Quantum mechanics II, Problems 12: Group averaging and Conjugacy classes

TA: Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard Puig, Sacha Lerch, Samy Conus, Tyson Jones

Problem 1: Conjugacy classes and number of irreducible representations

For the groups C3v and Z_N compute :

- 1. Their conjugacy classes.
- 2. The number of (non-equivalent) irreducible representations.
- 3. The possible dimensions of these irreducible representations.

Problem 2: Group representation theory applied to dephasing

You already did the first two questions in the last exercise sessions but the answers are useful for the next questions.

- 1. Prove that the Pauli matrices and the identity (times ± 1 , $\pm i$) form a (non-Abelian) group with the matrix product.
- 2. Prove that if R(g) is a representation of a group G then $R(g) \otimes R(g)$ is also a representation of G.
- 3. Consider a unitary irreducible representation $R(g) = U_g$ of group G. Use the Grand Orthogonality Theorem to prove that

$$\frac{1}{N} \sum_{g} U_g X U_g^{\dagger} = \frac{1}{d} \operatorname{Tr}[X] I \tag{1}$$

where $d = \dim(X)$ and N is the order of the group.

- 4. Use this result to (carefully!) explain why randomly applying either I (i.e, do nothing), σ_x , σ_y , or σ_z (with equal probability) to any single qubit state on average results in the maximally mixed state.
- 5. Consider now instead a completely reducible unitary representation $U_g = \bigoplus_k R_k(g)$ where the $R_k(g)$ are d_k dimensional unitary irreducible representations. It can be shown that

$$\langle X \rangle_G = \frac{1}{N} \sum_g U_g X U_g^{\dagger} = \frac{1}{d_k} \bigoplus_k \text{Tr}[X \Pi_k] \Pi_k \,.$$
 (2)

What are Π_k and d_k in this expression?

6. The above relation for averaging over representations of finite groups, Eq. (2), generalizes to averaging over compact Lie groups. In this case the finite average $\frac{1}{N}\sum_g$ becomes a continuous integral over a uniform measure $\int d\mu(g)$ and we have :

$$\langle X \rangle_G := \int_G d\mu(g) U_g X U_g^{\dagger} = \frac{1}{d_k} \bigoplus_k \text{Tr}[X \Pi_k] \Pi_k. \tag{3}$$

Use this result to derive an explicit expression (i.e. compute the relevant d_k and Π_k) for the averaged state ρ that results from randomly evolving ρ under the tensor product of two random single qubit unitaries. That is, from apply $U \otimes U$ with $U \in U(2)$, to any two qubit state ρ , and then averaging:

$$\langle \rho \rangle = \int_{U(2)} d\mu \, U \otimes U \, \rho \, U^{\dagger} \otimes U^{\dagger} .$$
 (4)

7. Hence (or otherwise) compute the states that result from averaging (i.e, compute $\langle \rho \rangle$ in Eq. (4)) for the following states :

i.
$$\rho = |\Phi^+\rangle\langle\Phi^+|$$
 with $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

ii.
$$\rho=|\Psi^-\rangle\langle\Psi^-|$$
 with $|\Psi^-\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$

iii.
$$\rho = |00\rangle\langle00|$$

iv. An arbitrary tensor product two qubit state $\rho \otimes \sigma$ (hint : use the Bloch vector representation).