76)
1 .

p(ni = 1,n2 = 1) = [(You| 11)]* = 111 +e*?|? = cos®(p) (77)
1 . 1 .

p(n1 = 2,n2 = 0) = [(Your|20)* = §|1 — ¥ = 3 sin® () (78)

(iii) For each of the cases in (i) and (ii), imagine that just after the phase shifter a detector D3

was inserted. Assuming it does not detect any photons, how are the probabilities of finding the
photons at detectors D1 and Do affected ?
If we don’t detect a photon at Ds, this means the state before entering the second beamsplitter is
given as lecl |00) for one-photon case and &L&};l |00) for two-photon case. After passing through
the second beamsplitter, we can write the output states and then compute the probabilities
for these two cases.

— One Photon : In this case the output state is

. Bs2. 1 X
[Yin) =, 100) == —=(a}, +al,) |00) (79)

1
V2

Then the probabilities are p(n; = 1,n2 =0) =p(n; =0,ny =1) =1/2.
— Two Photons : In this case the output state is

(110) +[01)) (80)

At A Bs2 1 . At N X
[in) = &, a}, 00) == 3 (af, +a},)(@l, +af,)|00) (81)
1
:5(\20>+2|11)+\02>) (82)

Then the probabilities are p(n; = 2,n2 = 0) = p(n; = 0,ny = 2) = 1/4 and p(n; =
Lng =1) = 1/2.
(iv) What is the relationship between this setup and the two-slit experiment ?

In this part, the probability results are similar to the case in the two-slip experiment when
we had a delayed quantum eraser. Here we do not see interference and we have a probabilistic
mixture.

10



