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Quantum mechanics II, Chapter 2 : Entanglement (Part 3)

TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard
Puig, Sacha Lerch, Samy Conus, Tyson Jones

Sometimes observation kills.
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Problem 1 : Tsirelson’s Bound

Suppose
Q=q-0, R=r-0, S=s-0, T=t-o,

where q,r,s and t are real unit vectors in three dimensions. Let
A=Q®S+R®S+RRT-Q®T (1)
Show that
A2=(QRS+R®S+R®T-Q&T)*=41+[Q,R] ®[S,T).
Use this result to prove that
(AA=(Q®8)+(RS)+(ROT) —(QT) < 2V2.

What is the maximum value of (A) in the classical case? What do you infer from the difference
between the classical and the quantum result ?

Hint : Assume any classical observables Q), R, S, T with possible measurement outcomes +1. In
classical physics all observables commute with each other.

Problem 2 : Mermin-Peres and Telepathy (non-examinable)

FIGURE 1 — Mermin-Peres Game Square

This exercise is another demonstration of quantum vs. classical correlations.
We consider Alice and Bob playing a cooperative game on a 3x3 square (see Figure . Alice will



be assigned a secret row, and Bob assigned a secret column. The goal of the game is for Alice and
Bob to fill their column/row with +1 or -1, without seeing each other’s values, while respecting the
following constraints :

— Alice’s row must have an even number of -1 (None or 2) i.e. the product of the entries is +1.
— Bob’s column must contain an odd number of -1 (1 or 3) i.e. the product of the entries is -1.

— The square which is in both, Alice’s row and Bob’s column, must be filled with the same
number by both (both +1 or both -1).

Alice and Bob are allowed to strategize before the game, however any communication is forbidden
after they have been assigned their respective row or column.

1. Suppose they only have access to classical resources. Find a strategy that works out with a
probability of success of 8/9 (It can be shown that this is the optimal success probability using
classical resources). Hint : Try to fill as many squares as possible of the 3x 3 square with +1
and -1, while respecting the given constraints. How many squares can you fill until you reach a
contradiction ?

2. What changes if Bob and Alice can communicate after learning the row/column they’ve been
assigned ?

1/ 41 | +1

2| +1

3| +1

FIGURE 2 — Mermin-Peres Game Square after measuring Z ® Z ® Z ® Z and obtaining {1,1,1,1}
as measurement outcome.

3. Now suppose Alice and Bob share two copies of a maximally entangled Bell state i.e. the full
quantum state is [¢)) = 1 (]0000) + [0011) + [1100) + |1111)). Each of them has one part of the
entangled state, and they can choose to perform on each spin a measurement of {X,Y, Z, 1} (by
"measuring 1" on spin 4, it is meant that no measurement is performed on the i-th spin). The
goal is to find a measurement strategy that beats the classical one in terms of success chances.

Before the game starts, they start to think about a strategy to win the game and come up with
the following idea :

They want to agree upon measurements they can perform on their qubits, for every combination
of row and column they could possibly get. If they find 9 measurements (for every combination
of row and column) that will successfully fill their row and columns (successful means they
agree in the ij-th square, while keeping their constraints), they would win the game always.
They start trying out different measurments they could perform. For example : If Alice got
row 1 and Bob got column 1 they would have to agree in the top left corner of the 3x3 square.
They decide to try both measure Z on both their qubits i.e. they measure 7 ® Z ® Z ® Z on
|1). This results in 4 different possibilities to fill the squares : If Alice and Bob both measure
{1,1}, the state collapsed to [0000). Alice will put {1,1} in the second and third square of the
first row, and Bob will put {1, 1} in the second and third square of the first column. To respect
the constraints Alice needs to fill another 1 in the top left square while Bob has to fill a -1
(see Figure . With this measurement they would therefore lose the game. Had they measured



{1,1,—1,—1} (corresponding to the collapse to |0011)), Alice would fill again {1, 1} while Bob
would fill {—1, —1}. Again respecting the constraints, Alice has to fill a 1, while Bob needs to
fill a -1. They again lose.

Can you find a 4-qubit measurement that will result in a win every time, without failure?

4. Do the same for every combination of rows and columns Alice and Bob can obtain.

Problem 3 : Bloch sphere for pure or mixed states of a two-level system

In the lecture you have started to talk about density matrices. This exercise serves as a first
introduction to the topic, connecting to the already known concept of the Bloch sphere.

1. Derivation of Bloch vector from generic pure state. Any pure one-qubit quantum state can be
written as ket

1) = cos(6/2)|0) 4 sin(/2)e|1) 0 € [0,7), ¢ € [0,27)

or as the density matrix,

P)l = 5 (1 +6 )

Find an expression for r in terms of § and ¢. What does the vector r denote ?

2. Derivation of Bloch vector from properties of density operators. Define the set of density ma-
trices with the following 3 conditions :
— The density matrix is Hermitian : 7 = p
— It has trace 1 : Trp =1
— It is positive or null : (VU|p|¥) >0, VU
Show that any density matrix p of the 2 level system can be written

p=5(1+6-7) 2)

where 6 = (64,6y,6.). Argue that r is a real vector of 3D space and |r| < 1.

3. Show that the state is pure iff ||r|| = 1. Explain why Tr[p?] is a measure of the ‘purity’ of a
quantum state.

4. Sketch on the Bloch sphere the states :

3
e) 51
£) 3l+)(+] + §1=)(-]
5. Give a geometric argument to show that 3(|+)(+| + |=)(—|) = £(]0){0] + [1)(1]) . (Is this
surprising ?)

Disclaimer : think about the meaning of this state. How would you represent |0) (0| on the
Bloch sphere? And |1) (1|7 Now if the space of qubits is a convex space, what is the point in
the Bloch sphere that represents the combination of the previous one ?

Now make the same reasoning for |+) (|, |—) (—|.



