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Quantum mechanics II, Solutions 13-Characters and Lie Algebra
Basics

TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard
Puig, Sacha Lerch, Samy Conus, Tyson Jones

Problem 1 : Irreps of C3v

The aim of this exercise is to consider two representations of the group C3v. We will start by
finding the representation R of the group on the vector space R2. Then we will find the representation
PR of the group on the function space generated by Ψ1(r) = x2e−r, Ψ2(r) = y2e−r, Ψ3(r) = 2xye−r.
We will show that the representation PR is reducible. We will establish the connection with the
representation R of dimension 2.

1. Consider the vector space R2 with vectors (x, y). Derive the representation of R(σ1) and
R(C3) in this space. Then deduce the group multiplication table to find R(u), ∀u ∈ C3v. We
will assume that this representation is unitary and irreducible, which can be demonstrated by
Schur’s theorem.
The two dimensional representation of C3v is given in the lecture notes as
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2. Consider now the vector space of functions H, generated by functions :

Ψ1(r) = x2e−r

Ψ2(r) = y2e−r

Ψ3(r) = 2xye−r

where r = |r| =
√

x2 + y2, with the scalar product :

⟨Ψα|Ψβ⟩ =
∫

d2rΨ∗
α(r)Ψβ(r).

Written as matrices, the group representation C3v is defined as follows :

PR(u)Ψ(r) ≡ Ψ(R−1(u)r), ∀u ∈ H,

where R(u) are the matrices derived in point (a) (in quantum mechanics, for example, the
wave function of a particle obeys this transformation law following a rotation of the reference
frame). Show that it is a representation of the group, and that its matrices are not all unitary.
We write down the transformations for σ1 and C3 explicitly. First, we note that the two
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dimensional representation above is unitary, so |R(g)r| = |r| for all g ∈ C3v. We find for the
reflection σ1

PR(σ1)Ψ1(r) = Ψ(R−1((σ1)r) = (−x)2e−r = Ψ1(r),
PR(σ1)Ψ2(r) = Ψ(R−1((σ1)r) = y2e−r = Ψ2(r),
PR(σ1)Ψ3(r) = Ψ(R−1((σ1)r) = −2xye−r = −Ψ3(r)

and hence

PR(σ1) =

1 0 0
0 1 0
0 0 −1

 . (2)

For R−1(C3) = R(C2
3 ) we have R−1(C3)r =

(
−1

2x +
√

3
2 y

−
√

3
2 x − 1

2y

)
and hence

PR(C3)Ψ1(r) =
(

−1
2x +

√
3

2 y

)2

e−r =
(

1
4x2 + 3

4y2 − 2
√

3
4 xy

)
e−r = 1

4Ψ1(r) + 3
4Ψ2(r) −

√
3

4 Ψ3(r)

PR(C3)Ψ2(r) =
(

−
√

3
2 x − 1

2y

)2

e−r =
(

3
4x2 + 1

4y2 + 2
√

3
4 xy

)
e−r = 3

4Ψ1(r) + 1
4Ψ2(r) +

√
3

4 Ψ3(r)

PR(C3)Ψ3(r) = 2
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We find the matrix representation
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
1
4

3
4

√
3

2
3
4

1
4 −

√
3

2
−

√
3

4

√
3

4 −1
2

 . (3)

We can verify that this is indeed a representation, e.g. (PR(σ1))2 = (PR(C3))3 = 1.
3. Show that the representation PR(u) is reducible by identifying an invariant subspace.

We note that v1 =

1
1
0

 is an eigenvector of both PR(C3) and PR(σ1) and hence the subspace

spanned by v1 is invariant under the action of the group.
4. Hence show that the representation R(u) can be written as a direct sum of a 2D and 1D

irreducible representations.
We first note that R(u) acts trivially on the subspace V1 spanned by v1, hence the repre-
sentation corresponding to this subspace is the trivial one dimensional representation. We
find that H = V1 ⊕ V2 where V2 is the complemented subspace to V1 that is spanned by

v21 =

0
0
1

 , v22 =

 1
−1
0

. In this basis, we write down the matrix representations of the
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representation described above. We find

[
PR(σ1)

]
V2
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)
(4)
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√
3

2 −1
2

)
(5)

which is equivalent to the two dimensional representation discussed before. Hence R(u) =
R1(u) ⊕ R2(u).

5. Construct the character table of C3v !
The trivial representation maps all group elements to the identity. We have seen the 2D re-
presentation in the first part of this exercise. We can compute the traces of the represenation
in the different conjugacy classes and obtain : Tr(R(e)) = 2, T r(R(C3)) = −1, T r(R(σ1)) = 0.
Now we can either identify another irreducible representation i.e. the anti-symmetric represen-
tation that maps cyclic permutation to 1 but transpositions to -1. Or we use the orthogonality
of characters to fill the last row of the character table. For example we have :

Conjugacy Class {e} {(12), (13), (23)} {(123), (132)}
Trivial Representation 1 1 1

Standard Representation 2 0 −1
Sign Representation 1 x y

where the entry of 1 is known as Tr(R(e)) = dim(R) and we know from Burnside’s Lemma
that dim(R) = 1. Then by orthogonality we have :

1 ∗ 2 ∗ 1 + 3 ∗ 0 ∗ x + 2 ∗ (−1) ∗ y = 0 (6)
1 ∗ 1 ∗ 1 + 3 ∗ 1 ∗ x + 2 ∗ 1 ∗ y = 0 (7)

(here the first number is the number of elements in the conjugacy class, the second number is
the character of the known rep. and the third number is the character of the representation
we are looking for. Solving for x, y in the above gives us y = 1, x = −1 and therefore :

Conjugacy Class {e} {(12), (13), (23)} {(123), (132)}
Trivial Representation 1 1 1

Standard Representation 2 0 −1
Sign Representation 1 −1 1

3



Problem 2 : Lie-Algebras and Infinitesimal Generators

This problem is intended to get you familiar with the basics of Lie Algebras and help you
understand the relationship between SU(2) and SO(3)... which in turn will help you (hopefully !)
have a better understanding of why the Bloch sphere representation of quantum states works.

1. Compute a 3D representation of the basis of the Lie-Algebra of SO(3). Then compute the
structure constants (commutator) among the basis elements. Show that the representation
ρ : SO(3) → GL(R3) with ρ(A) = eaiXi , A ∈ SO(3), ai ∈ R representing the rotation (for
example angles) and Xi the basis elements of so(3), is a valid representation of SO(3) (this is
called the fundamental representation of SO(3)).
Hint : The Lie-Algebra is formally defined as the tangent space to the Lie-Group at the identity
element. In practice we can use this to compute the Lie-Algebra by means of the exponential
map. In fact any element A ∈ G can be written as A(t) = etX , X ∈ g, where g is the Lie-
Algebra. Therefore one can access elements by looking at : d

dtA(t)|t=0 ∈ g.

To compute the Lie Algebra of SO(3) = {A ∈ Mat3×3(R)|AT A = I, det(A) = 1} we use the pro-
perties of elements of SO(3). Let A ∈ SO(3) i.e. AT A = 1, det(A) = 1. Write A = etX . We have :
AT A = etXetXT = 1. Taking the derivative of both sides and evaluating at t = 0 yields : XT = −X.
Next we have det(A) = det

(
etX

)
= eT r(tX) = 1. Again with the derivative evaluated at t = 0, we

obtain Tr(X) = 0. Therefore the Lie Algebra so(3) of SO(3) is given by traceless, skew-symmetric
3 × 3 matrices. A basis for those is given by :

E1 =

 0 1 0
−1 0 0
0 0 0

 , E2 =

0 0 −1
0 0 0
1 0 0

 , E3 =

0 0 0
0 0 1
0 −1 0

.

For the commutation relation one gets : [Ei, Ej ] = ϵijkEk and the structure constants are therefore
given by ϵijk.
If you take the Lie-algebra as a real vector space, you cannot diagonalize it (as the matrices have
imaginary eigenvalues). Therefore in quantum mechanics we consider the complexified version of the
group i.e. SO(3)C = iSO(3) and then changing into the basis in which E1 is diagoanl, yields :

L1 =

 0 −i/
√

2 0
i/

√
2 0 −i/

√
2

0 i/
√

2 0

 , L2 =

 0 1/
√

2 0
1/

√
2 0 1/

√
2

0 1/
√

2 0

 , L3 =

1 0 0
0 0 0
0 0 −1


which lead to the known commutation relation [Li, Lj ] = iϵijkLk.

To show that this is indeed a representation consider two elements A, B ∈ SO(3). We have ρ(A) =
eaiLi , ρ(B) = ebiLi . Let AB = C. Then ρ(A)ρ(B) = eaiLiebiLi = eaiLi+biLI+ 1

2 aibj [Li,Lj ]+... = eciLi =
ρ(C) = ρ(AB) (Baker-Campbell-Hausdorff-Formula). The product of the exponentials of two ope-
rators gives the exponential of the sum of the operators plus a series of their commutators. Since the
commutator of two basis elements Xi, Xj will again produce a basis element iϵijkXk the expression
will again be the exponential of a linear combination of Xi with new coefficients ci.

2. Do the same for SU(2).
We have SU(2) = {A ∈ Mat2×2(C)|A†A = I, det(A) = 1}. Similar to before the constraint
on the determinant leads to traceless basis states for the Lie Algebra su(2). Instead of skew
symmetric matrices we now have A† + A = 0, A† = −A, which leads to matrices of the form(

ia b + id
−b + id −ia

)
.

One possible basis is :
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σ1 =
(

0 −i
−i 0

)
, σ2 =

(
0 −1
1 0

)
σ3 =

(
−i 0
0 i

)
. Again taking the complexified version of the

group SU(2)C = iSU(2) we find a basis that you know very well : the Pauli matrices iσi with
commutation relations [σi, σj ] = 2iϵijkσk.

3. It can be shown that the finite dimensional, irreducible representations of SO(3) all have
odd dimensions. They can be constructed with the help of the well known ladder operators
L± = Lx ± iLy where Lx,y,z form a basis of so(3). In the basis in which Lz is diagonal i.e.
{|l, m⟩}, Lz |l, m⟩ = m |l, m⟩, it can be shown that L± |l, m⟩ =

√
(l + 1 ± m)(l ∓ m) |l, m ± 1⟩.

Use this to i) compute the 3D irreducible representation of SO(3) and ii) the 5D irreducible
representation of SO(3).
Hint : Compute the matrix representation of the ladder operators L± in the basis {|l, m⟩} and
construct Lx,y from there. We start with the 3D representation. We know Lz is diagonal with
eigenvalues −1, 0, 1 i.e.

Lz =

1 0 0
0 0 0
0 0 −1


Now we compute the representations of the ladder operators L±.

√
(l + 1 ± m)(l ∓ m) =√

(2 ± m)(2 ∓ m) = 0/
√

2,
√

2/
√

2,
√

2/0 for m = 1, 0, −1 and L+/L−. Therefore :

L± =

 ⟨1|L±|1⟩ ⟨1|L±|0⟩ ⟨1|L±|−1⟩
⟨0|L±|1⟩ ⟨0|L±|0⟩ ⟨0|L±|−1⟩

⟨−1|L±|1⟩ ⟨−1|L±|0⟩ ⟨−1|L±|−1⟩

 =

0
√

2 0
0 0

√
2

0 0 0

 or

 0 0 0√
2 0 0

0
√

2 0


for L+ and L−, respectively. We also have : Lx = 1

2(L+ + L−) =

 0 1/
√

2 0
1/

√
2 0 1/

√
2

0 1/
√

2 0


and Lx = −i

2 (L+ − L−) =

 0 −i/
√

2 0
i/

√
2 0 −i/

√
2

0 i/
√

2 0

.

The same procedure for 5D gives :

Lz =


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

 , L+ =


0 2 0 0 0
0 0

√
6 0 0

0 0 0
√

6 0
0 0 0 0 2
0 0 0 0 0

 and L− =


0 0 0 0 0
2 0 0 0 0
0

√
6 0 0 0

0 0
√

6 0 0
0 0 0 2 0


Again with Lx = 1

2(L+ + L−),Ly = −i
2 (L+ − L−) we have :

Lx =



0 1 0 0 0
1 0

√
3√
2 0 0

0
√

3√
2 0

√
3√
2 0

0 0
√

3√
2 0 1

0 0 0 1 0


and Ly =



0 −i 0 0 0
i 0 −i

√
3√

2 0 0
0 i

√
3√
2 0 −i

√
3√

2 0
0 0 i

√
3√
2 0 −i

0 0 0 i 0


4. For SU(2) the irreducible representations can have any dimension and we have the same ladder

operators as for SO(3). i) Compute the 2D irreducible representation of SU(2). ii) Compute
the 3D irreducible representation of SU(2). Compare with the one from SO(3). For 2D we
already know a representation, namely the Pauli matrices. For 3D we can follow the same
logic as above and end up with exactly the same representation for SU(2) as for SO(3).

5. Is the 3D representation of SO(3) you have derived also a representation of SU(2) ? Explain
why this makes sense with respect to the Bloch sphere.
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Yes it is. In fact any representation of SO(3) is also a representation of SU(2). The converse is
not true. For example there is a 2D representation of SU(2) (spin-1/2) which is not a proper
representation of SO(3). This is also visible in the possible dimensions : odd for SO(3) while
arbitrary for SU(2). For each representation in SO(3) there are two in SU(2), and we talk
about SU(2) being a double cover of SO(3). (Bonus - non examinable - are all representations
of SU(2) also representations of SO(3) ? What about vice versa ?)
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