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Problem 1 : Warm up

Boson. Imagine we have two photons in two spatial modes labelled |k1⟩ or |k2⟩ with horizontal
and/or vertical polarizations. Which of these is a valid symmetric state for the two photons ?

(1) |ψ1⟩ = 1√
2
(|k1,k2⟩+ |k2,k1⟩)⊗ 1√

2
(|H,V ⟩+ |V,H⟩)

To see if the state is symmetric, we can apply the permutation operator P12 on it and see if
the eigenvalue of that state is +1 or −1.

P12 |ψ1⟩ =
1

2

(
|k2,k1⟩ ⊗ |V,H⟩+ |k2,k1⟩ ⊗ |H,V ⟩+ |k1,k2⟩ ⊗ |V,H⟩+ |k1,k2⟩ ⊗ |H,V ⟩

)
(1)

=
1√
2
(|k1,k2⟩+ |k2,k1⟩)⊗

1√
2
(|H,V ⟩+ |V,H⟩) = |ψ1⟩ (2)

So |ψ1⟩ is symmetric.

(2) |ψ2⟩ = 1√
2
(|k1,k2⟩ − |k2,k1⟩)⊗ 1√

2
(|H,V ⟩ − |V,H⟩)

We can do the same thing we did for the first part for the following states and whether they
are symmetric. |ψ2⟩ is symmetric.

(3) |ψ3⟩ = |k1,k2⟩ ⊗ 1√
2
(|H,V ⟩+ |V,H⟩)

None of them.

(4) |ψ4⟩ = 1√
2
(|k1,k2⟩+ |k2,k1⟩)⊗ |H,V ⟩

None of them.

Fermions. Consider two electrons in Helium which are in two different orbital states (one in the
ground state, one in an excited state), such as we labelled |a⟩, |b⟩ above with up and/or down spins.
Which 2 of the following 6 states are possible states of the two electrons ? Justify.

(1) |ψ1⟩ = 1√
2
(|a, b⟩+ |b, a⟩)⊗ 1√

2
(|↑, ↑⟩+ |↓, ↓⟩)

For the Fermions, the total state has to be asymmetric under the exchange of the two particles.

P12 |ψ1⟩ = |ψ1⟩ (3)

So the state is symmetric and not possible for two Fermions.
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(2) |ψ2⟩ = 1√
2
(|a, b⟩+ |b, a⟩)⊗ 1√

2
(|↑, ↓⟩+ |↓, ↑⟩)

Symmetric.
(3) |ψ3⟩ = 1√

2
(|a, b⟩ − |b, a⟩)⊗ 1√

2
(|↑, ↑⟩+ |↓, ↓⟩)

Antisymmetric.
(4) |ψ4⟩ = 1√

2
(|a, b⟩ − |b, a⟩)⊗ 1√

2
(|↑, ↓⟩ − |↓, ↑⟩)

Symmetric.
(5) |ψ5⟩ = 1√

2
(|a, b⟩ − |b, a⟩)⊗ 1√

2
(|↑, ↓⟩+ |↓, ↑⟩)

Antisymmetric.
(6) |ψ6⟩ = |a, b⟩ ⊗ 1√

2
(|↑, ↓⟩ − |↓, ↑⟩)

None of them.

Problem 2 : Bosonic wavefunction

Consider the possible basis states for a system of n Bosons. It can be written as

|ψx⟩ = N
∑

P∈Sn

P|x1, x2, . . . , , xn⟩ = N
∑

P∈Sn

|xP(1)⟩|xP(2)⟩ . . . |xP(n)⟩, (4)

where x = (x1, x2, . . . , xn), N is a normalization factor, and Sn is the symmetric group on n elements.
Prove that the normalization factor is

N =
1√

n!
√∏

k nk!
(5)

where nk is repeated entries and
∑

k nk = n.
To find the normalization constant, we compute the norm of the state and set it equal to 1 :

1 = ⟨ψx|ψx⟩ (6)

= N 2
∑

P∈Sn

∑
P′∈Sn

〈
xP(1)

∣∣xP′(1)

〉 〈
xP(2)

∣∣xP′(2)

〉 〈
xP(3)

∣∣xP′(3)

〉
· · ·
〈
xP(n)

∣∣xP′(n)

〉
(7)

= N 2
∑

P∈Sn

∑
P′∈Sn

〈
x1
∣∣xP′◦P−1(1)

〉 〈
x2
∣∣xP′◦P−1(2)

〉 〈
x3
∣∣xP′◦P−1(3)

〉
· · ·
〈
xn
∣∣xP′◦P−1(n)

〉
(8)

= N 2n!
∑

P∈Sn

〈
x1
∣∣xP(1)

〉 〈
x2
∣∣xP(2)

〉 〈
x3
∣∣xP(3)

〉
· · ·
〈
xn
∣∣xP(n)

〉
, (9)

where in the third line we rearranged the terms and in the last term used that
∑

P,P′ P◦P′ = n!
∑

P P.
In the case, where all the single-particle states are orthogonal (i.e. every state has occupation number
nk = 1), only the term P = 1 is non-zero and the claim is verified.

If some states are multiply occupied, |xi⟩ = |xj⟩ for some i ̸= j and other terms in the sum have a
non-zero contribution. In fact, we find that all the terms evaluate to 1, where P permutes the indices
in a way that ∀i we have |xi⟩ =

∣∣xP(i)

〉
. This is the case, if

P ∈ S(n1)× S(n2)× · · · × S(nK) ⊂ S(n), (10)

i.e. P only permutes particles occupying the same state. Here, nk denotes the occupation number of
the K orthogonal single-particle states. The size of each permutation group S(nk) is nk! and thus
we find

1 = N 2n! |S(n1)× S(n2)× · · · × S(nK)| = N 2n!
K∏
k=1

nk!. (11)
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Then we have
N =

1√
n!
√∏

k nk!
. (12)

Problem 3 : Eigenspectra of fermions and bosons

We are familiar with simple harmonic oscillators from Quantum Physics 1. A particle with mass
m in one-dimensional harmonic potential V (x) = 1

2mω
2x2 has the following eigenenergies.

En = ℏω
(
n+

1

2

)
, n = 0, 1, . . . (13)

and we call φn(x) the associated eigenfunctions which we suppose normalized.
Now consider that we want to study a system of identical particles that do not interact so that

we can consider the total Hamiltonian of these systems as a sum of one particle Hamiltonian.
Bosons

We take the particles as Bosons of zero spin here. So the eigenfunction of Bosons needs the spatial
part which must be symmetrical and we know the one particle case of them from φn(x).

1. Consider the case of 2 bosons. Find the first 3 energy levels, their degeneracy, and the associated
eigenfunctions.
(Hint : Use φn(x)s to make two-particle symmetric wavefunctions.)
In this section, we assume that the particles are spinless bosons. The wave function of the
system therefore consists solely of a spatial part, which must be symmetrical. For a system of
two bosons, the total energy of the system is given by

E = En1 + En2 , (14)

where each Eni is given by Eni = ℏω
(
ni +

1
2

)
.

The lowest energy level is the one with both bosons in the n1 = n2 = 0 level. We can have
this energy just with this combination of nis and so the degeneracy is 1. The ground state
energy Eground state is

Eground state = E0 + E0 = ℏω (15)

and the symmetric eigenfunctions is

ψground state(x1, x2) = φ0(x1)φ0(x2) (16)

The first excited state corresponds to the state with a boson in n = 0, and the other one in
n = 1. The eigenenergy is

E1st excited state = E0 + E1 = 2ℏω (17)

The symmetric eigenfunction is

ψ1st excited state(x1, x2) =
1√
2
[φ0(x1)φ1(x2) + φ1(x1)φ0(x2)] (18)

and the degeneracy is still 1.
The second excited state corresponds to either the boson in n = 0, and the other in n = 2,
or to the state with both bosons in n = 1. The eigenenergy is

E2nd excited state = E0 + E2 = E1 + E1 = 3ℏω (19)
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and the symmetric eigenfunction in the case of bosons in two different energy levels

ψ
(1)
2nd excited state(x1, x2) =

1√
2
[φ0(x1)φ2(x2) + φ2(x1)φ0(x2)] (20)

and in the case where bosons are in the same energy levels

ψ
(2)
2nd excited state(x1, x2) = φ1(x1)φ1(x2). (21)

It means that we have two eigenfunctions for one energy so the degeneracy is 2.

2. We are now interested in the case of 3 bosons. Find the first 3 energy levels, their degeneracy
and the associated eigenfunctions.
We now look at the 3 boson case. For a system of three bosons, the total energy of the system
is given by

E = En1 + En2 + En3 . (22)

The lowest energy level is the one with the 3 bosons in the energy level E0. The eigenenergy
is

Eground state = E0 + E0 + E0 =
3

2
ℏω (23)

and the symmetric eigenfunction is

ψground state(x1, x2, x3) = φ0(x1)φ0(x2)φ0(x3), (24)

so the degeneracy is 1,
The first excited state corresponds to the state with 2 bosons in E0, and the third one in
E1. The eigenenergy is

E1st excited state = E0 + E0 + E1 =
5

2
ℏω (25)

The symmetric eigenfunction is

ψ1st excited state(x1, x2, x3) =
1√
3
[φ0(x1)φ0(x2)φ1(x3) + φ0(x1)φ1(x2)φ0(x3) + φ1(x1)φ0(x2)φ0(x3)]

(26)
and the degeneracy is still 1.
The second excited state corresponds to the state with one Boson in E0, and two Bosons
in E1 or two Bosons in E0, and one Boson in E2. The eigenenergy is

E2nd excited state = E0 + E0 + E2 = E0 + E1 + E1 =
7

2
ℏω (27)

The symmetric eigenfunction in the case of two Bosons in E0, and one Boson in E2 is

ψ
(1)
2nd excited state(x1, x2, x3) =

1√
3
[φ0(x1)φ0(x2)φ2(x3) + φ0(x1)φ2(x2)φ0(x3) + φ2(x1)φ0(x2)φ0(x3)]

(28)
The symmetric eigenfunction in the case of one Boson in E0, and two Bosons in E1 is

ψ
(2)
2nd excited state(x1, x2, x3) =

1√
3
[φ0(x1)φ1(x2)φ1(x3) + φ1(x1)φ0(x2)φ1(x3) + φ1(x1)φ1(x2)φ0(x3)]

(29)
and the degeneracy is 2.
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Fermions
In this section, we are interested in the case of two electrons, i.e. two fermions of spin of spin 1/2,
and we are looking for the eigenfunctions of two particles in the form

ψ(x1, x2, s1, s2) = φ(x1, x2)χ(s1, s2), (30)

where xi denote the position of the particles and si ∈ {+1
2 ,−

1
2} their spins. φ(x1, x2) is the spatial

part and χ(s1, s2) is the spin part of the wavefunction.

1. χ(s1, s2) means that the first particle has spin s1 and the second particle has spin s2. What is
the dimension of the space of functions χ(s1, s2) ?
The wave functions live in the Hilbert space spanned by the tensor product of two spin 1/2
particles H = H 1

2
⊗H 1

2
. Thus dimH = (dimH 1

2
)2 = 22 = 4

2. We define in this space, the operators P (permutation) and Sz (total spin in the ẑ direction)
by :

Pχ(s1, s2) = χ(s2, s1)

Szχ(s1, s2) = (s1 + s2)χ(s1, s2) (31)

In other words, we know that χ(s1, s2) is the eigenfunction of Sz with eigenvalue s1 + s2.

(a) Demonstrate that we can diagonalize P and Sz in a common basis.
We show that the two operators commute :

PSzχ(s1, s2) = P(s1 + s2)χ(s1, s2) = (s1 + s2)χ(s2, s1) = Szχ(s2, s1) = SzPχ(s1, s2),

where we used that s1, s2 ∈ R commute.
(b) Using the previous result find the common eigenstates of P and Sz.

(Hint : Sz is already diagonal in the basis of χ(s1, s2) so try to diagonalize P in this basis.)
To find the mutual eigenfunctions of P and Sz, we diagonalise P in each eigenspace of
Sz. The eigenspace of Sz is given by χ(s1, s2), here we write all eigenvectors and their
eigenvalues.
The first eigenvalue is 1 with the following eigenvector.

Szχ(+
1

2
,+

1

2
) = χ(+

1

2
,+

1

2
) (32)

The second eigenvalue is −1 with the following eigenvector.

Szχ(−1

2
,−1

2
) = −χ(−1

2
,−1

2
) (33)

The third eigenvalue is 0 which has degeneracy 2 and the following vectors are its eigen-
vectors.

Szχ(+
1

2
,−1

2
) = 0 (34)

Szχ(−1

2
,+

1

2
) = 0 (35)
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Let’s also find the effect of P on this basis.

Pχ(+
1

2
,+

1

2
) = χ(+

1

2
,+

1

2
) (36)

Pχ(−1

2
,−1

2
) = χ(−1

2
,−1

2
) (37)

Pχ(+
1

2
,−1

2
) = χ(−1

2
,+

1

2
) (38)

Pχ(−1

2
,+

1

2
) = χ(+

1

2
,−1

2
) (39)

Here we can see that χ(+1
2 ,+

1
2) and χ(−1

2 ,−
1
2) are also eigenvectors for P. So we just

need to diagonalize P in the subspace of {χ(+1
2 ,−

1
2), χ(−

1
2 ,+

1
2)}. We can see that P maps

χ(+1
2 ,−

1
2) to χ(−1

2 ,+
1
2) and vice-versa. Then two eigenvectors of P in this subspace are

namely the symmetric eigenstate 1√
2

(
χ(+1

2 ,−
1
2) + χ(−1

2 ,+
1
2)
)

and the antisymmetric
eigenstate 1√

2

(
χ(+1

2 ,−
1
2)− χ(−1

2 ,+
1
2)
)
. Finally, the common eigenstates of P and Sz

are as follows.

χ++(s1, s2) = χ(+
1

2
,+

1

2
) (40)

χ−−(s1, s2) = χ(−1

2
,−1

2
) (41)

χsym(s1, s2) =
1√
2

(
χ(+

1

2
,−1

2
) + χ(−1

2
,+

1

2
)

)
(42)

χantisym(s1, s2) =
1√
2

(
χ(+

1

2
,−1

2
)− χ(−1

2
,+

1

2
)

)
(43)

3. We now come back to the two electrons in a harmonic potential problem. Find the first 3
energy levels, their degeneracy, and the associated eigenfunctions.
(Hint : Find antisymmetric wavefunctions by trying the possible combination of spatial and
spin parts.)
We know that for two Fermions, the total wave function needs to be antisymmetric. This means
that the total wave function is composed either of a symmetric spatial part and antisymmetric
spin part or an antisymmetric spatial part and symmetric spin part.
Similar to the Bosons part of this question, for a system of 2 electrons, the total energy of the
system is given by

E = En1 + En2 . (44)

The lowest energy level is achieved when both electrons are in n = 0.

Eground state = E0 + E0 = ℏω (45)

In this case, the spatial part φground state(x1, x2) = φ0(x1)φ0(x2) is symmetric so the spin part
needs to be antisymmetric. With the above derivations, we can thus write

ψground state(x1, x2, s1, s2) = φ0(x1)φ0(x2)χantisym(s1, s2) (46)

which has degeneracy 1.
The first excited state The first excited energy E1st excited state is achieved when one electron
occupies the first excited state n = 1 and the other one is in n = 0.

E1st excited state = E0 + E1 = 2ℏω (47)
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To achieve antisymmetry, we can choose either the spin or spatial part to be antisymmetric.
The solutions are

ψ
(1)
1st excited state(x1, x2, s1, s2) =

1√
2
(φ0(x1)φ1(x2) + φ0(x2)φ1(x1))χantisym(s1, s2) (48)

ψ
(2)
1st excited state(x1, x2, s1, s2) =

1√
2
(φ0(x1)φ1(x2)− φ0(x2)φ1(x1))χsym(s1, s2) (49)

ψ
(3)
1st excited state(x1, x2, s1, s2) =

1√
2
(φ0(x1)φ1(x2)− φ0(x2)φ1(x1)))χ++(s1, s2) (50)

ψ
(4)
1st excited state(x1, x2, s1, s2) =

1√
2
(φ0(x1)φ1(x2)− φ0(x2)φ1(x1)))χ−−(s1, s2) (51)

(52)

so the degeneracy of the first excited state is 4.
The second excited state The second excited energy E2nd excited state is achieved when one
electron occupies the second excited state n = 2 and the other one is in n = 0 or when both of
the electrons are in the first excited state n = 1.

E2nd excited state = E0 + E2 = E1 + E1 = 3ℏω (53)

To achieve antisymmetry, we can choose either the spin or spatial part to be antisymmetric.
Let’s first consider the case that both electrons are in n = 1. The solution is

ψ
(1)
2nd excited state(x1, x2, s1, s2) = φ1(x1)φ1(x2)χantisym(s1, s2) (54)

The second case is when one electron occupies the second excited state n = 2 and the other
one is in n = 0. the solutions are

ψ
(2)
2nd excited state(x1, x2, s1, s2) =

1√
2
(φ0(x1)φ2(x2) + φ0(x2)φ2(x1))χantisym(s1, s2)

ψ
(3)
2nd excited state(x1, x2, s1, s2) =

1√
2
(φ0(x1)φ2(x2)− φ0(x2)φ2(x1))χsym(s1, s2)

ψ
(4)
2nd excited state(x1, x2, s1, s2) =

1√
2
(φ0(x1)φ2(x2)− φ0(x2)φ2(x1)))χ++(s1, s2)

ψ
(5)
2nd excited state(x1, x2, s1, s2) =

1√
2
(φ0(x1)φ2(x2)− φ0(x2)φ2(x1)))χ−−(s1, s2)

so the degeneracy of the second excited state is 5.

Problem 4 : Mach-Zehnder interferometer

The Mach-Zehnder interferometer consists of two 50 :50 beamsplitters with a phase shifter in one
arm, arranged as follows :

When working in the second quantization it is often helpful to work in the Heisenberg picture
and consider the action of any unitary process on the creation and annihilation operators rather
than on a given state directly. The phase shift of φ in the upper arm in the Heisenberg picture
acts as â†k2 → eiφâ†k2 . It follows that the total unitary matrix on the mode operators describing the
apparatus is

U = UBS2 Uphaseshift UBS1 =
1

2

(
1 1
1 −1

)(
1 0
0 eiφ

)(
1 1
1 −1

)
. (55)
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Where UBS2 = U †
BS1 and UBS1 is the effect of beamsplitter on the mode operators (â†k1 , â

†
k2
). In

other words, we know that in the Heisenberg picture, the creation operators are changed as follows

â†k1
BS1−−−→ 1√

2
(â†k1 + â†k2), (56)

â†k2
BS1−−−→ 1√

2
(â†k1 − â†k2). (57)

So we can write it in the following way(
â†k1
â†k2

)
BS1−−−→ 1√

2

(
1 1
1 −1

)(
â†k1
â†k2

)
=

(
1√
2
(â†k1 + â†k2)

1√
2
(â†k1 − â†k2)

)
. (58)

We can also see the same calculations to find the unitary matrix of the phase shift.

â†k1
phase−−−→ â†k1 (59)

â†k2
phase−−−→ eiφâ†k2 . (60)

So we can write it in the following way(
â†k1
â†k2

)
phase−−−→

(
1 0
0 eiφ

)(
â†k1
â†k2

)
=

(
â†k1
eiφâ†k2

)
. (61)

(i) Suppose one photon is input into the mode k1. What is the probability as a function of ϕ of
finding it at each of the detectors D1 and D2 ?
Consider that |0⟩k1

and |0⟩k2
are the vacuum states of modes k1 and k2. Then |n⟩ki

means
that we have n photons in mode ki.
We suppose that we have one photon in the mode k1 as input. So it means that our initial
state is â†k1 |0⟩k1

|0⟩k2
. To find the final state after the effect of beamsplitters and the phase
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shifter, we work in the Heisenberg picture and find the evolution of the creation operator. To
do this, we can use the unitary that is given in the question and we can write

â†k1
U−→ 1

2
((1 + eiφ)â†k1 + (1− eiφ)â†k2), (62)

â†k2
U−→ 1

2
((1− eiφ)â†k1 + (1 + eiφ)â†k2). (63)

In the detectors, we are calculating the probability of having photons in that mode. So in
detector D1 we want to calculate the probability of having one photon in mode k1. In other
words, if our output state is |ψout⟩ we can find the probability of having one photon in detector
D1 using the Born rule as follows.

p(n1 = 1, n2 = 0) =
∣∣⟨ψout| (|1⟩k1

|0⟩k2
)
∣∣2 = |⟨ψout|10⟩|2 (64)

So we just need to compute the output state.

|ψin⟩ = â†k1 |0⟩k1
|0⟩k2

= â†k1 |00⟩
U−→ 1

2
((1 + eiφ)â†k1 + (1− eiφ)â†k2) |00⟩ (65)

=
1

2
(1 + eiφ)â†k1 |00⟩+

1

2
(1− eiφ)â†k2 |00⟩ (66)

=
1

2
(1 + eiφ) |10⟩+ 1

2
(1− eiφ) |01⟩ = |ψout⟩ (67)

Now, for the first detector, we have

p(n1 = 1, n2 = 0) = |⟨ψout|10⟩|2 =
1

4
|1 + eiφ|2 = 1

2
(1 + cosφ) = cos2

φ

2
(68)

and accordingly, the probability of having one photon in the detector D2 is given by p(n1 =
0, n2 = 1) = 1− p(n1 = 1, n2 = 0) = sin2 φ

2 .
(ii) Suppose one photon is input into mode k1 and one photon is input into mode k2. What are

the probabilities of finding 2, 1 or 0 photons at each of the detectors D1 and D2 ?
We suppose that we have one photon in the mode k1 and one photon in the mode k2 as input.
So it means that our initial state is â†k1 â

†
k2
|0⟩k1

|0⟩k2
. To find the final state after the effect of

beamsplitters and the phase shifter, we work in the Heisenberg picture and find the evolution
of the creation operator. So we just need to compute the output state.

|ψin⟩ = â†k1 â
†
k2
|0⟩k1

|0⟩k2
= â†k1 â

†
k2
|00⟩ (69)

U−→ 1

4
((1 + eiφ)â†k1 + (1− eiφ)â†k2)((1− eiφ)â†k1 + (1 + eiφ)â†k2) |00⟩ (70)

=
1

4

(
(1− e2iφ)â†k1 â

†
k1

+ 2(1 + e2iφ)â†k1 â
†
k2

+ (1− e2iφ)â†k2 â
†
k2

)
|00⟩ (71)

=

√
2

4
(1− e2iφ) |20⟩+ 1

2
(1 + e2iφ) |11⟩+

√
2

4
(1− e2iφ) |02⟩ = |ψout⟩ (72)

Where in the last line we use the fact that a† |n⟩ =
√
n+ 1 |n+ 1⟩.

Now we want to compute the following probabilities at the detectors.

p(n1 = 0, n2 = 2) =
∣∣⟨ψout| (|0⟩k1

|2⟩k2
)
∣∣2 = |⟨ψout|02⟩|2 (73)

p(n1 = 1, n2 = 1) =
∣∣⟨ψout| (|1⟩k1

|1⟩k2
)
∣∣2 = |⟨ψout|11⟩|2 (74)

p(n1 = 2, n2 = 0) =
∣∣⟨ψout| (|2⟩k1

|0⟩k2
)
∣∣2 = |⟨ψout|20⟩|2 (75)
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Now, using |ψout⟩, we can compute the probabilities.

p(n1 = 0, n2 = 2) = |⟨ψout|02⟩|2 =
1

8
|1− e2iφ|2 = 1

2
sin2(φ) (76)

p(n1 = 1, n2 = 1) = |⟨ψout|11⟩|2 =
1

4
|1 + e2iφ|2 = cos2(φ) (77)

p(n1 = 2, n2 = 0) = |⟨ψout|20⟩|2 =
1

8
|1− e2iφ|2 = 1

2
sin2(φ) (78)

(iii) For each of the cases in (i) and (ii), imagine that just after the phase shifter a detector D3

was inserted. Assuming it does not detect any photons, how are the probabilities of finding the
photons at detectors D1 and D2 affected ?
If we don’t detect a photon atD3, this means the state before entering the second beamsplitter is
given as â†k1 |00⟩ for one-photon case and â†k1 â

†
k1
|00⟩ for two-photon case. After passing through

the second beamsplitter, we can write the output states and then compute the probabilities
for these two cases.

— One Photon : In this case the output state is

|ψin⟩ = â†k1 |00⟩
BS2−−−→ 1√

2
(â†k1 + â†k2) |00⟩ (79)

=
1√
2
(|10⟩+ |01⟩) (80)

Then the probabilities are p(n1 = 1, n2 = 0) = p(n1 = 0, n2 = 1) = 1/2.
— Two Photons : In this case the output state is

|ψin⟩ = â†k1 â
†
k1
|00⟩ BS2−−−→ 1

2
(â†k1 + â†k2)(â

†
k1

+ â†k2) |00⟩ (81)

=
1

2
(|20⟩+ 2 |11⟩+ |02⟩) (82)

Then the probabilities are p(n1 = 2, n2 = 0) = p(n1 = 0, n2 = 2) = 1/4 and p(n1 =
1, n2 = 1) = 1/2.

(iv) What is the relationship between this setup and the two-slit experiment ?
In this part, the probability results are similar to the case in the two-slip experiment when
we had a delayed quantum eraser. Here we do not see interference and we have a probabilistic
mixture.
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