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Chapter 1

Recap of the basics

Introduction to quantum courses often start by describing the behavior of different quantum
systems on a case by case basis. You consider a particle in a box, you consider a spin, you
consider an atom, you consider a photon, etc. However, quantum systems of very different
sorts can behave in similar ways by virtue of simply being quantum systems. With this line of
thought, it can be powerful to abstract away from the actual stuff the system is made out of
and just consider an N level quantum system (or a collection of M different N level quantum
systems). This approach is aesthetically satisfying and also powerful in that it allows one to
derive general results on what can/cannot be done with any quantum system (rather than a
particular realisation of one). We will take this approach below to recap some of the basic
principles of quantum mechanics.

1.1 The qubit

A two-level quantum system, also known as a quantum bit or "qubit", is the simplest possible
quantum system. There are many different (approximate) physical realisations of a qubit in
practise. Essentially, any physical system that is completely characterized by two states (or by
a system with two energy states sufficiently separated from all others). Examples include:

1. An electron’s spin (| 1), | {))

2. A photon’s polarization (|H), |V))

w

. A pair of atomic (or molecular) levels (|G), |E))

e

. The collective state of a super-current in a superconductor (|G), |E))
5. Two different arms a photon can take in an optical circuit (|'left’), |‘right’))
6. ...

We abstract away from the different realisations and choose a canonical basis denoted by

{10), 1)} = ..

A general single qubit state can be written as
W) =al0)+B[1), a,BeC

with |a|? + |3[* = 1. However, a more insightful representation of a single qubit [¢/) can be found
by rewriting the constraint as

|v) = cos (6/2)0) + '? sin (6/2) 1) (1.1)
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Here cos (6/2) and sin (0/2) allow for arbitrary |a| and |5] such that the state is normalized to
1EL and ¢ allows for an arbitrary phase difference between |0) and |1). We note that the global
phase is unphysical and so does not need to be considered for full generality. The parameters
{6,$} can be viewed as defining a unit vector in R? in spherical coordinates,

v = (sinf cos ¢, sinfsin ¢, cosh). (1.2)

This observation is helpful as it allows one to visualise the state of a single qubit on what is
known as the Bloch sphere as sketched in Fig. For example, the |0) state corresponds to
6 =0 and the |+) := %(|O) +1)) state corresponds to 6 = /2 and ¢ = 0. (We will come back to
the Bloch sphere to study in more detail once we have covered density matrices in a couple of
Chapters time.)

Figure 1.1: The Bloch Sphere. The state of a qubit can be represented as a vector in R3.
(Image from Wikipedia).

Notice the analogy between classical computing bits and qubits. A qubit can be viewed as
a generalization of a classical bit, which instead of being restricted to just 0 or 1, can take a
superposition of 0 and 1. This perspective is crucial when it comes to discussing the potential
of quantum systems for computation or communication. However, we stress that the abstract
notion of a qubit is not only relevant in a quantum computational context but is a powerful
approach to take more generally.

1.2 Multi-particle systems

We recall that given any two quantum systems [1)4) and |[¢)p) we denote their joint system via
the tensor product [tp4) ® [0g) = [ap). Similarly, one can construct multi-qubit states. For n
qubits, the space is given by

Hn=H1® - Q®H;
———
n times

For two qubits, for example, the space is then

Ha ={0)®]0), [0)® 1), [1)@[0), [1)@[1)} = {[00), [01), [10), [11)}

“You might be wondering why we have 0/2 rather than just 6 here. There are multiple levels of explanation for
this factor which we will see as the course progresses. Firstly, it arises naturally in the density matrix formalism
due to the fact that the trace of the square of a Pauli matrix is 2 not 2. More fundamentally, it arises from the
relationship between the groups SU(2) and SO(3). For now, we just take it as part of the definition.
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and the state of these two qubits is given by
|U) = «|00)+ B]01) +~v[10) + §|11), o, B,7v,6 € C

with |a|? +|B]? + |y[* +|6]* = 1. One can also choose to consider this system as four level system
of the form

3
U) =3 axlk)
k=0
where we have used the relabelling |ij) — [i2! +52°), i.e. [00) =0),]01) =|1),]10) = |2),|11) = |3)ﬂ

A system of n qubits corresponds to a d = 2" dimensional quantum system. One can also
consider a d dimensional quantum system directly (without being restricted to a power of 2
dimensional system). A three level quantum system is known as a qutrit and higher dimensional
systems are sometimes known as qudits.

1.3 Evolution

The evolution of a quantum state is given by the Schrodinger equationEL

ZO) b1y, (1.3)

When the Hamiltonian H is time—imdependent7 the evolving state can be written directly as

(1)) = U() [4(0)) (1.4)

where U(t) = e is the unitary time evolution operator. While these two perspectives are
equivalent and any unitary operation is generated by exponentiation of a Hamiltonian (i.e. a
Hermitian operator) it is often convenient to abstract away and forget about the underlying
Hamiltoniar1

A unitary operation is a matrix U such that UUT = UTU = I. Here are some important
properties of unitary operations:

+ Reversible: UT(U 1)) = )

«+ Length preserving: ()| UTU |1b) = (¢|t)
o Linear: U(ay)+ Bo)) = aU ) + U o).

Let us have a look at the evolution of a single qubit state. An important set of operators in
this case are the Pauli matrices (for which there are a numerous notational conventionsEI):

1 0 0 1 0 —2 1 0
UO—]I—(O 1),0‘1—0'96—X—(1 O),ag—ay—Y—(i 0),03—0Z—Z—(0 _1). (1.5)

Pauli matrices appear everywhere so it is helpful to become very familiar with their properties.
Here are some useful (interrelated) properties that it is good to remember to save yourself
needing to re-derive:

%I will switch freely between the notation |i)®|j) = |ij) = [i2" + j2°) - while potentially a little confusing at first
this is standardly done so you’ll need to get used to it :)

3Here and through out these notes I will set A = 1.

1At least until it comes to the symmetry properties of states. We will discuss again the relationship between
these two pictures when we discuss Lie groups and Lie algebras in the groups and representations part of the
course

®Again, I may switch between these various choices in notation as is standardly done.
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1. Tr[I] =2 and Tr[ X ] =Tr[Y]=Tr[Z] =0

2. For i =1,2,3 we have 0;0; = 0;;1 + i€;j,,01, where ¢, is the Levi-Civita symbol (i.e. 012 =1,
020y =10, OyOy = =10, ...)

3. Commutation: [0;,0;] = 2i€;,0%
4. Anticommutation: For i = 1,2,3 we have {0;,0;} = 20;;I.
5. The Pauli matrices form an orthonormal basis with Tr[o;0;] = 26;;

Ezxercise: verify these identities!
Pauli matrices are both hermitian and unitary so, depending on the context, they can be
thought of as: evolution operators, generators of evolution operators or as measurement. In fact

being able to switch freely between these perspectives is very convenient.

Paulis as gates: For example, X acts as the NOT gate on a quantum bit:

s )-()-»
i )60

Ezercise: compute the action of each of the Pauli operators on the Bloch vector of a generic
single qubit state.

(1.6)

Paulis as generators. A Pauli operator can also be seen as a generator of a unitary
evolution. To see this recall that the Pauli matrices form a matrix basis. As such, any single
qubit Hamiltonian can be written asﬁ

3
H =) wnio; =wn.o, (1.7)
i=1

where we have defined the vectors n = (ny,n9,n3), o = (01,02,03) and we have pulled out a
factor w as setting the over all energy scale. It follows that any single qubit unitary can be
written as

U= e—th _ e—iwn.at ) (18)

What is the effect of applying this to a generic single qubit state [1) = cos (6/2) |[0) + ¢ sin (6/2) |1)?
To see this we first note you can use the properties of the Pauli operators combined with the
definition of the matrix exponential (Ezercise: do this!) to show that:

e—in.a’wt _ COS(wt)]I _ isin(wt)n.o' . (1'9)

It now remains to evaluate the effect of this operator on a single qubit state. Let us look at an
example. Suppose n =n, = (0,0,1) then n,.o = 0, and we have
e 7=t (cos (0/2) |0) + € sin (0/2) |1)) = cos(0/2)e!0) + sin(0/2)e'?e™™![1)

‘ ' 1.10
_ e—zwt(cos(9/2)|0> +Sin(9/2)el(2wt+¢)|1>) ( )

5We have dropped the identity term here as it will only generate a global phase and so is unphysical if
considering just the evolution of a single qubit. Note that if we were considering the partial evolution of a two
qubit system we would need to be more careful as this could be a (physical) relative phase.
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Recalling the Bloch vector in Eq. we thus see that the state rotates around the Z axis by
an angle 2wt.

In fact this holds true more generally - a Hamiltonian of the form Eq. causes a qubit
state to rotate around the axis n at a rate 2wt as shown in Fig. Ezxercise: show this! This
provides a convenient means of inspecting how a single qubit state will evolve without needing
to perform explicit calculations.

x

Figure 1.2: The Rotation in Bloch Sphere. Pauli matrices can be a generator of a rotation.

1.4 Measurements

There are multiple ways of representing measurements in quantum mechanics. The first mea-
surement that students usually are introduced to are ‘observables’. These are Hermitian oper-
ators, i.e. an operator M such that M = M. In virtue of being Hermitian, observables are
diagonalizable and have real eigenvalues so we can write

M =3 A M) (Al - (1.11)
k

The expectation of an observable M in a state |¢) is then given by

(M) = (| M [p) = Zk:)\kpk (1.12)

with py, = [(Ag[)]?.

The operator |Ag){(Ag| is alternatively known as a projector. We can also directly define
measurements in terms of a set of projectors {II;} where II7 = IT. The probability of obtaining
an outcome k is given by

pr = (Y| [¢) (1.13)
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and so to ensure that the probabilities sum to 1 we require that >, I = 1.

In the case of rank 1 projector (i.e. those that have only eigenvalues 1 and 0) we can always
write Il = |Ag){Ag| for some |\g). However, this not always be the case. Sums of orthogonal
projectors are also orthogonal projectors but will not be rank one, e.g.

Meven = 100)(00] + [11){11] , Thoaq = 01)(01] + [10)(10]. (1.14)

In the case of an ‘ideal’ measurement it is commonly said that the state of the system

‘collapses’ onto the state

Meldoe) - (1.15)

\/p_k )
This captures the idea that ideal measurements are repeatable because another instantaneous
measurement would give the same outcome and leave the output state unchanged. In the case
of rank one measurements the resulting state is simply the eigenstate corresponding to the
measured outcome. That is, if one obtains outcome k where IIj = |\r){Ag|, the resulting state
on the system is |\g).

It is worth noting that this account of measurement is not the full story. Firstly, it is not
sufficiently general and there are all sorts of measurements that cannot be captured by observ-
ables or projectors (e.g. imperfect measurements). Instead, a complete account of measurement
can be provided by the positive operator-valued measure (POVM) formalism. This goes beyond
the requirements of this course but is covered in my Quantum Information Theory course and
Jean-Philippe Brantut’s Quantum optics course if you are interested in learning more. Secondly,
the claim that the quantum state collapses on measurement is utterly baffling for a number of
reasons. This we will return to in Chapter 6.

10



Chapter 2

What makes quantum different?

For most people, the formalism of quantum mechanics (when first introduced to it at least) is
so different to most of the physics you have seen before that it is hard to dissect what about
quantum physics really is different from classical physics, versus what is just foreign notation.
This can partially be addressed by familiarity - hopefully you are already relatively comfortable
with the quantum formalisnﬂ but part of the aim of this course is to get you more and more
fluent at working with quantum mechanics.

Once you are well acquainted with the quantum formalism, the opposite problem can occur.
It’s easy to become so used to working with it that you forget to take a step back and take in
quite how weird and wonderful it is. And it is important to understand how quantum mechanics
is special, not just because it’s fun and explaining it is a great trick at parties, but also because
it’s only by understanding what makes quantum physics special that we can better learn how to
manipulate quantum systems to our advantage. This insight is at the heart of what is sometimes
called the ‘second quantum revolution’ that is currently underway - where increasingly we are
able to manipulate quantum systems for technological advantages.

This chapter will take a two pronged approach to trying to highlight what makes quantum
mechanics unique. Firstly, we will present a theories of (thoughtﬂ) experiments. In parallel, we
will present a series of no-go theorems about what is possible and not possible in a quantum
world. This chapter will heavily draw on Terry Rudolph’s Quantum Physics lecture notes from
when he was a professor at Imperial College London.

2.1 Superposition and Interference

The concept of a superposition is one that we are particularly vulnerable to forgetting is mys-
terious due to over familiarity. The following (thought) experiments are intended to try and
reignite an appreciation for some of the wonder of superpositions.

Imagine we have a quantum system that can be in two different states |0) and |1) and study
its evolution in time. John Townsend in Chapter 1 of ‘A Modern Approach to Quantum Me-
chanics’ considers the Stern-Gerlach experiment with a particle that can bend to the left ‘0’ or
bend to the right ‘1. Terry Rudolph makes the picture more exciting (but less realisti(ﬂ) by
talking about cats in the ‘alive’ state and ‘dead’ state. If you like atomic physics think about

1Seeing that classical mechanics at an advanced level can also be formalized in similar manner to quantum
mechanics can also help one appreciate that its not quantum’s formalism that makes it special. You will see this
in the Analytical Mechanics course.

2While all of these ‘experiments’ are in some sense physically possible from a theorist’s perspective just the
thought of most of them would hurt many experimentalists.

3We end up with resuscitated zombie cats.

11
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an atom that can be in a ‘ground’ state or ‘excited’ state. If you like photonics, think about
the ‘left’ or ‘right’ arm of an interferometer. Take your pick. I'm going to channel my inner
quantum information theorist and just call the two states ‘0’ and ‘1"

Thought experiment 1: We start with a system in state |1). We wait half an hour before
measuring it. We then find that 50% of the time it is in state |1) and that 50% of the time it is
in state |0).

Thought experiment 2: We start with a system in state |0). We wait half an hour before
measuring it. We then find that 50% of the time it is in state |1) and that 50% of the time it is
in state |0).

Thought experiment 3: We start with a system in state |0). We wait half an hour before
measuring it. We then find that 50% of the time it is in state |1) and that 50% of the time it is in
state |0). We then wait another half an hour before measuring again. What do we expect to find?

Well drawing a probability tree we expect to end up with a 50% chance of finding the system
in state |0) or state |1) as shown in Fig. Overall, half the time we end up with the system
in state |1) and half the time we end up with the system in state |0).

Thought experiment 4: We start with a system in state |0). We wait a full hour before
measuring it. What do we expect to find?

Well intuitively / thinking classically we would expect to see the same as in thought exper-
iment 3. But when we do experiment 4 we actually find that the system is always in state |0).
What is going on here? Well firstly, that the act of measuring the system seems to have an effect
on how the system behaves. Secondly, the state of the system after half an hour is not that it
is in either |0) or |1) with equal probability. Rather, that it is in a special quantum state - it is
in a superposition.

Let us describe this situation mathematically. The dynamics of thought experiment one can
be described as:

1)~ 21+ [0)). (21)

Thought experiment two can instead be described as

0) > 5 (=11) +10)). (22)

The negative sign here is essential to account for the linearity of quantum mechanics (i.e. that its
dynamics are governed by unitary operations) - this ensures that orthogonal states are mapped
to orthogonal states. It follows from Eq. and Eq. and the linearity of quantum
mechanics that the third thought experiment can be described as

1= 50 +10p) = 2 (S04 10D+ 511 +10)) =10). (23)

The cancellation of the terms here is what is known as quantum interference. It is this causes
the probability tree picture in Fig. to break down and ensures that a quantum state of
the form of Eq. cannot be understood simply as describing a system that is in ‘0’ or ‘1’
with probability 1/2 each. Rather they represent a non-classical state of affairs, that we cannot
described using our conventional classical vocabulary, and instead just call a ‘superposition’.

12
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50% 50%

1 0
SZN% ngiy = so%\r’f;f’o% N%

0 1 0 1

Figure 2.1: Probability tree diagram corresponding to thought experiments 1, 2 and 3 (from left
to right)

2.2 The Quantum Eraser

The two slit experiment is often the first thought experiment a student encounters when study-
ing quantum mechanics. Here we will explore some variants to it that highlight the curious
interplay between coherence, interference and entanglement.

Standard two slit experiment (1): Let us start with the standard two slit experiment.
We suppose that single horizontally polarized photons impinge on a screen with two slits and
hit a second screen placed behind the first (see Fig. )) Although the photons hit the screen
one by one we see an interference pattern on the screen behind.

Standard two slit experiment (2): We now suppose that a 90 degrees polarisation shifter
is placed behind one of the slits (so that the light coming through it now is vertically polarized)
but otherwise leave the set up unchanged (Fig. ) What happens this time?

In this case the interference pattern does not arise. Instead we see a simple mixture of the
two patterns we would get if the photons went either through the top or the bottom slit as
shown in Fig. 2.:2p. This is because if we measured each photons polarisation then we would be
able to determine if it went through the top or the bottom slit. Even if we do not in fact check
which slit we went through this information is enough to destroy the interference pattern.

Here is how to understand this mathematically. Let ¢ (x,t) be the wavefunction of a photon
emerging from the first slit, and 15 (x,t) be that from the second slit. Let the polarisation of a
photon be labelled by a H (horizontal) or V' (vertical) substate, so that a horizontally-polarised
photon emerging from the first slit is written as [¢1, H) = [¢»1) ® |[H). In the original two slit
experiment the state of the photon after going through the two slits is of the form

L
V2

and on measuring the position of the particle at the second screen we get the probability density

P(x) = (U (z,t)| |o)(2] [0 (x, 1)) = [1 (2, 1) + (2, 1) /2. (2.5)

In the second case the state of the photon after passing through the two slits and the polarization
shifter is of the form

(W (z,t)) = —=([1(z,1)) + [a(z, 1)) ® |H) (2.4)

@ (z,1)) = %(I%(%ﬂ) @ V) +[ia(x,1)) @ |H)) (2.6)

13
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Figure 2.2: Quantum eraser experiments

and so the probability density function of the photons hitting the screen is

P(x) = (1 (@, )] e ) (@[ [1 (2, ) (VIV) + (o (2, )] [ )| [ (2, 1)) (H|H)

9 5 (2.7)
= ([a (=, )" + [iha(=, 1)) /2

Quantum eraser: We now suppose that as well as the 90 degrees polarisation shifter be-
hind one of the slits we add a polaroid sheet at 45 degrees, which only outputs light in the state
|~)= %(|H) +|V')). This is shown in Fig. ) What happens this time?

We see the interference pattern again but at half the intensity. Why? The light coming
through the top slit is vertically polarized and the photons coming through the bottom slit is
horizontally polarized. The polaroid sheet effectively measures the polarization degree of free-
dom in the {|7),|v )} basis and only lets through measurement outcomes that project the light
to | 7). Now both H and V photons have a 50% chance of being measured to be | 7) and so the
sheet lets through only half the photons. But crucially all the photons (both the ones from the
upper slit and the lower slit) that get let through are in the |7) state and so it’s impossible to
determine which slit any photon went through.

FEzercise: What changes if the polaroid sheet only lets through | ) = LZ(|H )—1V)) photons?

Delayed quantum eraser: Let’s go back to the simple two slit experiment and this time
place an atom behind one of the slits as sketched in Fig. ) Now this would be hard to
arrange in practise but let us suppose that the photon that passes the atom flips the spin of an

14



CHAPTER 2. WHAT MAKES QUANTUM DIFFERENT? Quantum Physics I1

outer electron from ||) to |t) but is not absorbedﬂ (For each photon that we send through the
two slit experiment we use a new atom and store the previous in a quantum memory). What
happens in this case?

Well it depends on the basis that the atom is measured in. If the atom is measured in basis
{|1),|4)} then we end up with version 2 of the standard two slit experiment where we know
which slit the photon went through. However, if we measure in the {|7),|~ )} basis we end up
with the quantum eraser version, and the interference reappears (but we do not lose half the
photons this time). Ezercise: Work through the maths!

The interference pattern depends on the basis that the atom is measured in - something we
subjectively choose. And more puzzling still, this is true even if the atoms are taken far away
before being measured! So a natural thought might be - can we use this to signal?

2.3 No signalling

Consider again the delayed quantum eraser thought experiment from the lectures and exercises
last week. We saw the following.

e Measure in the Z basis:

If we obtain |f) then the pattern is |11 (,t)[>.
If we obtain ||) then the pattern is [t2(x,t)[%.

e Measure in the X basis:

If we obtain |7) then the interference pattern is 1| (x,t) + o (a, t)[2.
If we obtain |~) then the interference pattern is 3|11 (z,t) — 12 (z, t)[%.

Could we try and use this setup for a superluminal signal? On the surface it might look like
we should be able to. Suppose Alice and Bob try and signal using the code that an interference
pattern corresponds to the bit ‘0’ and no interference corresponds to the bit ‘1. Then Bob it
would seem could measure Z or X to send ‘0’ or ‘1’ to Alice and this would be true no matter
how far away he is from Alice, seemingly allowing superluminal signalling. However, if Bob
could signal to Alice in this way it would violate special relativity. So what breaks down?

Well the key thing to note is that the interference pattern depends on not just the measure-
ment, but the measurement outcome. Say the atom is measured in the Z basis. Bob will obtain
|t) and ||) with equal probabilities (because the photon is equally likely to go through either
slits) and so the resulting pattern on the screen is

p(a) = Wi (@, O + 2 (2, ). (2.8)

Similarly, if Bob measures in the X basis then the states |+) and |-) are obtained with equal
probabilities and so the resulting pattern is

p(x) = [1(z,t) + oz, ) + |1 (2, ) = vo(2,t)]* = |1 (2, 1) + o (2, )| (2.9)

That is, the pattern is the same in either case!

4An experiment of this spirit but not of this exact form has been conducted. Take a look at the wikipedia
page on the delayed quantum eraser to learn more.
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In order to be able to communicate with this set up Bob would need to tell Alice for each pho-
ton that went through the setup which outcome he obtained. She could then mark the photons
according to the outcome obtained and determine whether or not an interference pattern was
observed for measurement outcomes of the same sort (corresponding to X measurement) or no
interference pattern (corresponding to Z measurement). However, this requires communication
which defeats the purpose of the purported signalling protocol.

Ok, so this quantum erasor protocol doesn’t work. Could another more general protocol
work? Suppose Alice and Bob share two halves of generic entangled state |¥) that they want
to use to try and signal. Suppose Bob considers two different measurements Il and I1; that he
wants to use to signal ‘0’ or ‘1’ respectively. Let us suppose that these measurements collapse
Alice’s state as follows.

1. Bob measures IIj: Alice obtains the states |¢;) with probability p;.
2. Bob measures II;: Alice obtains the states |¢;) with probability g;.

Then in order for Alice to be able to tell whether Bob measured IIy or II; she will need to be
able to find a measurement II4 such that

)

> i (il o ) # D0 i (bil Ia |i) (2.10)

It turns out that it is impossible to find such an operator. That is, for any choice in 114 the
above expression is an equality. It follows that it is impossible to use an entangled state faster
than the speed of light. For an example of this see this chapter’s problem sheet. We will also
demonstrate this more rigorously when we cover reduced states in a few lectures time.

2.4 Non-locality and Bell inequalities

In this section we will explore how quantum entanglement can produce correlations that cannot
be explained by classical observers that pre-share classical correlated data/randomness. More
concretely, we will see how Bell’s theorem, and experimental verifications of it, imply that not
only quantum physics but also our world is inherently ‘non-local’ I will start this section with
an unconventional way of framing the Bell’s Theorem that I have shamelessly borrowed from
Terry Rudolph.

2.4.1 Quantum Psychics

Suppose there were two friends Alice and Bob who claimed to share a psychic connection. How
could you go about testing it? Let’s put Alice and Bob into isolated rooms with no way they
can pass any messages between them. Outside Alice’s room is a sceptic, let’s call him Spock,
who tosses a coin and tells Alice the outcome. Outside Bob’s room is another sceptic, Kirk, who
similarly tosses a coin and tells Bob the outcome. Alice and Bob must then respond with either
yes ‘Y’ or no ‘N’. What can Spock and Kirk ask Alice and Bob to do to try to determine if they
are psychic? They consider the following tests...

Test 1: Every time Alice and Bob get told the same coin outcome they must give the same
answer, every time they get different outcomes they must give different answers.
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Figure 2.3: The Quantum Psychics Game.

This clearly is a flawed test. Alice and Bob can pass it simply by deciding in advance that
they will both say yes to heads and no to tails.

Realising this, the Spock and Kirk instead toy with proposing an alternative test...

Figure 2.4: The Quantum Psychics Game: Test 1.

Test 2: Fvery time Alice and Bob get told the same coin outcome they must give opposite
answers, every time they get different flips they must give the same answers.

On further thought this test is equally flawed. Alice and Bob agree in advance that they
will give different outcomes. That is, Alice says yes to heads and no to tails but Bob does the
converse.

Instead the Spock and Kirk propose the following test.

Test 3: Every time Alice and Bob get told ‘H’ they must give opposite answers, but otherwise
they must give the same answer.

Now if you play around with this you’ll see that there is no strategy that Alice and Bob can
cook up in advance in order to fool the sceptics. Try this! After playing with a few examples,
the easiest way to definitively prove it to yourself is to represent the binary answers ‘Y’ and ‘N’
by +1 and -1 respectively. Then the rules of the game can be formalized as trying to find an
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Figure 2.5: The Quantum Psychics Game: Test 2.

assignment of Ay, Ay, By and Br such that

AgBg =-1

AnbBr =1 (2.11)
ArBp =1 ’
ArBr =1

Multiplying the left hand side of these four equations together gives A%IA%B%{B% = 1. However,
multiplying the right hand side together gives —1. Hence there cannot be an assignment of Ay
and By that satisfies all the rules of the test and as such this test is a viable means to testing
if Alice and Bob are psychic.

In fact, the maximum number of rules that can be satisfied in Eq. for any strategy
taken by Alice and Bob is 3. (Convince yourself of this!) That is, at best Alice and Bob can
pick a strategy that will lead to them fooling the sceptics for 3 out of the 4 possible coin toss
combinations:

Pyin < 3/4. (2.12)

This is an example of a Bell inequality. If Alice and Bob reliably can win with a probability sig-
nificantly greater than 3/4 then it would seem reasonable to assume that they really are psychic.

However, if Alice and Bob share entangled Bell states, |¢*) = % (|00) +[11)), then they can

use the non-classical correlations stored in the Bell state to pass the sceptics test. Alice and
Bob’s strategy to do so is as follows.

o If Alice gets told ‘H’ she measures in the Z basis and says ‘Y’ if she gets ‘|0)” and ‘N’ if
she gets ‘|1)".

o If Alice gets told ‘T’ she measures in the X basis and says Y’ if she gets ‘|+)” and ‘N’ if
she gets ‘|-).

o If Bob gets told ‘H’ he measures in the basis
{|h) = sin(7/8)[0) + cos(m/8)[1), |h) = cos(m/8)|0) — sin(7/8)[1)} (2.13)
and says ‘Y’ if he gets ‘|h)’ and ‘N’ if she gets ‘|h)".
o If Bob gets told ‘T’ he measures in the basis

{[t) = cos(7/8)[0) +sin(r/8)|1), [£) = sin(7/8)[0) - cos(r/8)|1)} (2.14)
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and says ‘Y’ if he gets ‘|t)” and ‘N’ if she gets ‘|t).
Alice and Bob can beat test 3 with probability

2+2
4

PQuantum = cos(m/8)? = ~0.854. (2.15)

FExercise: Check this!

However, crucially this is an intriguing form of telepathy. They can use it to cheat the
sceptics test but (as we saw before and you will see in the problem sheet) they cannot use it to
signal. So is it useful for anything? In fact, it proves useful in quantum cryptography (but that
is beyond the remit of this course).

Terry’s quantum psychics version of the Bell inequality is entirely equivalent to a more
conventional framing of the Bell’s theorem known as the CHSH inequality. Rather than asking
what is the probability of Alice and Bob winning test 3, the CHSH inequality is a bound on the
sum of the expectation values of the product of Alice and Bob’s answers for each of the different
possible combinations of outcomes. That is, a bound on the correlation coefficient

C = <ATBT> + (AHBT) + (ATBH> - (AHBH> (2.16)

where
<AHBH) = (—1) X P(AH = 1,BH = —1|H,H) + (—1) X P(AH = —1,BH = 1|H,H)

2.17
+(+1)XP(AH=1,BH=1|H,H)+(+1)XP(AH=—1,BH=—1|H,H). ( )

and similarly for the other expectations values. We want to relate this to probability of winning
in test 3,
1

PWiIl:4

(P(AHZ 1,BH=—1|H,H)+P(AH=—1,BH: 1|H,H)

P(Ag=1,Br=1|H,T)+ P(Ay =-1,By =-1|H,T)

2.18
P(Ar=1,By =1|T,H) + P(Ar = -1, By = -1|T, H) (2.18)
P(AT = 1,BT = 1|T,T) + P(AT = —1,BT = —1|T‘7 T))

To do so, we note that as the probability of the different outcomes have to sum to 1, we can
write (AgBp) as

(AHBH> =1- 2(P(AH = 1,BH = —1|H,H) + P(AH = —1,BH = 1|H,H)) . (2.19)
On using a similar trick with the other expectations values, the probability of winning in test 3
is given by
1 1 1
Pwin = g ((1 - <AHBH>) + (1 + (AHBT>) + (1 + (ATBH>) + (1 + <ATBT>)) = 5 + éC (220)
As Pyin < 3/4, it follows that
1
C:S(Pwin—§)§2. (2.21)
However for quantum players we have Pyyantum = % + g and so
Cquantum = 2\/5 (222)
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2.4.2 More formal derivation (i.e. pinning down exactly what exactly is
spooky)

We introduced Bell inequalities above with a thought experiment about testing psychics. This
hopefully helped to give you an intuition about what is so strange about violating a Bell inequal-
ity. Below we present a more formal derivation of the CHSH inequality that helps to pin down
precisely how the correlations of a Bell inequality violating system are different to conventional
classical correlations.

Yes(No | |Yes | No Yes [No | [Yes [No

Figure 2.6: The CHSH Inequality

Consider a bipartite system where one part is sent to a LHS measuring device and the other
to a RHS measuring device as sketched in Fig. The LHS measuring device has a lever
allowing it to measure either A or A’. The RHS measuring device can be set to B or B’. When
a measurement is made the light under either “Yes” or “No” turns on. We are interested in the
correlations between result combinations when measurements are made on the different settings.

Let the probabilities is different result combinations be written as P(l,r|LR) where L and R
are placeholders for the settings of the left and right measuring devices (i.e., L can take values
A or A" and R values B and B’) and [ and r are placeholders for the results shown on the LHS
and RHS measuring devices and as such can be either be“yes” or “no”.

Bell inequalities define a correlation coefficient C' as in Eq. and then place an upper
bound on possible values this coefficient can take if you assume “factorisability”. Factorisability
is the statement that the probability of 1 and r can be written as

p(l,7|LR) = f P(I|L, \)P(r|R, \)P(\)d. (2.23)

What is the significance of the factorisability assumption? If events x and y are
uncorrelated then their joint distribution can be written as P(z,y) = P(z)P(y). Similarly, the
statement: P(z,y|a, 8,7) = P(x|a, 8,7)P(yla, 5,7) says that the probabilities of x and y are
uncorrelated once you take into account variables «, 5 and «. Put another way, factors «, 8 and
~ are sufficient to explain any correlations in the probabilities of z and y. For example, it seems
reasonable to expect that the probability that a pub sells more than 100 ice creams in a day,
P(z), is correlated of the probability that the pub sells more than 1000 pints of cider, P(y),
but these correlations can be explained by taking into account all the various common factors
such as outside temperature («), day of the week (), and the number of important sporting
fixtures that day (7). The parameter A is introduced to incorporate all such common factorsﬂ
and giving the original statement of factorisability, Eq. .

®Note; A only includes factors from the events shared histories, it does not include explicit information about
the results of either x or y. My example above would not be factorisable if a pub had a rule that every time 25
ice creams were sold they would toss a coin to decide whether to sell any more ciders that day.
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As such, the statement of “factorisability” used to set up the Bell inequality can be under-
stood as follows. Given A, the probability of the outcome of a particular measurement on the
LHS given that A is measured, is uncorrelated to the probability of a particular result on the
RHS, given that B is measured. That is, A incorporates all effects from the system’s shared
history.

In terms of the experimental set up we are considering here A\ represents all information
concerning the initial state of the system and the experimental equipment before the system is
divided and sent to the different measuring devices. As such, by denying that the joint prob-
ability distribution is factorisable we are denying that the correlations between the individual
properties are explained by the local factors incorporated in A. In this way, denying this form of
correlation amounts to saying that the correlations are inexplicable in terms of local variables.

This idea can be made more precise by considering two necessary conditions for factorisability
to hold.

1. Setting Independence: P(I|L,B,\)=P(l|L,B’,\)

The outcome on the LHS does not depend on what measurement is performed on the RHS
and vice versa.

2. Outcome Independence: P(l|A,R,r,\) = P(l,|A,R,1",\)

The outcome of LHS does not depend on the outcome of the outcome of the RHS, except
in so far as them both depend on .

These two conditions lead to factorisability as follows. Given outcome independence, it
makes sense to talk of individual probability distributions for [ and r, and so we can say that

P(l,r|L,R,\) = P(I|L,R,\)P(r|L,R,\) (2.24)
Given setting independence we can further say that
P(l|L,R,\) = P(l|L,\) (2.25)
and similarly for r. It thus follows that
P(l,r|L,R,\) = P(I|L,\)P(r|R, \) (2.26)

which leads directly to the factorizability condition Eq. (2.23)). Thus, if a system is not factor-
izable then either outcome independence or setting independence (or both) does not hold.

In addition to factorizability two further implicit, but seemingly very reasonable assumptions,
are required.

1. “Single outcome assumption": On each run of the experiment only one result is obtained
at each measuring devicd’}

2. “No conspiracy assumption”: On each run on the experiment we only obtain results for
one of four possible measurements (A& B, A'&B, A&B', A'&B’). We find the probabilities
required to calculate C by averaging out over many runs of the experiment. We need to
assume that bias is not introduced by the measuring technique so that the samples used
to calculate the probabilities are fair.

5This may seem an odd assumption to explicitly state; however, it does not hold under the many worlds
interpretation of quantum mechanics.
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Once you have these two definitions the rest of the derivation is basic probability and algebra.
In what follows we present the original derivation by Bell which is slightly more general than
that presented in the psychic section. Specifically, we will aim to bound

C:=|(LR) - (LR")| +|{(LR) + (L'R)|. (2.27)
Using the factorisability condition we have

(LR)= > lrP(l,r|L,R) (2.28)

lir=+1
and similarly for the other terms in C.

Theorem 2.4.1. Suppose that +1 are the only allowed values for I and r. The “outcome in-

dependence”, “setting independence”, “single outcome” and “no conspiracy assumptions” above

imply that
C<2

for all choices of parameters l,r,1’ 7.

Demeo.
For convenience let us implicitly define

(LR):= Ep p(l-7) :=fEL7R(l-r|)\)P()\)d)\= S irP(l,r|L, R)

l,r=+1

where Ep, p(l-r) is the expectation value of the product [-r for a given choice of L and R.
Er r(1-7|\) represents the same quantity, conditioned on A\. Then we have

EL7R(Z,T|)\) = EL(ZM)ER(T‘)\) V)\,L,R

from which

Q

= [(LR) = (LR')[+ (LR) + (L' R)]
[ELUMI-[ER(rIN) = Ere (rN)] + [ER(rN)] - 1BLUIN) + EL ([N []P(X)dA
[ER(rIX) = Br (rN)[ + [ELUN) + EL (IN)[]P(X)dA

IN

~—~

where the first inequality is taken from

[ f@da] < [ 1f(@)]de

and the second one

[Ea(l[M)] <1
The proof of the theorem follows from

Lemme 2.4.2. for z,y € R and z,y € [-1,1] we have |z —y|+|x +y| <2
Demo.

(|x -yl +|z+ y|)2 =227 + 2y2 + 2|yc2 - y2|
{41‘2 z2 > y?

4% 22 <y?
<4
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Bell’s non-locality theorem on its does not tell us which of setting and outcome independence
is violated quantum mechanics. However, violation of either of those criterions is sufficient to
show that quantum mechanics is in some sense non-local. Bell’s non locality theorem tells us
either that the setting of the other measuring device, or the particular measurement made,
affects the measurement on the other electron.

Note that there is nothing to prevent the measurement events at the two different devices
from being spacelike, and so in terms of our current physical theories causally, separated. As
such, either the information concerning the setting of the other measuring device, or result of
the other measurement, is communicated at greater than the speed of light. However the former
would violate the no signalling theorem. Hence we conclude that Quantum Mechanics violates
outcome independence not parameter independence.

The correlation coefficient is constructed to apply to any physical theory which makes pre-
dictions for the probability of results in any experimental set up of the general structure outlined
above. In particular, the derivation makes no direct appeal to either quantum mechanics or de-
terminism. Experiments have subsequently confirmed that the CHSH-Bell inequality is violated
by our world. This tells us that any fundamental physical theory for the world we live in (not
just quantum mechanics but also any theory that makes accurate predictions about our world!)
must have non-local features.

2.5 Contextuality

The final quantum property we will discuss in this chapter is contextuality. It is a less discussed
quantum property but nicely completes the set discussed in this chapter so we will cover it in
brief. The best example to get a quick sense of contextuality is the Peres-Mermin (PM) square
introduced by Kochen and Specker.

Here we consider a set of 9 different binary measurements we can perform each of which can
give the outcomes +1. Classically, we see this as being 9 properties of an object that we observe
(4+1) or do not observe (-1) in our system. We ask that observables in the same column or row
form a context, or in other words, are jointly measurable.

A B C
a b c
a B v

Let ABC denote the product of the values obtained from measuring A, B and C. Here, BC
would be the measurement context of A. The observed properties can be probabilistic, so
we define (ABC) = p(ABC = +1) - p(ABC = -1). We then consider (analogously to Bell
inequalities) a correlation coefficient, this time of the form:

(PM) = (ABC) + (abc) + (afy) + (Aaa) + (BbB) — (Ccy) (2.29)

Classically we would expect measurements to be noncontextual. That is, we would expect
the result of an observable to not depend on its context (the other measurements performed). If
we assume our measurements are non-contextual then the maximum value the PM square can
take is 4. In fact,

-4<(PM)<4 (2.30)

To see this note that the only way for the function f to have a value of 6 would be for all the
products in the definition of f to be 1 except for the product cfi to be equal to —1. If the 5 first
terms of the sum are all equals to 1, their product would also be equal to one, leading to:

A d?e g hiefi =1,

23



Quantum Physics 11 CHAPTER 2. WHAT MAKES QUANTUM DIFFERENT?

implying that ¢fi is equal to 1. This proves that f(M) < 4. A similar argument can show that
f(M)>-4.

However, by carefully picking our quantum observables, can show (PM) can exceed 4. For
the table of quantum observables as follows

A B C 0,1 1I®0c, 0,00,
a b ¢ corresponding quantum example — I®o, 0,91 0,900, (2.31)
a B v 0.0, 0,80, 0y®0y,

one can readily check that the columns and rows are made of commuting operators, and that
the products of observables in the same contexts {A, B,C},... are the identity except Cecy =
—-I. Thus we have (PM) = 6 which violates Eq. (2.30). Note that this result is input state
independent! Any two qubit state (entangled or unentangled) is contextual. It follows that
quantum mechanics is contextual. Broadly contextuality can be understood as stemming
from the fact that observables in quantum mechanics do not commute. (Like Bell’s inequality,
violations of the PM bound have been experimentally verified.)
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Chapter 3

Identical multi-particle systems

In this section, we discuss the behaviour of identical quantum particles. We will explain how
there are two sorts of identical particles distinguished by how their state changes when you swap
two particle labels. At least initially in this section, we will switch back to working directly in
terms of the wavefunction of particles because i. this is how this topic is conventionally taught,
ii. it’s good to stay fluent with both sets of notation and iii. I draw in part on Vincenzo
Savona’s notes here which were written in terms of wavefunctions. However, we could have
equally phrased this section entirely in braket notation (or entirely in wavefunction notation).

3.1 Two identical particles

Consider a system with two particles labelled as 1 and 2. Suppose that each one-particle subsys-
tem is described by wave functions ¢;(r;) for i € {1,2}. How can you write the wavefunction of
the joint system for 1 and 2?7 The most naive response, which would suggest that the product of
one-particle wave functions satisfies the Schréodinger equation, fails in the general case. Indeed,
such a solution, on the one hand, assumes that the probabilities of particle presence are entirely
independent (which amounts, among other things, to neglecting all interactions between par-
ticles), and, on the other hand, potentially violates the linearity of the Schrodinger equation.
More generally, for a system of two interacting particles through a potential U (r1,r2), writing

-h? 9?2 -h% 9?
(% ori2  2m Org?

V() + V(r2) + O, r2>) b1(1)a(x3) = B (2 )bn(r,

presupposes that the two-particle Schrodinger equation:

~h? 92 K% 9% . N N
a3 5 V(1) +V(r2) + U(ry,r2) | ¢(r1,r2) = E¢(r1,r2), (3.1)
2m Ory 2m Org

is separable, which is not necessarily true. We must find a way to describe the system using a
single wave function that depends on all coordinates.

Suppose the particles are identical. This implies, among other things, that the probability
lip(rq,r2)|* of finding one particle at point ry and the other at point rg must be equal to
[t (r2,11)°. In other words, we must have:

P(ra,r1) = 9(re,r2)

Now this equation must hold for any r; and ra (if it did not it would imply that the space was
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non—isotropicﬂ). This means it also holds in the case that r; — ro and ro — r; and so we also
have

P(r1,r2) = Y(ra,r1).

Combining these two equations then gives

P(ra,r1) = ??P(ra,r1)
—_— eiw =1

— €% = 41.

Now let’s make this a bit more formal by defining IP15 be the operator that acts on the system
by interchanging particles 1 and 2. By the argument above, we know that for identical particles
we have

Py 2tp(r1,r2) = ¥(r2,r1) = £9)(r1,r2).

Thus the permutation operator IP12 has eigenvalues £1. We note that there is nothingﬂ in
the above argument that is unique to the vectors r1 and ro being position vectors and so the
argument equally applies to arbitrary vectors to the particle variables.

The eigenstates corresponding to the +1 eigenvalue are said to be symmetric under exchange
(particles described by these functions are bosons) and the particles corresponding to the -1
operator are said to be antisymmetric under exchange (particles described by these functions
are fermions). Fermions are half-integer spin particles such as electrons and quarks. Bosons are
integer spin particles such as photons or gluons. This correlation with spin can be taken as an
empirical fact in standard quantum mechanics.

Fermions. A direct consequence of the wavefunction of fermions being anti-symmetric under
the particle permutation operator, i.e. Pj2t(r1,r2) = ¢(rz,r1) = —t(r1,r2), is that there
is zero probability of finding two fermions in precisely the same state. More concretely, if
Y(r,r) = —1(r,r) then we must have that ¢(r,r) = 0.

Of course, a particle can possess more properties than a location. Let |z) = |m,r,...) be a
single quantum state to denote state dependent properties (e.g. its spin orientation m, position
r, ...) of a particle. We can then write a two particle state as

[v) = E’ Az o |, 2') (3.2)

Note that now, rather than explicitly labelling the variables as corresponding to system 1 and
2 respectively as in 1¥(r1,r2), I am taking the left and the right slots of the ket |...)|...) to
correspond to systems 1 and 2 respectively. In this formalism, for fermions we have

Pla/,2) = |o,a') = - o/, ) (3.3)

!To see this, imagine r1 and ry are single parameter variables and we place our coordinates such that the origin
is midway between them. Now, we're considering ¢ (r, —r). Assuming the physics of the universe is invariant under
reflections we are free to redefine —r < r without changing anything physical. Thus if 9 (r, —r) = e*®¢(-r,r) we
also have ¢(-r,r) = €®4(r, —r). For arbitrary vectors we can also do the same trick of putting the coordinate
system midway between the two particles and considering the axis that connects them.

20k this is where it gets super subtle. Technically my isotropy argument above did rely of these vectors being
position vectors. However, for arbitrary variables, we can make an analogous argument saying that the action of
the permutation operator should be independent of the variable it acts on. If this is getting too subtle do not
worry about it- most discussion seems to gloss over these subtleties anyway.
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Or, on the level of the full state, we can see that Eq. (3.3) implies that
P W) = Z am,x’ﬂ) |.1‘, $’>

z,x’

(3.4)
= Y Oz |w,2') = -[).
z,x’
We now want to understand how the constraint IP|¢)) = —|1)) effects the allowed a, 4 values. To
do this, note that

W) = Z Ay x! |.CIZ‘, wl)
= xzx, —a$7zl |$I, .T) (35)
=Y~y g |z,2")

z,x’
where in the first line we use Eq. and in the second (as we are summing over both x and
z') we are free to perform the relabelling z - 2’ and ' - x. Thus comparing the first and final

line of Eq. (3.5) we see that
Ag 2 = =0z g (3.6)

and
Ay o = 0. (37)

This is the core of what is known as the Pauli exclusion principle - no two fermions can
occupy the same single particle quantum state. Note that while no two fermions with the same
spin can occupy the same position, if the fermions spin differ then there can be a non-zero
amplitude of finding the two fermions at the same position. That is, electrons in different spin
states can be in the same place but electrons in the same spin state avoid one anothelﬂ

Any expansion of a two-fermion state, i.e., Eq. , involves an even number of terms
because from Eq. any term of the form a,, comes with its negative swapped partner
—ay o The simplest such state of this form corresponds to the case where each electron can
take one of two different spin states. Let us label these |0) and |1) and so as ag; = —a1,0 and
ap,0 = a1,1 = 0, we obtain

[6) < 10,1) = 1,0) > [} = —= (10, 1)~ |1,0)) = |¥_) . (3.8)
V2

Thus we see that the simplest possible two particle fermionic state is the singlet Bell state |U_).
To check that this works we note that:

Pli)=

1

V2

(1,0)-10,1)) = ——= (J0,1) = [1,0)) = |} . (3.9)

(P[0,1) - P|1,0)) = 7

Boson. Let us now see what happens if we repeat the same calculation above but suppose the
identical particles are bosons. This time we have P|x,2') = 2/, z) = |z, 2), and so we can write

)= 3 taarlz,2') = Y asarla,2) = ¥ awa |, 2f) (3.10)
z,x’!

z,x’ z,x’
where in the second equality we relabel z - 2z’ and ' — x. It follows that

Qg = Qg g (3.11)

3There is a cliched comparison you could make here between electrons and fashionable folk accidentally in the
same outfit at a party not wanting to be seen together.
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This time we can have non-zero amplitudes for both particles to be in the same state, i.e., have
az # 0. But any amplitude of the form a;, comes with an identical amplitude of the form
ag . Consider two photons that can be in the states |0) or |1), the allowed basic states are

1

0,0),[1,1),
0,0), | )\/§

(10,1)+1,0)) . (3.12)

(3.13)

We can then of course also consider superpositions of these states, eg. cos(6) |0, 0)+e!?sin(6)|1,1).

3.2 Multiple identical particles

This reasoning generalizes to systems of n particles, where n € N. Let ¢(r1,---,ry) be the wave
function of the system. First of all, note that exchanging particle j and particle k for j, k €
{1,---,n} is equivalent to exchanging particle k and particle j, i.e., P;; = Py ;. Furthermore,

IPj,k (Pj,kw(r17 ...7rj7 -, Tk, ...7rn)) = IP],IC (1/)(1'1,"',1‘j, ...7rk7...7rn))
= w(rl, ...’rj7...’rk7 ...7rn)
=1 (¢(r17 AR 5 PRAAPR 47 '"71‘1‘1)) )

so, P;;IP;r =1, and P;}f =P, = P ;. Finally, the sign of the operator IP;; must be the same
for all j, ke {1,---,n}. In fact:

Pk =Py ;PP 2Ps Py 5.

A "permutation operator" is an operator of the form IP = [TIP; . It follows that wavefunctions
corresponding to eigenvalues of a permutation operator are either symmetric or antisymmetric.
This is the symmetry postulate, which can be restated as follows:

Symmetrisation Postulate (Cohen-Tannoudji, Diu, Laloe, 1977) : When a state includes
several identical particles, only certain kets of its state space can describe its physical state.
Physical kets are, depending on the nature of its identical particles, either completely sym-
metric or completely anti-symmetric with respect to the permutation of these particles.
Those particles for which the physical kets are symmetric are called bosons, and those for
which they are antisymmetric, fermions.

Notice that this has important consequences in the description of the physics of the system.
Consider, for example, an arbitrary observable O of the system. Using the above, its average
value must satisfy, for all j, k € N:

($IO) = (YIPT, OP; k) ,

which implies 0= IP}L. kOIP j.k» and the operator IP; , commutes with all observables. In particular,
if H is the system’s Hamiltonian, []ij,ﬁ] = [I:I,Iij] for all j, k € N. Physically, this result is
expected: Since the particles are assumed to be identical, there is no reason for the system’s
Hamiltonian to be modified by the exchange of two particles. As per what was previously

discussed, since all IP; ; have the same sign, we can always simultaneously diagonalize P and H.
In other words, [P, f[] =0 for any operator IP.
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3.2.1 Bosons

Let’s now consider the possible basis states for a system of n Bosons. For two Bosons these
were:

L o1y +10)). (3.14)

|00), |11), 7

This can equivalently be written as

[x) o< D Pley,za) = Y [xp1))IXp(2)) (3.15)

IPESQ IPGSQ

where x = (z1,22) and S, is the symmetric group on n elements. We will formally define S,
later in term, for now just think of it as the set of all possible permutations of n objects. When
n = 2 this is just the identity operation and the swap operation. For example, for the case of
x1 =0, x2 =0 we have

) o< 3 PJ00) = T/00) + P1]00) = |00) + [00) = 2]00) ~m2z2ton,
]PESQ

100) (3.16)

where as for 1 =0, 9 =1 we have

) o< 3 PJ01) = 1j01) + P15|01) = [01) + [10) Zormarzation,

1
Fed, 5101} + [10)). (3.17)

Thus we see that Eq. (3.21)) gives the correct expression for the basis states up to normalization.
This expression generalizes to an n particles system as you would expect:

W}x) =N Z IP|331,:L'2, ...,,xn> x Z IP|.%’1,.%’2, ey L Z |XIP(1) |X]P(2)> |X]P(n))
PeS, PeSy, PeSp
(3.18)

where N is a normalization factor. For example, if we consider a three particle system and
x1 =0, x9 =1, x3 = 2, as expected we obtain

lix) o< > P|001) = 1]001) + IP12|001) + P13/001) + P23|001) + P123/001) + P132]001)
PeSso

= [001) + 001) + [100) + |010) + |100) + |010)
=|001) +]010) + |[001)

normalization
el

(3.19)
1
ﬁqom) +]010) +]001)) .

What about the normalization factor N7 Well, there are n! ways of permuting n objects. If
the vector x contains no repeated entries then each of the corresponding states resulting from
the permutation are unique and the normalization is simply \/_ If there are repeated entries
however (e.g. as we saw in Eq.(3.16 - normalization you get an extra factor in the numerator
that needs to be accounted for. Specifically, if you have nj repeated entries you have ng! identical
terms in the sum. Hence the normalization factor is

Neo L (3.20)

VTl !

where Y. ng = n. Exercise: Derive Eq. (3.20) for yourself more carefully.
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3.2.2 Fermions

It is also possible to write a general expression for the basis states of a Fermion. In analogy with

Eq. (3.18) above, one has

[t = Z sign(P)P|z1, 22, - ..\, Tn) - (3.21)

1
\/m PeSn

where sign(IP) = -1 if P involves an odd number of index swaps and sign(IP) = 1 if P involves an
even number of index swaps. We note that given the Pauli exclusion principle, no two Fermions
can be in the same state (i.e. ng =1 for all k), so each state in the sum here is unique and so
the normalization is simply \/%

3.3 Distinguishing identical particles

At this point, it is perhaps valuable to take a step back and think about how the symmetrisation
postulate fits with our understanding of the physics of quantum particles / the world around us
more generally.

As the universe is a system containing large numbers of identical particles, the symmetrisa-
tion postulate tells us that all identical particles in the universe are in a state with particles of
the same type that is symmetric or anti-symmetric under exchange. Either way, as the global
phase in quantum mechanics does not correspond to anything physical, this entails that all
identical particles of the same type are in a (typically highly entangled!) permutation invariant
state. It follows that all identical particles, understood as represented by the indices in the
quantum state, share with other particles of the same type both their intrinsic properties and
state dependent propertiesﬂ

However, this description of fundamental particles is far from our usual treatment of identical
particles. An electron is a fermion but we do not usually think of electrons as being permutable
and in exactly the same state as every other particle in the universe. Rather electrons are charge
carriers in wires, they are in the shells of atoms, they exist in plasmas and so forth. We take
electrons to exist wholly within reasonably well defined finite systems.

In practice, we are able to talk about electrons in such reasonably well defined localised
roles by identifying stable dynamical properties. These stable dynamical properties enable us
to distinguish subsystems of the total symmetrised state of fermions. These stable dynamical
properties will typically be spatial. However, they need not be.

Consider a state of two identical particles in the orthogonal states |¢) and [¢b). The state of
the system can be described by:

IWF:%D+£hH¢¢> (3.22)

where € = 1 for bosons and € = -1 for fermions.
Say we are interested in the observable ) where Q |u;) = ¢; |u;). Using the Born rule, the
probability amplitude, of obtaining ¢; and ¢; on measurement, is:

1/2 (uz, ug] [1+ €Ph, [1+ ePay ][, )
= (wid){uj) + e{uih)(u o).

41f you are looking over these notes having already read Chapter 3, identical particles have the same ’state
dependent properties’ in the sense that they all have the same reduced density operator (obtained by taking the
partial trace).
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The first term is known as the direct integral and the second is the exchange integral.

The state of a pair of non-identical (i.e. non-permutable) particles in the orthogonal states
|¢) and |1)) respectively is written |¢) ® [¢). In this case, the probability of measuring g;, g; is
simply |(uih)(w;¢)[.

This suggests the following operational claim: Particle permutation between a pair of par-
ticles can be ignored when either the direct or exchange integral between that pair of particles
vanishes. Otherwise, the symmetry postulate entails that permutation must be taken into ac-
count.

One way in which one of the integrals can disappear is if both the particles and the measuring
devices are spatially separated. Say, the wavepackets of the identical particles are well localised
and spatially separated such that (x|i)) = 0 if x is in the region R and (z|¢) = 0 if x is in the
region L. Similarly, suppose the measuring device wavepackets are spatially separated such that
(x]u;) = 0 if 2 is in the region R and (z|u;) = 0 if x is in the region of L. Thus we have

(ujl) = D (ujle)zly) =0 (3.23)
x
and as such the exchange integral disappearsﬂ When this is the case we can identify each
particle by its well defined positions and we say things like ‘the particle on the left is in state
Y’ and ‘the particle on the right is in state ¢’ and write [¢, ¢) where the left and right slots
correspond to the left and right electrons respectively.

We make use of the vanishing exchange integral between pairs of spatially separated systems
and measuring devices when we wish to consider a particular subset of particles in the universe.
We can consider a pair of electrons in a shell of helium and treat these two electrons as per-
mutable, without needing to consider permutations between these two electrons and all other
electrons in the universe. It is also the reason why, combined with the fact that the position
and spin operators commute, we do not have to take into account the symmetric spatial part of
the wavefunction in Bell type experimental setups.

However, there is nothing fundamentally special about position. We could equally have used
a different stable dynamical property to distinguish the particles. For example, if spin dependent
interactions are negligible in a scattering experiment then the different spin alignments of a pair
of particles can be used to treat the two particles that scatter as non-permutable. Consider the
following initial state for the collision problem sketched in Fig. 3.1]

1
’\I/initial> = E[l + 619’12] \pz, +, =Pz, —) . (3.24)

Here |p,, +) denotes the state of the particle with momentum in the positive z direction and spin
z of +% (and conversely for |-p,, —)). Say we are interested in knowing the probability that the
system is in the final state

1
|\Ijﬁnal) = ﬁ[l + GPIQJ ‘pV7 +, =Dv, _) (325)

where +p, denotes momentum in the plus and minus v directions sketched in Fig. [3.1b).
The evolution operator responsible for the collision, U(¢,ty), commutes with the permutation
operator. Thus we have

N 1 ~ ~
U(ta tO) |\Ijinitial> = _(U(ta tO) |pZ7 +, =Dz, _> + EU(tv tO) |_pZ7 —y Dz, +) (326)

V2

There is nothing significant about the exchange rather than direct integral disappearing. I could have swapped
the location of the measurement devices for the converse.
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a) Before collision b) After collision

Figure 3.1: Diagram of a collision experiment with no spin interaction ((Cohen-Tannoudji, Diu,
Laloe, 1977).)

and so

(Wtinall U (¢, t0) [Winitia1) o< (Dvs ++ =Dvs =| U (t,10) [Py ++ Dy =) + € (Duts —pv—| U, t0) | =2y = Das +)

(3.27)

Now we are interested in the case where ﬁ(t, to) does not affect spin interactions. As such, the

exchange term is sandwiched between two orthogonal states and vanishes, and so we are left
with

<‘11ﬁnal| U(ty tO) |\I}initia1> &< <pv; +, —Dv, _| U(t7 tD) |p27 +, =Dz, _> . (328)

That is, we are left with the probability associated with two non-permutable particles.

In both the case of the spatially separated particles and the particle denoted by its spin,
operationally we are free to work directly with states labelled according to their distinguishing

properties:
1

1+ P1)[6.6) = 10) 8 ) (3.29)
L 14 Pi2) 1o+ P ) = Ipa) s |-pa) - (3.30)

V2

What do we conclude from these examples? The symmeterisation postulate is a fundamental
theorem in quantum mechanics that implies that all identical fermions are in an anti-symmetric
entangled state. However, this does not mean that we need to consider this state in practise
most of the time. If there are stable dynamical properties to distinguish quantum two electrons
over time, we can label those electrons by those properties and just those two properties (i.e.
the electron on the left/the electron on the right or the spin up electron/spin down electron).
In practise, this treatment of permutable particles is empirically successful and what we end up
working with most of the time.

3.4 Second Quantization:

Second quantization is an approach used to represent systems composed of multiple particles.
We consider a situation where the number of particles can potentially change, noting that a
particle’s state is entirely determined by the one-particle functions in the basis of Hi. We
construct the Fock space where kets indicate the number of times a wave function is involved.
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For example, the transformation from 1st quantisation (what we have been discussing so far
in this chapter) to second quantisation looks like
%(I N)+[41) = [11)
| 11) - [20)
| 11) —102).
Here the left and right slots in the Fock basis indicate the number of Bosons in the 1 and |
states respectively. Similarly, for Fermions we could have

1
Eﬂ ) =[11) = [11). (3.32)

It’s worth noting that for bosons, the n; appearing in |ny,ns,---) can be arbitrary, while for
fermions, they can only take the values 0 or 1 due to the Pauli exclusion principle. Also note
that it’s important once in the second quantisation to know whether the state you are looking
at is a Fermionic of Bosonic state as, for example, a state of the form |11) could refer to either
but behaves differently in the two cases.

We introduce creation and annihilation operators to increase or decrease the number of
particles.

(3.31)

e The Bosonic case is entirely analogous with the case of a simple harmonic oscillator which
you should be familiar with from Quantum Physics 1. Specifically we have:

éj |nla oty Mgy > =Vng+ 1 |7’L]_7 Nyt 17 )a
Eiln, - iy ) = /M I, e i = 1,
It follows that (check this!) that creation and annihilation operators in the bosonic case
satisfy:
- (e =[el,el1=0
— [&,¢1] =65
e The Fermionic case is much more subtle. In this case we need to ensure that the resulting

states are antisymmetric under exchange. This can be achieved by defining the creation
and annihilation operators as follows:

@I IR, mg, ) = (=1)MF im0 (1 =) [ng, e g + 1),
& |n1, ,n“> - (_1)n1+'“+nz‘—1ni |n1, cemg — 1, >,

To get a sense of the form of these expressions first notice that the (1 -n;) factor ensures
that you cannot create Fermionic states with more than one particle in the same state.

The factor of (—=1)™*"*"-1 then ensures the antisymmetrisation. For example, we re-
quire that 6861\00) = —éiéo|00). We indeed have this as égél|00) = ézr)(—l)o\Ol) = [11) and
éJ{éO|OO) = ¢1]10) = (-1)*11) = -|11). The general case can be understood by iterating this
argument.

It is straightforward to verify (check this!) that the creation and annihilation operators in
the fermionic case satisfy:

SRGHA SRR
- {51,5;} = 0ij
where {A, B} = AB + BA.
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Figure 3.2: The Hong-Ou-Mandel effect and Bosonic bunching.

3.5 The Hong-Ou-Mandel Effect and Bosonic Bunching

To get a bit of practise of working in the second quantisation, and as another illustration of the
difference between fermions and bosons, we’ll end this chapter by presenting something called
the Hong-Ou-Mandel (HOM) effect. The HOM effect describes what happens when two iden-
tical photons hit a beamsplitter. It shows that while fermions have a tendency to avoid each
other, bosons have a tendency to clump together.

When working in the second quantisation it is often helpful to work in the Heisenberg picture
and consider the action of any unitary process on the creation and annihilation operators rather
than on a given state dlrectly Suppose we have a photon impinge on a 50-50 beamsplitter as
shown in Fig. |3.3. Let Ly, Ly, Ry, Ry denote the annihilation operators for horizontally and
vertically polarlsed photons on the left and right hand side of the beamsplitter. The action of
this beamsplitter can be modelled in the Heisenberg picture as

SR AT
(3.33)

A.l. 1 /\.i. A
R~ 5 ~Rl)

for k= H and k =V and where the minus sign in the second line above is to ensure unitarity.
When an H photon and a V photon (i.e. two perfectly distinguishable photons) impinge on
opposite sides of a beamsplitter simultaneously we have

PN 1 - N N A~
[D)2#0)2vI0) R 1) rv = LY, 21,[0000) — o (LY, + B}y )(Ly, - Rj,)[0000)

1
= 5(-|1)LH|0)LV|0>RH|1)RV +[1)Lr[1)Lv|0)rE|0) RV

—10)L|0) v D) rE1) RV +10)LE[1) LV 1) RE|O) RV )
(3.34)

That is, there are four equally probable outcomes as sketched in Fig.
(a) the photon from the right is transmitted and the photon from the left is reflected,
(b) the photon from the left is transmitted and the photon from the right is reflected,

(c) both photons are transmitted,
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Fermions interfering

Bosons interfering

Figure 3.3: Credit: Nicolas Emile Bourquin

(d) both photons are reflected.

However, when the two photons are indistinguishable, something intriguing happens. Suppose
both photons are horizontally polarized (and the same frequency etc). In this case (dropping
the unchanged vacuum V' modes for simplicity) we have

PN 1 4 A A N
DruDrn = Ly R};100) » S (LY, + Ryy) (L], - R};)[00)
1/- ~
=3 (L}, - RL,?) 100y (3.35)

= %(IQ)LHIO)RH —0)Lul2)rE)
The amplitude for both photons to be reflected by the BS and the amplitude for both photons
to be transmitted through the BS have destructively interfered, and thus the probability for
the photons to exit the beamsplitter through opposite sides vanishes. Indistinguishable photons
are therefore guaranteed to leave a beamsplitter in the same mode, a phenomenon known as
‘bosonic bunching’.
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Chapter 4

Reduced and mixed quantum states

So far we have represented quantum states as a vector |¢). Density operators, whereby a quantum
state is represented by a matrix p, is an alternative formalism for representing quantum states.
In particular, this perspective will allow us to- i. handle classical uncertainty as well as quantum
uncertainty in a single formalism and ii. extract the state of part of a quantum system from
knowledge of its composite system.

4.1 Density operators

The density operator corresponding to a state 1) is given by the matrix p = [¢0)(¢)|. The average
value of an observable O in the state p is then given by:

(0) = Te(j¥)(¥|0) (4.1)

To see that this does indeed give same expectation value as the standard state vector formalism
just apply the cyclicity of the trace directly to Eq. (4.1)).

Ezamples 4.1.1. 1. The state |¢)) = |1) is a pure state of the system, and the corresponding
density operator p is given by:

p=lonl=(p 1)

2. The state |[+) = LZ(|O) +11)) is written in density matrix form as:
1 1
= :l:_
p=|2 12) )
(ii 2
3. Bell States: The density operator corresponding to the Bell state |¥_) = % (]01) - |10)) is
given by:
0 0 0 O
1fo 1 -1 0
PZ510 -1 1 0
0 0 0 O

Density operators open up a new perspective on the Bloch sphere. To see this first note that
density operator of a single qubit cos(6/2)[0) + e*® sin(6/2)[1) can be written as

cos(0/2)? cos(6/2) sin(0/2)e‘i¢)

p=1v)vl = (cos(e/z)sm(em)ew sin(0/2)? (4.2)
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Next we note that any 2 x 2 matrix can be written as a weighted sum of the Pauli matrices,

N (1 LU T

because Pauli matrices form an orthogonal basis with the following helpful properties

Trlog] =1, Tr[ox] =0 for k0 .
Tr[ojor] = 205 - (4.5)
It follows that we can write 5
1 1
p==00+= > v0; (4.6)
2 24

where the factor of 2 is to account for the factor of 2 in Tr[ojoy] = 204 ;.

Next we ask, what is the significance of the vector v = (v1,v2,v3) in Eq. . To answer this
- we first note that it follows from the properties of the Pauli matrices (namely, Tr[c ;o] = 205 ;)
that v; = Tr[po;]. Tt follows that the vector v is a vector of the expectation values of the Pauli
observables:

v=|(oy)|- (4.7)

Alternatively, we one can verify by direct comparison of Eq. (4.2) and Eq. (4.6) (check this for
yourself!) that

sin () cos(¢)
v = | sin(0) sin(¢) | . (4.8)
cos(0)

That is, the vector v is the unit Bloch vector which can be used to represent a quantum state
on the Bloch sphere.

Thus far this switch in representation may seem rather arbitrary. We have provided a
different perspective on quantum states but not done anything more. The real power of this
formalism will be made clearer in the following two sections.

4.1.1 Pure states and mixed states

Suppose someone prepares a system S in the state 1)) with probability p and state |¢) with
probability 1 — p by tossing a biased coin, how would we mathematically represent the state
of the system S7 We we want a mathematical entity that allows us to correctly compute the
expectation value of any observable 0. Now we know from basic probability that the expectation
of O should be

(0) = p(O)y + (1-p)(O)y
= p (| Ol¢)+ (1-p) (¢ O|6)
= pTe([¥){(¥|0) + (1 -p) Tr(|o){(4]0)
= Tr(pO)

where we have used Tr([10)(1|0) = (4| O |b) and in the final line defined

p = plYp Y]+ (1 - p)ld)(4]. (4.9)
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That is, the density operator p allows us to compute any expectation value for the system
described above where the system was prepare in the state |¢0) with probability p and state |¢)
with probability 1 - p.

More generally, if a system is prepared in state |¢);) with probability py it can be described
by the density operator

p= zk:pkfwkﬂi/fk\-

Such states are known as statistical mixtures or as mized states. In contrast a state where the
exact quantum state is known (i.e. all states studied until now) are known as pure quantum
states.

How does a generic single qubit mixed state look on the Bloch sphere? To study this we
start by recalling Eq. (4.6) and writing

)W = a0+ 2 v

(0 ¢—20—0 ngzo'z
3

0301 = 500+ 5 Do

Then we note that the mixed state
p=plo) ]+ (1 -p)lo) (4|

1 13
= —0gp+— Z(pvi +(1=-p)uj)o; .

That is, the mixed state has a Bloch vector
w=pv+(l-pu (4.10)

composed from the weighted convex combination of the Bloch vectors of the original pure state
Bloch vectors. This is when the geometric representation provided by the Bloch sphere really
comes into its own. If one already knows the original Bloch vectors, it is basic geometry to
sketch the new Bloch vector for the corresponding mixed state (see Fig. [4.1)).

While pure states have a Bloch vector of norm 1 and sit on the outside of the Bloch sphere,
mixed states fall within the Bloch sphere. This follows immediately from the observation that
w=pv+ (1l-p)u. Unless p=0, p=1or v=u (which correspond to pure states), the vector w
will point to some point in the interior of the Bloch sphere with |w|? = p? +(1-p)?+2p(1-p)u.v =
1-2p(1-p)(1-uwv)<1.

A good physical example of a mixed state is that of a thermal state. A thermal state of a
Hamiltonian H at inverse temperature 8 = 1/kgT can be written as

(4.11)

where Z is the partition function of the system Z = Tr[e™?#]. To see that this reduces to more
familiar notions of the thermal state let us expand it in the eigenbasis of H = ¥ Ex|Ex){Eg|.
Using the standard definition of the matrix exponential, in this basis we have

p= e BB ) ( By
%

Z=Y Pl (4.12)
k
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Figure 4.1: Mixed State.

That is, p corresponds to a mixed state where the energy eigenstate |E}) is prepared with the
probability pj = e BFx /Z which should look familiar as the standard Boltzmann distribution
from your statistical mechanics courses. The state p = e_gH can be treated as any quantum
state - you can combine it with other quantum states, evolve it unitarily, perform quantum
measurements etc etc. Thus we see that the density matrix formalism allows one to combine

classical statistical mechanics and quantum mechanics.

4.1.2 Reduced states

In this course so far we have constructed the state of a composite system from the states of the
individual systems using the tensor product. But what if one wants to go in the other direction?
Say you are given the state |¥) of a 4-dimensional system corresponding to two qubits - how
could you describe the state of just one of the qubits? If the state of the composite system is a
product state, i.e. |[¥)=|14)® |1pp), this is straightforward, i.e. the state of A is just |[1)4). But
what if |¥) is entangled? For example, what if it’s the Bell state |¥) = %(|OO) +|11))? Now it’s
no longer clear how to describe the state of the system A alone. Here we show how this question
can be addressed using density operators.

Consider a system composed of two subsystems, A and B, and corresponding Hilbert space
Ha ® Hp. The core idea is to introduce an operator ps (to be defined!) that one can compute
from |¥) that will allow one to compute all properties of system A alone. That is, given any
measurement operator O® 15 that acts non-trivially on A alone, we want to define an operator
PA, deﬁngd on the Hilbert space of H4 alone, that will allow one to compute the expectation
value of O.

To identify such an operator let us first write the operator O in its eigenbasis as O =
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Z;.lfl AjIAi){Alj. Now we note that the average value of O is given by

da
{0) = > AjPa()) (4.13)
j=1

where P4();) is the probability of getting A\; when measuring system A. Now this probability
can be rewritten in terms of

Pap(Xj, k) = (Ajklpapl|Ajk) , (4.14)

the joint probability of finding A to be in |);) and system B to be in the state computational
basis stateﬂ |k). Concretely, we have

dB dB
Pa(XNj) = Y Pap(Nj k) = X (AjklpaslAk) . (4.15)
k=1 k=1
Thus we have
da  dp
(0) = > X; 2 (N\iklpaslAzk)
j=1 k=1
da dp
= > i\ I4®(k I4®|k A
LA0| Lo (khean(iael >>)| ) )
da
=) AilAjlpalA)
j=1
=Tr[pa0]
where we have defined
dp
pa=Y (Ia® (k])pap(la ®|k)) = Trp[pan] (4.17)
k=1

This operator is known as a reduced state and is another type of density operator. Note that
since the trace of an operator is invariant under a change of basis, the use of a density operator
to calculate the average value of O does not depend on the choice of the basis used to define
this operator.

It is worthwhile becoming fluent at taking the partial trace of a quantum state. This is
usually easiest to do using braket notation rather than working with the explicit matrix forms.
To do so, it’s helpful to note (prove this to yourself!) that:

Trp(lig) (kL[] = i) (k] Tx[]5){]] (4.18)

from which point you can make use of the standard properties of the trace (e.g. cyclicity).

Ezample 4.1.2. The reduced state of |¢p41p) is given by the density operator p4 = |4 ) (14| as
one would expect from our arguments at the start:

pa=Trp[[Yap)(vaysl]
= [pa)(al|Trp[|y¥B){(¢¥p|]
= [aal{vBlYB)
= [pa)(al.

IThis choice in basis is arbitrary. Any orthogonal basis will do.

(4.19)
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Ezample 4.1.3. Consider the Bell state |®,) = %(|00) +|11). The reduced state on qubit A is
given by

pa=Trp[|27)(27]
= %TrB[lOO)<OO| +1]00) (11| + [11)(00] + [11){11[]

= %(!0>(0!Tr[\0)<0\] + O} Te[[O) (L] + [L)(OTx[[1){O[] + [1){1Tr[1)(1]])

1 (4.20)

= 5 (10}{0[{0[0) + [0)1{O[1) + [1){O[{O[1) + [1){1[{1[1})

= 20y 0]+ 1)1

1
=-1
2

That is, the reduced state on qubit A is the mazimally mized state where with equal probability
the qubit is in state 0 or state 1. Similarly, pp = %Il. Crucially we note that

pA®pPB = % (100){00[ +101)(01] + [10){10[ + [11){11])
£ [DT)(DT|.

(4.21)

Thus we see that if you look at only one half of a Bell state the statistical outcomes are no
different to tossing a fair coin. But the state of two fair coins is not the same as a Bell state.
The interesting behaviour of a Bell state can only be captured by studying the correlations
between both systems and captured by the pure state |®*).

Ezxercise: Use the notion of a reduced state to argue that entanglement cannot be used for
faster than light signalling.

4.1.3 General properties of density operators

Above we have presented two different ways of obtaining mixed state density operators: by
direct construction or as the reduced state of a larger system. More generally, density operators
can be introduced more abstractly as any operator with the following properties.

Property 4.1.4. 1. The density operator is self-adjoint, that is to say, pg =p4,

2. Tr(pa) =i pii = Xip i ul” = [0)* = 1,
3. The density operator is positive semidefinite, i.e. (P|pald) >0 for all |p) e A.

It is straightforward to show that the reduced states introduced above satisfy these properties.

Demeo. 1. We have:
Pij = D0
I
p-” = Z a;ltaivl‘
o
One should see that
Pij = Pji
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2. We compute:
Do pii = D0 D0 g = 3 3 (il ) ¢lin)
) i M )
= > [inl)?
(22

The i) and |u) form a basis of A and B, respectively. Thus, the sum over i and p give the
norm of [¢), which is by definition normalized to 1.

3. We compute :

(Blpald) =32 > ASl){Glo) i) (xplin)

YA

= Zﬁuﬁz
n
= [B8]* > 0,
where 3, = (@|i)(iply)

Notice that these properties imply, in particular:

o There exists a basis in which py4 is diagonal (from point 1),

e Furthermore, points 2 and 3 impose a particular form on the diagonal representation of
the operator p4:

pa=Ypiliil,
J
where p; >0 and } p; = 1. Thus,

(O) = Te(pa0) = ¥ p; (lOl)) = Y1, (0) .
7 j

where (O) denotes the average value of O for the subsystem consisting of state |7).

1)

We note that if a density operator describes a pure state, then it is a projector, i.e., p? = p.
In fact, the two properties are equivalent: if p? = p, the eigenvalues of the density operator must
necessarily be 0 or 1. But since the sum of the eigenvalues of a density operator must be equal
to 1, there must be a single eigenvalue of the density operator that equals 1, and it is unique.

On the other hand, if p is not pure then we have p? # p and Tr[p?] < 1. To see this we
consider writing in its eigenbasis as p = ¥, Altor ) (¥k|. It follows that p* = ¥ A2 1 ) (¥x| # p and
Tr[p?] = %5 A2 and this is less than 1 unless {\;} = {1,0} which again reduces to the case where
p = [vo) {1l is a pure state. The quantity Tr[p?] is known as the purity of a state - it takes its
maximal value of 1 for a pure state and is less than 1 otherwise. An alternative way of showing
that mixed states live within the interior of the Bloch sphere is to establish that the condition
that Tr[p?] < 1 implies that the norm of the Bloch vector is less that 1, i.e. |w| < 1. We leave
this as an exercise for the reader.
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4.1.4 Evolution of density operators

Let’s consider a density operator in diagonal form at ¢ = 0:
p(t=0) =3 a;1h;(0)) (1;(0)]
J

We are interested in determining the laws governing its time evolution. We assume that the
statistical mixture does not change over time. In other words, «; does not depend on ¢, and

p(t) = 3l () (5 (B)] -
J

The time evolution of a state has already been characterized as:

i (t)) = e 1;(0))

Using these two equations, we obtain:

p(t) = 3o e M [;(0)) (4 (0)| "

We differentiate:

= Xy (), 0)) (5 (0)
J

+ 2 aze M (0)) (5 (0)] (il ) e
J
= (—iH)p+p(iH)
which leads to the equation:

0p ~
— =—H 4.22
i = ~[Hl.p]. (4.22)

describing the time evolution of the density operator. Note that while this may look like the
Heisenberg equation, p does not define an observable physical quantity!
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Chapter 5

Measurement and decoherence

5.1 The measurement problem

Here we will discuss a topic at the very core of quantum mechanics that is fundamental to our
understanding (/lack of understanding) of the field known as the measurement problem.

The measurement problem can be set up from the following basic assumptions about the
theory of quantum mechanics.

1. Basic Conception of a measuring device: a good measuring device is accurate.
2. Quantum Mechanics is a universal and fundamental theory

3. Weak Physicalist Postulate: The description of the behaviour of large objects must be
consistent with the laws governing the behaviour of the smaller objects of which they
consist.

A quantum measuring device is a device which can extract information from a quantum
system. A basic measuring device, e.g. for measuring the spin state of an electron, can be
envisioned as follows. The device has a pointer and three possible positions labelled “ready”,
“up” and “down”. The pointer is at “ready” initially. In order for the measuring device to be
accurate we simply require that the device can correctly inform us of the state of the electron.
As such, we require that when an “up electron” is fed in the pointer moves from the “ready”
label to the “up” label. When a “down electron” is fed in, the pointer moves from the “ready”
label to the “down” label. That is, we have

I'ready’)ar| 1)s = |'up’)m| 1)s

5.1
['ready’)ar| | )s = ['down’)ar| | )s oy

Then from assumptions 2. and 3. we get that we should be able to describe our measur-
ing device quantum mechanically. Thus, we should ascribe quantum mechanical states to the
measurement system’s pointer states.

Based on these assumptions the following is a simple way of setting up the measurement
problem. We start with the following postulates of quantum mechanics.

(A) Formalism: Every physical quantity is represented by an operator @) and every state of
a physical system by a state vector i)

(B) Measurement Kinematic Postulate: If a quantity @ is measured, the post measure-
ment state of the system will be the eigenstate corresponding to the eigenvalue measured.
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(C) Dynamical Postulate: Time evolution is a linear map from state to state.

Consider measuring the spin of an electron using the accurate measurement device outlined
above. A contradiction is generated when we consider what happens when you feed a superpo-
sition into the measuring device. That is, suppose we feed in

=N
NG

Given our conception of a good measuring device (Eq. (5.5)) and that, from the Dynamical
Postulate, quantum systems evolve linearly, the resulting state is

'ready’) i

([ t)s+[1)s) (5.2)

|’1ready’)ML (IM)s+]1)s) — % (Iup’)pe] 1) s +["down’) ] | ) s) (5.3)

V2 V2
We are left with a superposition of the measurement device being in the ‘up’ state and the
‘down’ state.

In this way the linearity of quantum mechanics dynamics combined with quantum mechani-
cal treatment of a basic conception of a measuring device leads to the conclusion that a system
in a superposition remains in a superposition. According to dynamical postulate there is no
way to get the system into an eigenstate of an observable if it is not already in one. However,
this contradicts A! The Measurement Kinematic Postulate states that post measurement of the
system will be in an eigenstate of the observable being measured.

So, can we just get rid of the Measurement Kinematic Postulate to solve the measurement
problem? Not quite. There are still many conceptual problems with how to understand Eq. (5.3)).

(i) It seems to contradict with the world around us - we don’t seem to see these weird
macroscopic superpositions between measurement devices.

(ii) It seems to contradict quantum formalism, in particular, the Born rule.

5.2 Easy resolutions and why they do not solve the problem

5.2.1 The collapse postulate

Doesn’t the collapse postulate resolve the measurement problem? Von Neumann claimed that
there must be two fundamental laws about how the states of Quantum Mechanics evolve.

(I) When no measurements are going on, the states of all physical systems evolve linearly (via
the Schrodinger equation) in accordance with the dynamical postulate.

(IT) When there are measurements, the systems do not evolve in accordance with the dynamical
equations of motion. Instead, they evolve in accordance with the postulate of collapse.

Criticism: The problem with this approach is that the word measurement does not have a
precise enough meaning to play such a fundamental role in the laws of physics. As such, these
rules do not determine exactly how the world behaves and so do not amount to fundamental
laws. (This contradicts premise 2 in the first part of this note).
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Figure 5.1: Credit: L’heure est grave

In particular, there are two key ambiguities with the term measurement.

Firstly, what processes count as measurements? A measurement is something which extracts
information from a system. However, many actions not conventionally associated with measure-
ment extract information from a system. If observing a dead cat tells you that an electron must
have “spin up” or else it would not have been able to set off the killing device, then observing
the dead cat is a measurement. Seen in this way measurement are made continually and so
we are lead to the conclusion that all most all evolution takes place via the collapse postulate
rather than quantum mechanics. However, Quantum Mechanics cannot be driven just by rule
IT because that tells us nothing about how systems evolve with time and states clearly do evolve.

Secondly, measurement requires a divide between the system being measured and the part
doing the measuring and there is no definite prescription for how this division is to be made.
John Bell in his essay “Against Measurement” uses the example of an alpha particle travelling
along a photographic plate. We can either consider the alpha particle as the system and the
photographic plate as the external measuring device or we can consider the photographic plates
as also part of the quantum mechanical system. The two records are mutually consistent and
though the second is more detailed than the first it is clearly not the final description. Given
these considerations how can we apply Von Neumann’s two rules? Does rule I cease to apply as
soon as the alpha particle reaches the photographic plate, when the temperature of the cloud
chamber rises, when I take a photo or when this photo is observed? Bell advocates the guiding
rule: “put the split sufficiently much into the quantum system that the inclusion of more would
not significantly alter practical purposes”. This rule is sufficiently unambiguous for practical
purposes though it is still fundamentally ambiguous.
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5.2.2 Decoherence

A more modern way of at least in part resolving the measurement problem is via the concept of
decoherence. Note that decoherence is a fundamental physical phenomenon that is important
to understand independently of the measurement problem.

Core to understanding decoherence is the observation that the environment acts a good
measurement device. This means that corresponding to different positions of the electron are
environmental ‘pointer’ states such as “the total environment as if the electron is at x”. (Even
in the absence of matter, radiation reflecting from an electron records its location and this
radiation will in turn causally interact with its surroundings.) Thus, treating the environment
as a measurement device, we can generalize Eq. and write

|'Initial Environment’) g|'ready’)as| 1 )s — |“Total environment given 1) g|‘up’)as| 1)s (5.4)
|'Initial Environment’)z|'ready’)as| | )5 — | Total environment given |')g|‘down’)as| 4 )s

And so the output state after the measurement and interaction with the environment will be

[ parg o< [‘Total environment given 1) g|‘up’)as| 1)s + | Total environment given |')z|'down’)as| | )

(5.5)

Now if we look at the reduced state on the system and measurement device will be

PArs" = Trp[[* W) parsl]
1 4 ) 3 ? 4 ) 3 ) ¢ ) 4 ) * ¢ b [4 ) (5'6)
= §(| up’ }(‘up’ [ar + [‘down’)(*down’|ps + [‘up’ ){‘down’ |ps + 7 |‘down’ }{(‘up’|ar) -
where 7 = (‘Total environment given 1" |'Total environment given |’).
In the realistic limit where r — 0 we then have:

decoh Born . _ 1 Cim? \ /g «d Ned ) 5.7
U5 — PREE = 2 ()’ + Fdown)down ) (5.7)

where plj\g/%n is the state you would expect to get out from measurement corresponding to the

case where you find the spin either in the up or down state with equal probabilities.

What does this tell us? Well this largely deals with the worry that states like Eq. (5.3))
contradict with the world around us. It explains why we do not observe interference between
macroscopic objects like measurement devices.

Does it also solve the contradiction with the Born rule? Not really. And that’s because even
those we find that p?\f}%?h = p]]?/})gn mathematically there is an important difference between what
the states on the left and right sides of this equality represent conceptually physically. This is

the distinction between proper and improper mixtures.

Proper mixtures: Mixed states that can be interpreted as arising from ignorance of the
underlying pure state.

Improper mixtures: Mixtures that arise when you examine a subsystem of a larger pure
state.

The state resulting from decoherence pﬁfl‘g’h is an improper mixture (i.e. that formed from a

reduced state), where as the state captured by the Born rule p?fg}l is a proper mixture. Therefore
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they do not represent the same physical scenario despite being represented by the same mathe-
matical entity. (Note, this mathematical equivalence/ambiguity is why we can forget about the
measurement problem when getting on with life/research most of the time).

Sometimes the measurement problem is stated directly in terms of proper and improper
mixtures as the contradiction that the Born rule says the outcome of a measurement is a proper
mixture but the output of a measurement according to the dynamical laws of quantum mechanics
is an improper mixture.

5.2.3 Instrumentalism

It is sometimes suggested that the measurement problem can be avoided by taking an instru-
mentalist approach to quantum mechanics.

The proposed solution is typically to deny assumption 2 right at the start, namely that
quantum mechanics is a ‘universal and fundamental theory’ Instead it is claimed that the
wavefunction depends on the knowledge of the person doing the calculation. Individuals with
different amounts of knowledge concerning the system will come up with different wavefunctions.
This is why the wavefunction appears to “collapse” when the measurement device is read. If
we have an accurate measuring device and the device reads “up” we can infer that the pointer
state of the device is “up” and the electron is spin up. The change is non linear because our
knowledge changes but this is unproblematic we are treating our knowledge as external to rather
than part of the dynamic process.

Criticism: To start, it is worth asking whether the approach advocated here is one of limited
or universal instrumentalism. Either answer is problematic. If the instrumentalism is limited just
to the wavefunction - then it needs to be asked whether this limitation is coherent and warranted.
That is, why are we treating the wavefunction differently to other concepts in physics. If the
instrumentalism is universal then all the usual reasons for thinking instrumentalism is an unten-
able philosophical position apply (see https://plato.stanford.edu/entries/scientific-realism/ for
a long discussion).

The measurement problem is a fundamental problem in quantum mechanics that really gets
at the essence of what the theory tells us about the nature of the world. Nonetheless, it is one
that we can largely ignore while getting on with most research (and passing most exams).

However, if I have sparked your attention and you are interested in reading more about
the measurement problem I would first recommend reading “Against Measurement” by John
Bell. There he argues that quantum mechanics is a theory of observables rather than beables.
Quantum mechanics is entirely concerned with “the results of measurements”; however, the
concept of measurement becomes so vague on reflection that it is unsatisfying to have it at the
centre of a fundamental theory. Quantum mechanics divides the world into two parts; that
which is observed and that which is observing. The results depend on how this division is made
but only a practical guide can be given on where to draw the line. His proposed solution: such
a theory cannot be complete.

If you would then like to read about some more modern potential resolutions of the measure-
ment problem I would recommend reading David Wallace on the Many Worlds interpretation
and Carlo Rovelli on quantum relationalism.
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5.3 Decoherence as a dynamical process

This section is a lightly modified version of Jim Al-Khalili’s notes on decoherence which are
available at https://www.surrey.ac.uk/sites/default/files/2023-01/introduction-to-decoherence-
theory-lectures-one-to-five.pdf and I copy here for convenience.

Two limits of quantum measurement

The total Hamiltonian of a system and environment can be written as
Hsp=Hs®l+1® Hp+ AH;. (5.8)

In the limit in which the interaction energy is small (i.e. broadly when A is small compared
to the eigenenergies of Hg and Hp) we can ignore the interaction term and we have that the
system and environment evolve under Hg and Hpg independently:

e HsElgpp) » e HHSEHOHE ) 0 1)
6—itHS®He—iﬂ[®HE |7,Z}S¢E>
15 ¢ s o)

=e sy @ e e ).

(5.9)

This is implicitly what has been assumed in most (all?) calculations you have performed previ-
ously. For example, when we studied the two slit experiment we did not model the interaction
between the system and the environment.

What happens if we instead consider the limit in which the interaction term dominates?

We often write the interaction Hamiltonian as Hy = S ® E, where S and E are operators
acting in the Hilbert spaces of the system and environment. We really only need to worry about
S which will correspond to some system observable like its position that is superselected by the
environment (i.e., constantly being monitored by the environment).

Let’s suppose, as is the case very often in practise, that the system and environment interact
in the position basis. That is, let
Hi=t®F (5.10)

where
T = sz’XzMXZL (5.11)

and x; are position eigenvalues and |X;) are position eigenstates. (Note the above equation
defining the operator is just the equivalent of the eigenvalue equation #|X;) = z;|X;)). It then
follows that since system and environment operators act in different Hilbert spaces we have that

[Hj,2]= (20 E)i-2(i®E)=it0E-32t®E=0 (5.12)

This commutation relation is known as Zurek’s commutativity criterion. Therefore, while in
general the position operator does not commute with the total Hamiltonian (i.e. we cannot
measure the position and energy of a quantum system 51multaneously) it holds in this partic-
ular limit (the quantum measurement limit) of H = H; = # ® E. So, H; and # have common
eigenstates, | X;).
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If we start the system in some position eigenstate, |X;), and the environment in initial state,
|Eo), then at ¢t = 0 the combined state is |X;)|Ep). An evolution operator, U, will take this
forward to time ¢:

U|X3)|Eo) = e 111 X3) | Eo) = |Xs)e P Ey) = | Xi)|Exy),  (4.17) (5.13)

where |E,,) is the state of the environment now containing information about the position of
the quantum system (particle).

What we see in this last equation is that the system and environment are still not entangled.
So |X;) represents an environmentally superselected preferred state. Let our system be in a
superposition of pointer states:

)

Now

=it )| ) = e-i79F (zcipm) o)

1
= (61|X1>€_i$1Et + CQ|X2>6_i$2Et + ) |E0>
= c1|X1)|E1(t)) + co| Xo)|Ea(t)) + -,

where we now have an entangled state of system and environment and |E;) etc is the state
of the environment that contains information about the system being in position x1. If these
states are close to orthogonal, i.e. (E;(t)|E;(t)) - 0 then the reduced state of the system will
be completely decohered in the position basis.

Note there was nothing special persay about the position basis, we could have run this ar-
gument in any basis and that would lead to decoherence in that basis. However, the basis of
decoherence it determined by the form of the interaction Hamiltonian. And that will typically,
but not always, be the position basis.

5.3.1 A simple model for decoherence

Physical systems exhibiting decoherence are varied. Luckily — and perhaps surprisingly — a small
set of simple canonical models can describe a wide range of phenomena and physical systems.
Thus the system of interest can be modelled as either a spin—% particle (qubit) or as having
continuous phase space variables and moving in some potential (H-O or double well are popular
examples). The environment likewise can be modelled either as a collection of qubits or as a
heat bath of harmonic oscillators.

Consider a quantum system S to be a qubit with basis states |0) and |1) denoting spin up
and down with respect to the z-axis. The total system plus environment is described by a tensor
product Hilbert space

H=Hs®H., ® H,, ®--® He,, (5.15)

where Hg denotes the Hilbert space of the system and H,, denotes the Hilbert space of the i-th
environmental qubit.
The total Hamiltonian is chosen to be of the form

I N L a1 g
H=Hp= 20z® Zgz‘ 0, = 2Uz®E- (516)
i=1
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where g; are coupling strengths and 6;@ is a Pauli Z on the iy, environment qubit (for compact-
ness of notation I am suppressing a bunch of identity operators on the other environment qubits
but technically they should be there).

Now, when we act with the evolution operator involving the above Hamiltonian on an initial

unentangled state of system and environment we see
il is.ek EERSINC)
e 10| Eo) = €™ 27P10)| Binitiat) = 0)e” 2 21947 | Eyyiiiar) = 0} Eo (1)), (5.17)

where the state of the environment can start off as complicated as we wish, with each qubit in
a superposition:
| Finitial) = (1|0) + £1]1)) ® ... @ (an|0) + Bn]|1)) . (5.18)

Thus we see that in this case the state remains a product state.
If instead the system starts off in a superposition then

e (0]0) + A1) Exnia)  l0)Ea(1)) + B1IEL (1)) (5.19)

where [Bo (1)) i= ¢~ 0902 Byyyr) and [By (1)) i= 5 T By

We have seen already that the rate of decoherence depends on the overlap of the environment
states that are entangled with each of the system states and the degree to which they are
orthogonal (distinguishable)

r(t) = (E1(t)[Eo(2)). (5.20)

To get a handle on this let us first note that we can write the environment states more compactly

as
N

2 .
[Eo(t)) = Y e 7" 2¢)ln;). (5.21)

7=1

where we switch to binary notation, i.e. |ng) =00...0), [n1) =]00...1) etc. The ¢; coefficients are
each a product of N a’s and f’s (for example, ¢ = ajao---apv); and finally, the energy e; is

(5.22)

N 0 for an even number of |1) states in the product |n;
e; = Z(—l)njgk7 n; = v | > ) p | J>
=l 1 for an odd number of |1) states in the product |n;)

Now we can look at the overlap of two environment states to see the structure of the deco-
herence rate . The two environment states only differ by a sign in the exponent and therefore,
taking the overlap means we have two minus signs

r(t) = (B1(t)[Eo(t)) = Y- e " 2e e ci(nilny) = 3 e el (5.23)
i i=1

It was shown by Zurek in his classic paper (Phys. Rev. D 26, 1862 (1982)) that evolution
of r(t) reduces to a random walk problem in the 2-D complex plane and that the time averaged
modulus square of the complex vector r(t) scales as

(r()y 2N as - oo (5.24)

That is, the rate of decoherence scales exponentially with the size of the environment. We will
not prove this here but you can clearly see how the size of the environment affects the decoherence
rate since recall that the ¢; coefficients in Eq.(5.15) are each a product of N amplitudes, o and
3. That is |c;|? is a product of N probabilities, each < 1. So the larger the environment (size of
N), the smaller the value of |¢;|* in (5.14).
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For very large IV, the decoherence rate is roughly a Gaussian decay:
r(t) »~ e T, (5.25)

The decay constant, I'2, depends on the distribution of the coupling strengths, g;, between the
system and each of the qubits in the environment. You see, for our model, each of the 2V terms
in the sum in (5.15) a different phase since e; is a sum (Eq.(5.12)) of coupling strengths whose
sign depends on whether the qubit in the environment is spinning up or down.

Decoherence versus dissipation The relaxation time ¢, is defined as the time taken for a
system to dissipate thermal energy into its environment until they reach thermal equilibrium.
However, decoherence can occur even without energy dissipation, meaning the environment can
gain information about the system without energy exchange. Decoherence typically takes place
on a faster time scale than dissipation/thermalization; however this is problem dependent.

Decoherence versus classical noise Classical noise and decoherence represent different
physical processes. Classical noise can in principle be undone by local operations and is very
slow. In contrast, decoherence is a process where the system perturbs the environment, leading
to a fast, effectively irreversible process.
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Chapter 6

Quantum Computing

Computers are fundamentally machines based on physical processes. The physics of these sys-
tems is governed by the laws of quantum mechanics. One can thus consider every computer as
being "quantum." In reality, this is not the case: their operations can be ideally described by el-
ements of classical physics. For example, Alan Turing constructed a basic computer, the Turing
machine, using mechanical components (and following purely classical considerations). A gen-
uinely quantum computer fully utilizes specifically quantum phenomena (such as entanglement)
that have no classical equivalent [1]

We are in the middle of a world wide race to build such devices with start ups, tech giants
(Google, IBM, Microsoft) all pouring millions into developing such devices. Currently the avail-
able devices are analogous to vacuum tube classical computers built in the 1950s and no one
has yet to build a device that can implement a genuinely useful algorithm (i.e something that
cannot be done better classically). But we’re getting to the point where someone might. In fact,
people keep on claiming to and then someone else finds a way of doing what they have done
classically ﬂ So it is realistic that I might need to update these notes before not so long.

In parallel to the hardware efforts, a large community has been working on quantum al-
gorithms to implement on quantum hardware. Here we will give a very brief introduction to
this framework. However, to learn more I would recommend Vincenzo Savona’s Introduction to
Quantum Computing course.

6.1 Quantum Circuits

In contrast to last week where we discussed how realistically all systems interact with their
environment, the field of quantum computing relies on the ability to well isolate a system from
its environment (this is what makes developing large devices that can do anything useful so
hard!). Assuming this isolation is successful, the only evolution is unitary evolution governed
by the Hamiltonian

(1) =U(t,t) [u(t))

Ut t) = e 5

!This definition will do for now but a precise definition of a quantum computer is surprisingly hard to pin
down. If you're looking to procrastinate check out this twitter thread/ which (like many a good internet argument)
rapidly derails.

2 Again [twitter] is great to follow this back and forth.
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For a system of N qubits, a quantum operation can be illustrated by a quantum circuit:

Each line represents the state of a qubit. This representation is due to the fact that a unitary
operation U is completely defined (by linearity) by its action on the elements of the basis of
‘Hy. Knowing how U acts on |a, -, an), where a; = 0,1, is enough to define U completely. For

example, consider the NOT gate:
—xH

which can be rewritten in vector form with |0) = ([1)) and |1) = (0):

1
0 1
()

(which is also the Pauli matrix o,). This gate maps |0) (|1)) to |1) (|0)). Its action on an arbitrary
state |¥) follows from linearity.

Let’s list some useful single qubit quantum gates [}
X X=0,= ((1) (1)
Y Y=0,= (?
Z Z=0,= ((1) 1
Hadamard H-= G
Phase 5- ([1) 0

i 1 0 s (€780
s T=\g emn)=e 0 el
And here are some useful two qubit quantum gates:

10 00

— 01 00

CNOT S Cnor = 00 0 1

0 010

c-U .

general controled gate )@ )~ le) @ Ut |r)
10 0 O

Cc-Z c_7- 010 O

example of controled gate 1o 0o 1 0
000 -1

3Continuing the theme of quantum information theorists have slightly annoying notational conventions H is
used here to denote the Hadamard gate but H is also often used to denote a Hamiltonian. It’s usually clear from
the context. You'll get used to it and it won’t bother you after a while.
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We generally assume that the quantum computer is initialised in the all zero state |00...000).
Then gates are applied to prepare a more interesting state. For example, to prepare a Bell state
we can apply a Hadamard and then a CNOT:

CNOT(H & T)[00) = CNOT—= (|0} +|1)) [0) = [&*). (6.1)
V2
Ezercise: How could you prepare the |U™) Bell state?
Measurements are typically performed in the computational basis. That is, you perform
a projective measurement on each qubit in the {|0)(0[,|1)(1]|} basis. In practise this is done
by running the circuit many many times and counting the number of times you obtain the 0
outcome. For example, to measure [(00/®*)> you could prepare the |®*) state as above and then

say

N
|(00|®™)[* = poo ~ % (6.2)

where N is the total number of times that the circuit was run and Nyg is the number of times
that both qubits were found to be in the 0 state.

To measure an observable a little more classical post processing is required. For example, to
measure o, = |0)(0] — |1)(1| on the first qubit we have

Noo  Noi Nig Nu

+ (6.3)
N N N N

(@¥)(0> ®I)|[@") = (poo + po1) — (P10 +p11) »

And what about measuring in a basis other than the computational basis? Well in that case
you need to first transform into that basis. For example, to measure in the |+ +) basis where
|+) = %(|0) +|1)) = H|0) you notice that

[(++ [)[* = (00| H' ® H[¢) = [{(00|H ® H1p)|* = [{(00|(H & Hl1p))[*. (6.4)

Therefore you can just apply H ® H to your state and then measure in the computational basis.
Ezxercise: How would you measure in the o, basis?

Quantum circuits are drawn from left to right (the opposite direction to the order you write
matrices). For example, the circuit to prepare the |®*) state and measure in the | + +) basis is

given by:

0) {2}

0) & HF— A
Mathematically, we would write this as [(00|(H ® H)CNOT(H ®T)|00)/?.

(6.5)

So far we have not really done anything new. I've essentially just shown you a (time)
discretised way of looking at the evolution of quantum systems where time evolutions are broken
up into discrete chunks, i.e. gates. All quantum circuits (i.e. all possible unitary evolutions on
systems of qubits) can be constructed using sequences of the gates H, S, T, and Cnyor gates;
however, for arbitrary circuits this can take exponential time. Some algorithms, on the other
hand, do not require a complex architecture and are, therefore, very efficient. Let’s look at a
pedagogical example of one.

6.2 Deutsch’s Algorithm

Let us start with Deutsch’s algorithm as an example of a quantum algorithm. This algorithm is
of historical importance as the first example of a quantum algorithm with a proven exponential

95



Quantum Physics 11 CHAPTER 6. QUANTUM COMPUTING

advantage. It also can also be used to introduce the notion of quantum parallelism. This gives an
intuitive notion of where, in part, quantum computers gain their power. However, this intuitive
notion should be taken with a pinch of salt as it can be be easily misunderstood.

Task: Given a Boolean function f(z):{0,1} - {0,1} we want to determine whether f(x)
is constant or balanced, meaning either f(1) = f(0) or f(1) # f(0), respectively. Classically, it
is necessary to evaluate the function twice to determine this. Deutsch’s algorithm allows us to
know this characteristic in a single evaluation.

How do we encode this function in a quantum computation? You might hope that you could

find a unitary such that
iy HUH7() (6.6)

However with a little thought we can see that this operation is not reversible and so there is no
such unitary. For example, say f(0) = f(1) = 0 then we would have |0) - |0) and |1) - |0) which
clearly isn’t unitary.

Instead we need to introduce an ancilla qubit which keeps track of the input. Specifically,
we will consider a quantum gate Uy

B
y) — " — e f(x))
where |x) and |y) represent one qubit each and & denotes modulo-2 addition. This is a reversible
way of implementing the function f in a quantum circuit. The unitary Uy is known as a
quantum oracle because it is typically treated as a blackbox that is given to you. However, note
that nothing so far is inherently quantum.
But let’s see what happens if you feed in a superposition:

1 1
7 (|00) +[10)) - 7 (10£(0)) +[1f(1))) - (6.7)
We have the function evaluated at both of the possible inputs in the superposition. This is
known as quantum parallelism, with one oracle call, we have in some sense evaluated both
outcomes.

But if you measure either qubit you get either [0f(0)) or |1f(1)) with equal probability. So
you are back to the classical situation. If we want to make the most of this quantum parallelism
we need to be cleverer.

[+)[0) =

Deutsch’s algorithm does this. Consider the circuit:

0) —{H] (H}—  |¢)

iy
1 H
] ]
[Yo) Y1) lva)  |13)

where H is the Hadamard gate, which sends |0) — |0i;|-1), and |1) - ‘Oz;lil), [Vo), [¥1), |¥2), [13)

the intermediary states, and |¢) the final state of the first registry. The final state of the second
registry is not presented.

Let us detail the intermediary states. Firstly
[$0) = [0} @[1) =[0,1) = ]01) ,
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and

Y1) = (H® H)[vo) = (He® H)|0)®|1)
= (H10)) ® (H[1))

() (%)

=|+-).

Before computing [2) = Uy 1), let us first note that

Usle-) = Uy lz) (%) =|z)® (|f(x)>—\|/1;9 f(x)))

)@ ('055'1)) if f(z) =0

lz) ® (Il)— |0>) if f(z)=1

NG
e (~1)/ @ 0) - [1)
“l)e (-1)/ (—ﬂ )
- (1)),

This identity will make computing the action of the Deutsch circuit much simpler.

Let’s now compute [1)2). From the following relation,

0-)+ |1—))

|w2>=Uf|¢1>=Uf|+—>=Uf( -

(O |o—>+<—1>f<1>|1—>)
V2
(O |o>;§<—1>f<1> |1>) o
_ (—1>f<°>('Og‘”)@(’o@”) if £(0) = £(1)
_ (—1>f<°>('Obﬁ'”)@('og”) it £(0) + £(1)

i {(—1>f<0>r+—> it £(0) = f(1)
(-1)7O- ) if £(0) # £(1)

Now we see that whether the function is odd or even is directly encoded into the state of the
first qubit. All that remains is to read it out. If we measured in the computational basis this
would fail because we would get 0 or 1 with equal probability. We need to instead rotate into
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the X basis. This is done by applying a Hadamard gate H. On doing so we get:

[s)= (H @1) [y2)

_[EDIO-) it £(0) = £ (1)
(- [1-) i £(0) % f(1)

= (DO e fD) o)

We only need then to measure the first qubit in the computational basis {|0),[1)}. The result
of such a measurement will tell us with certainty if f(z) is constant or balanced.

We see here that there are two ingredients for quantum advantage. Quantum parallelism
and a clever manipulation of interference. This gives a hint as to where some of the power of
quantum computing comes from. But it is important to be aware that there are many caveats.
And exactly what gives quantum computing its power is something still debated.

Note also that here we only saw factor of 2 improvement. It is possible to generalise this
problem to a function:

f:{0,13" > {0,1}

that takes m-bit binary values as input and produces either a 0 or a 1 as output for each such
value. We are promised that the function is either constant (0 on all inputs or 1 on all inputs)
or balanced (1 for exactly half of the inputs and 0 for the other half). The goal is to determine
if f is constant or balanced. Classically solving this problem requires 27! + 1 oracle calls. But
using a quantum algorithm (the Deutsch-Jozsa algorithm the problem can be solved with only
one oracle call. Thus a quantum computer can seemingly achieve an exponential speed up. To
read more about this algorithm go to Nielson and Chuang (or any other quantum computing
textbook.

If this all seems a little abstract and pointless. Don’t worry the Deutsch algorithm is rather
pointless. It also relies on access to an oracle and it’s far from clear how one could ever have
one of those and not actually know the function itself. This example is largely for pedagogical
value. We will now move on to discussing briefly some potentially more useful applications of
quantum computing.

6.3 Quantum simulation

The simplest motivation for quantum computing, first highlighted by Feynman in the 1980s, is
to simulate quantum systems.

Imagine trying to numerically simulate n-qubits. That is you have an n qubit state and
you want to compute its evolution under e **. If H is something messy and complicated
(as for most real physical systems) you can not do this ‘by hand’ and so instead you want
to do it numerically. But now a n qubit state is 2" dimensional, i.e. its basis is |0) = |00...00),
IT) =00...01), |2) = |00...10) all the way to [2) = [11...11). Thus we need to store an exponentially
large vector. To compute its evolution we then need to multiply by e !, which is a 2" by 2"
dimensional unitary. Storing this again requires exponential memory. And performing the
matrix multiplication will take exponential time.
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More generally, consider a quantum system of N particles characterized by the wave function
U(ry, -, ry,t) and the evolution equation E}

o
Y o
Yot

For the numerical simulation of this system, it’s necessary to discretize time as well as space.
Let’s assume a spatial grid of M cells. For 3N coordinates, we have (M )3N elements. So, the
matrix H has a size of (M)3" x (M)3N. Thus we need exponential memory just to store the
matrix for the Hamiltonian... and then we need to think about manipulating (e.g. exponentiating
it).

Feynman sees this limitation as an opportunity, through the following reflection: a classical
computer takes time T = O(At - const’V) to simulate this system, while nature takes time 7' =
O(At)! Nature can solve an intractable problem for classical computers with zero complexity.
Or in the more poetic but unbelievably over quoted words of Feynmann:

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better
make it quantum mechanical...”

To simulate a quantum system on a quantum computer you ‘just’ need to be able to imple-
ment (or approximately implement) the unitary

U=e (6.8)

on your quantum computer. That is, you need to be able to break it down into a series of basic
gates. By now there have been many approaches established to do this. If you are interested in
learning more one of the standard approaches is Trotterization based simulation where the total
evolution is broken down into a series of short time steps for which you can assume terms in the
Hamiltonian approximately commute. If you are interested to learn more about this technique
(and others) I'd recommend Giuseppe Carleo’s course on Computational Quantum Physics.

The main point I want to stress in this brief section, partially because this was not made clear
enough to me when I first learnt about quantum computing, is that one of the main arguments
for building quantum computers is to be able to better simulate quantum systems. This would
make the lives of quantum chemists, material scientists, high energy physicists... all sorts of folk
much easier.

6.4 Variational quantum algorithms

Variational quantum algorithms are a very popular [ﬂ form of quantum algorithm being investi-
gated currently. This is part of my motivation to briefly introducing them to you now - if you
stay in quantum computing you are very likely to encounter them. But I also want to introduce
them as a stepping stone to introducing quantum machine learning, which in turn I want to
introduce to provide a practical example use of groups and representations. Realistically prob-
ably more of you will end up working in machine learning than in physics so I want to (if I have
time!) showcase how groups and reps can be useful in that context.

A good introduction to VQAs is provided here. This is much much more than you need for
this course but I share in case it is of interest. And because I am about to shamelessly [f| quote

4As should be clear from the context H is back to being a Hamiltonian here.
5 A quick search on google scholar for “variational quantum" throws up 12800 hits.
5I'm friends with the first author, it’s ok, maybe. Do as I say not as I do.
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Goal: Train a PQC to minimize a problem-specific cost function

Pick cost + PQC such that if successfully trained: the optimal parameters/circuit/cost = approx. solution to problem

4 )

Quantum Computation Meéilzed c(6) Classical Computation

-2 | 7 N m
/L & A Optimizer
2 - 0] i arg min C(60)
|0) o, ® : 0
o a1/
( (7
. ) [(0)) Update 0, — 0,41
. parameters
Parameterised

@ntum Circuit (PQC) u®) / \ )

How do you train? Using a hybrid-quantum classical optimization loop

Figure 6.1: A hybrid quantum classical optimization loop is used to optimize a variational .

text from there now:

One of the main advantages of VQAs is that they provide a general framework that can be
used to solve a variety of problems. Although this versatility translates into different algorithmic
structures with different levels of complexity, there are basic elements that most (if not all) VQAs
have in common.

Let us start by considering a task one wishes to solve. This implies having access to a
description of the problem, and also possibly to a set of training data. The first step to developing
a VQA is to define a cost (or loss) function C which encodes the solution to the problem. One
then proposes an ansatz, that is, a quantum operation depending on a set of continuous or discrete
parameters 6E| that can be optimized (see below for a more in-depth discussion of ansatzes). This
ansatz is then trained in a hybrid quantum-classical loop to solve the optimization task.

0" = arg min C'(0) (6.9)
0

The trademark of VQAs is that they use a quantum computer to estimate the cost function C(6)
(or its gradient) while leveraging the power of classical optimizers to train the parameters 6.

This hybrid-quantum classical optimisation loop is sketched in Fig.

Crucial to any variational quantum algorithm is your choice in cost function. The idea is
to pick your cost such that by minimising the cost you solve whatever problem it is you are
trying to solve. Similar to classical machine learning, the cost function maps values of the
trainable parameters (i.e. the vector 0 = (60,61,0,...,01) to real numbers. The simplest choice
in quantum cost function one can consider is simply the expectation value of some measurement
operator in some parameterized state:

C(0) = Te[OU (0) pUT (0)] (6.10)

"Please note that all of these 6s (i.e. any 0 without a subscript) should be vectors. LaTeX is being stroppy
and doesn’t want to make them bold for me right now. I'll sort this in an updated version of these notes.
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Here p is some initial state, U(0) is a parameterized quantum circuit (more on this in a second),
and O is some Hermitian observable. Note that this cost can be read as either quantifying
the expectation of some observable O given a parameterized state p(8) := U(0)pU'(0) or the
expectation of some parameterized observable O(6) = UT(6)OU(#) given some fixed input state
p, that is:

C(0) = Tx[Op(0)] = Tx[pO(0)]. (6.11)

Thus a VQA can broadly be read as either trying to find the ‘best state’ to solve your problem,
or ‘best observable’ to solve your problem.

The final ingredient is the parameterized quantum circuit (PQC). As the name sounds this
is a quantum circuit, i.e., some arrangement of quantum gates, but with some of those angles
parameterized. This can generically be represented as the product of m simpler parameterized
unitaries, interspersed with non-parameterized unitaries:

U)=JJe " "mw,,. (6.12)

Here W, are unparametrized unitaries (for a simple choice consider a ladder of CNOTs) and
P, are Pauli operators. For example, if each Py is a single qubit Pauli then a term of the form

e mbm (6.13)

will induce a parameterized rotation about axis P, on the Bloch sphere. I'll sketch an example
of this on the board in the lecture.

The paradigmatic example of a variational quantum algorithm is the variational quantum
eigensolver. The goal here is to learn the ground state of a given Hamiltonian H. The observable
used in the cost in this case is simply H and we consider a pure input state p = |0)(0]. Thus the
cost simplifies to:

C(0) = ($(O)[H[(6)) = (O|U () HU (6)[0). (6.14)

The state that minimizes this cost [¢)(0*)) is the state that has the lowest average energy, i.e.
is the ground state: [1)(6*)) = |Egrouna) And the energy of this state corresponds to the ground
state energy: 0(9*) = (¢(9*)|H|7/)(9*)) = Eground'

This is just one example of a variational quantum algorithm. There are many many more.
I'll now move onto discussing a variational quantum algorithm that can be used for classification
(i.e. has more of a machine learning flavour).

6.5 Quantum Machine Learning

Let’s consider a binary classification task. In a binary classification task, we have a dataset
D= {xz,yl}f\fl with data points x; € R and labels y; € {0,1} and we want to learn a strategy for
distinguishing z’s corresponding to y = 0 labels and x’s corresponding to y = 1 labels.

More concretely, let’s suppose I want to classify the following data set [ﬂ But I am a human
and so I am lazy and so I want to draw a line, i.e., a classifying plane, and I want to assign a label
to everything that is to the left of the line and a label to everything that is to the right of the line.

81 have borrowed this example from Marco Cerezo.
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Figure 6.2: A simple classification problem.

Now obviously this isn’t possible with the data in its current form. Let’s first see how this
could be done using (simple) classical machine learning.

The first classical strategy we can consider is to map the data to a higher dimensional space.
A simple mapping in this case is simply to send 2 - 22. Now the data is linearly separable:

0:(«'.'.': s ,\QQO(L d:(O/g s

o
(e}
FERE
|
INE
(e}
FNERS

Figure 6.3: Classification via mapping to a higher dimensional space.

A second classical approach would be to train a neural networks to process the data and learn
a classifying function. A neural network is just a composition of neurons, where the neurons
are simply functions that take an input, and spit out an output. Let’s consider a very simple
neural network with one input layer that takes x, two hidden neurons, and one output neuron:
The neurons just take their input, multiply by a weight, add a bias, and have some activation

(¥

Figure 6.4: Simple neural network.

function which I'll take to be the sigmoid function. Concretely, I'll suppose that each of neurons

output:
f1(x) = sigmoid(wyz + by)
fa(x) = sigmoid(waz + by) (6.15)
f3(x1,z2) = sigmoid(ws1x1 + wsaxs + b3)

where the w; and b; are trainable parameters, x,x1,r2 are the inputs to the neurons and
sigmoid(Z) = = The output of the neural network is the output of the function fs, i.e.

l+e*"
a single real number.
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The aim is to train the weights and biases of neural network, using data from our training set,
so that the neural network outputs the correct label. More concretely, let’s write the function
implemented by the neural network as fw n(2). We train our cost by minimising:

C(Wab) = Z(fw,b($i) _yi)Q- (6.16)

where the sum is over data in the dataset D. We can try this and it works, we can indeed
classify the data this way:

0

X

Figure 6.5: Classification via a classical neural network.

Ok, enough of the classical case. How could this be done using quantum machine learn-
ing? A parameterized quantum circuit (which in this context is often called a quantum neural
network) uses a combination of the two methods described above to classify data. That is, a
PQC can both map the input data to a higher dimension and be used to process that data.

Let us consider performing this classification task on a quantum computer using a single
qubit. The first step will be to embed the data into a quantum state. This can be done using a
single rotation around the y axis where the rotation angle is given the input x;. Let us sketch
the effect of this:

Figure 6.6: Encoding data in a single qubit
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Notice the similarities between this case and the classical mapping to a higher dimensional
space shown in Fig. [6.3] The data which previously was not linearly separable now looks suspi-
ciously linearly separable.

The final step is to learn a measurement that can indeed perform the classification. That is,
given an encoded input state p, we want to learn a measurement M () we can perform on p,
that can spit out the correct y =0 or y = 1 label. (For this easy example we can just read it off
from the figure above- the optimal measurement will be a measurement in the X basis- but it
will not always be this easy so let’s pretend we can’t read it off). We can propose a trainable

classifier of the form:
fol) = Round (Tx[p, M (6)]) (6.17)

where M () = UT(6)|0)(0|U(6) and train using a cost of the form

C(0) = 3. (fo(:) - yi)® . (6.18)

On training this we do indeed find that the we learn the optimal classifying where M = |+)(+|.
Here’s a plot from the training showing that it does indeed work:

Cost

P i § 5 lteration

Figure 6.7: Training a single qubit QNN.

This was a very simple example of how quantum circuits can be used for machine learning.
The paradigm is highly flexible, though its power and limitations are still very much up for
debate. As I said previously, if you want to know more this is good place to start.
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Chapter 7

Symmetry in quantum mechanics

7.1 Introduction

These notes are driven by the pedagogical philosophy that most people learn best by examples
and intuition. Therefore, throughout these notes I try as hard as I can to provide examples
and more informal handwavey explanations of the key ideas wherever possible. In places I have
sacrificed some formality to do so. I have also for the sake of time relegated some of the longer
proofs to the appendices. If you are interested in a more formal presentation of this material
I have uploaded to moodle Vincenzo Savona’s old notes (in French and English). However, I
hope my notes will prove helpful to those of you who also like examples and an attempt at more
wordy explanations.

7.1.1 Motivational example on spatial translations

By way of introduction let’s start with a simple example considering spatial translations that I
have borrowed from Terry Rudolph. Suppose I asked you to write down a wavefunction v (z)
that is invariant under arbitrary translations in z, i.e. * — x + a for any a. What could you
write down?

Intuitively if it’s anything other than constant in x then the function will not be spatially
invariant, i.e. we've got to have i (x) = constant. In Terry’s words - It is questionable whether
this is valid - is it normalizable for example? But imagine we plough ahead like good physicists
and ignore the mathematical difficulties. If we Fourier transform this wavefunction then we
get that this wavefunction can be written in the momentum basis as ¢(p) = §(p) (the Fourier
transform of the constant function is a delta function).

But is this the only function that is invariant under spatial translations? What if we instead
consider a function of the form 1 (z) = ¢?*? Then we see that translating  — x + a produces
only an extra "overall phase' of ¢®%. This is a global phase and so doesn’t change anything
physical about the state. That is, the state is (up to a non-physical global phase) also invariant
under translations. If we again Fourier transform to the momentum representation we now
have () = e* is ¢(p) = 6(p — p'), so this is a state of fixed definite momentum p’. That is,
momentum is conserved in this translationally invariant state.

In Terry’s words again we learn two things from this example: (i) that we should only expect
a small subset of the possible quantum states to obey a particular symmetry, and (ii) that there

can be an intimate connection between a particular observable (momentum) and that symmetry.

Ezxercise: show that the momentum operator p is the generator of spatial translations, by
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which (for nowE[) we mean:
e Pp(x) = Y(z +b). (1)
Now imagine we have prepared one of these translationally invariant states, e.g. a momen-
tum eigenstate. Under what Hamiltonian evolutions will it remain translationally invariant/a
momentum eigenstate? Intuitively we need any potential V' (x) to also be translationally invari-
ant, otherwise this will break the initial translational symmetry. This means the only potential
Hamiltonian is the free particle Hamiltonian H = %ﬁ? Or, more concretely, we require that

[e7® H]=0. (2)

A

which will be true for any Hamiltonian such that [p, H] = 0. Thus we see that the property of
translational symmetry is associated with ’conservation of momentum’.

A similar story could be told about the relationship between rotational invariance and an-
gular momentum. And both of these cases are symptomatic of a much deeper story about the
intimate connection between conservation laws and stuff that commutes with a Hamiltonian
and symmetries. This can be made precise and of sweeping generality in Noether’s theorem.
But let’s start with the basics and pin down a more general mathematical formalism to discuss
symmetries.

7.1.2 Introduction to groups

A symmetry describes some property of a system, i.e. some function f or of some dataset R,
which is left unchanged under some transformation. As we are, for the purpose of this course,
predominantly interested in quantum systems, let’s suppose that the transformation refers to
a unitary evolutionﬂ applied to the quantum state, i.e., to a map p - UpU' for some U. Now
crucially, such symmetry transformations form a group.

Proposition 7.1.1. Let G be the set of all unitary symmetry transformations, such that for
any U € G, the map p - UpU' leaves some property of p unchanged. Then, G, equipped with
multiplication, forms a group.

What is a group?

Definition 7.1.2. A group is a set equipped with an operation that combines any two elements
to form a third element while being associative as well as having an identity element and inverse
elements.

Formally, one can write a set G equipped with the operation "+" is a group if one has:
e G is closed under the operation *. That is, if a € G and b e G then a b e G.

o Associativity: Va,b,ce€ G, one has (a*b) *c=ax (bx*c).

e An identity element: There exists an element e € G such that e * a = a Va € G. Such an
element is unique and is called the identity of the group.

o Inverse element: Ya € G, it exists b € G such that bxa = a*b=e. We then say that b=a"".
For each e the element a~! is unique and is called the inverse of a.

"We will define the term generator more formally when we define Lie Algebras.

2We will encounter and work with symmetry representations that are ostensibly not unitary. However, a
wide class of representations are equivalent to unitary ones. In particular, Wigner’s theorem guarantees that all
symmetry transformations of quantum states preserving inner products are either unitary or antiunitary, and
often antiunitary transformations are “unitary and complex conjugation”.
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How can we see that any unitary that leaves a property invariant forms a group with =
matrix multiplication (i.e. that Proposition is true)? With a little thought we can see that
each of the defining properties of a group are satisfied.

e Closure: Given any two unitaries U and V in G, the unitary V = U obtained by multiplying
V and U is also a symmetry transformation. This follows from the fact that concatenating
two property-preserving transformations p - UpU' - V % UpUT « V1 constitutes in itself
a property-preserving transformation.

o Associativity: for any unitaries U, V., W we have U(VW) = (UV)W.

e Identity element: Clearly the identity matrix I leaves any property of a state unchanged
and for any unitary we have IU = U and so [ is indeed the identity element e.

o Inverse: For each U in G, there exists an element UT in G such that U U =Ut« U =1,
where I is the identity matrix, and UT is the inverse (conjugate transpose) of U because
if U conserves some property, then U~! also conserves that property.

In broad terms groups encode abstract symmetries, and representations describe concrete
realisations of those symmetries in physical systems. In most maths courses people learn about
groups first before moving onto representations later. However, in practise, in everyday physics
we often identify symmetries at the level of the representation and then “abstractify” them: i.e.
connect a familiar physical symmetry with some familiar abstract mathematical group.

To quote [Representation Theory for Geometric Quantum Machine Learning: "The main util-
ity of this abstractification procedure is that groups as mathematical objects have been thoroughly
studied since the early 19th century, and a wealth of information is readily available for scores of
them. Moreover, in the eyes of physics, the list of abstract groups is surprisingly short, thanks in
large part to classification programs for finite groups and semisimple Lie groups—and nature’s
seeming preferential treatment of these groups—this means that identification is direct in many
cases.” That is, if you have a physics (or perhaps even a classical machine learning) problem
and can identify the relevant group - odds are some long dead mathematician has already half
solved your problem and so you can save yourself a lot of work.

In broad terms a representation is a map from the elements of a group to a set of unitaries{ﬂ
such that the unitaries obey the same properties under composition as the original group. We
will define this more formally later but I just wanted to mention it informally now because I think
it helps to understand why we care about groups in the first place- the key point being often
in practise we will identify the representation first and then abstractify to find the underlying
group and then plug in centuries of maths to help us understand it better.

7.1.3 Finite group examples
Groups can be either finite or continuous. Let’s consider some examples of finite groups first.

Definition 7.1.3 (Finite group). A group that contains a finite number of element is called a
finite group. The number of element is called the order of the group.

One way to uniquely identify a group is via its Cayley table. Named after the 19th century
British mathematician Arthur Cayley, a Cayley table describes the structure of a finite group
by arranging all the possible products of all the group’s elements in a square table reminiscent
of an addition or multiplication table. Many properties of a group can be discovered from its
Cayley table.

3Representations need not strictly be unitary but essentially all the ones we’ll care about here will be.
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Order 1 group. The only group with only one element is the trivial group containing just
the identity element, e.g. G =e. Its Cayley table can be written as:
* | e

(7.1)

e | €

A possible representation of this group is e — 1.

Order 2 group. The unique Cayley table for a group with only two elements is the group
where the only non-identity element is its own inverse element, e.g. G = e,a such that aa™! =
aa = e, i.e.
*le a
ele a (7.2)
ala e
One possible group with this Cayley table is G = {1,-1} with * standard scalar multiplication.

(In this case, the map e - 1 and a — -1 is a representation of the group)

Other examples include the groups composed of G ={I, X}, G={I,Z} and G = {I,SWAP}
with * matrix multiplication. (In this case, the mapse - I, a > X ande > I, a - Z and e — I,
a - SWAP are representations of the group).

Another possible group with the same Cayley table is the parity group that contains the
"transformation in the mirror" that turns x into —z. Let us define the operator P such that
Pf(xz) = Pf(-z) . Given PP =1, we see that the set of transformation {1, P} form a group.

All of these groups are isomorphic (share the same Cayley table) to the Zg group (cyclic group
on 2 elements). The Cayley table captures the fundamental symmetry but it can manifest in
different ways.

Order 3 group. The unique (it might not be obvious now that it is unique - we will come

back to this in a bit) Cayley table for a group with only three elements is the Zs group (cyclic
group with three elements):

(7.3)

An example of such group is the set of 2D rotations that leave a triangle invariant. Or the 3rd

2

roots of unity in the complex plane a; = ei2m3 equipped with multiplication.

Order 4 groups. Again we can consider the cyclic group Z4

(7.4)

QO ST Q O
O S OO0
D O S Qe
Q O O oS
STQ O OO0

An example of such group is the set of 2D rotations that leave a square invariant. Or the 4th
roots of unity in the complex plane.
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Figure 7.1: Diagram of the symmetry group of a rectangle (dihedral group Rs): (Wiki page on
the Dihedral group).)

But 4th order is also the smallest order that is not unique. That is, there is another possible
Cayley table for a group of four elements that is not isomorphic (i.e. the same up to relabeling)
as the Cayley table above:

(7.5)

QO S Q O %
QO SN Q OO0
S0 0 Q|
Q O O oS
o Q@ SO0

Note that here each element is its own inverse but there are cyclic transformations between a,
b and c¢. An example of such a group would be the symmetries of a rectangle as sketched in
Fig. n The group elements are identity e, rotation r (in either direction) by 7 and reflections
h and v about the horizontal and vertical axes respectively.

Order 6 groups. Again we can consider the cyclic group Zg. Alternatively we can have:

+ le a a2 b ¢ d

e le a a> b ¢ d

a |la a®> e ¢ d b

a?la?> e a d b c (7.6)
b b d ¢ e a a

c le b d a e d?

d|d ¢ b a® a e

This is called the C3v group.. This is the symmetry group of a triangle as shown in Fig. [7.2]
There are 6 possible transformations that leave the triangle invariant:

e The identity e which leaves all coordinates unchanged.

o The proper rotation ¢, by an angle of 27/3 in the positive trigonometric sense (i. e.
counter-clockwise). And the clockwise version c_.

o Reflection along each axis (there are three of them).
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N
> D DD
-~ | =

E Cy 3 v , \
Identity % rotation  —2% rotation  Reflection Reflection Reflection

Figure 7.2: Diagram of the symmetry group of a triangle (C3v). Note that I used the notation
cy = C3 and c_ = c_ to denote the rotations but this image uses C3 and c_. I took this image
from (Fundamental properties of 2D excitons bound to single stacking faults in GaAs).)

See Fig.|7.2|for a sketch of this. The C3v also captures the symmetry of the Ammonia molecule,
NH3. There will be a question on the problem sheet this week on this. This will be one of our
favorite example groups so its worth becoming very familiar with it.

Other important (larger) finite groups include:

The cyclic group Z,. For completeness, of course we can also consider the cyclic group of n
objects Zy,

* e ay az ... QAp-1

(& e a; az ... QAp-1

aq al as a3 ... € (7 7)
as a9 asg a4 ... Qi )
Ap-1 | Qp-1 € a ... Qap-2

Examples of such groups include the set of 2D rotations that leave a regular n-sided polygon

2m 2

invariant and the nth roots of unity a; = ¢?™% in the complex plane.

Symmetric permutation group S,. The group is composed of the group of all possible
permutations of n object with the group operation the composition of functions.

As there are n! such permutations operations the order of the symmetric group is n!

For example, 53 = {I, SWAPlg, SWAPlg, SWAPQg, CYCLE123, CYCLEng} (What is the CAY—
LEY table for this group? E[)

This is a very important group in quantum physics as (as we saw earlier) it is the symmetry
group of systems of indistinguishable particles.

7.1.4 Continuous group examples

A non-finite group is a continuous group. Of particular importance are Lie groups.

Definition 7.1.4 (Lie group). Informally, a Lie group is a continuous group that depends
analytically on some continuous parameters .

“Hint we have already seen that there are only two possible tables for an order 6 group
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Note that not all infinite groups are Lie groups! The set of all rational numbers equipped
with addition is infinite (but countable), but it is not a Lie group.

We list some important examples of Lie groups below.

Real d-dimensional rotations SO(d). A classic example of a Lie group is the group of all
rotation matrices (i.e. orthogonal matrices with determinant 1) for real d dimensional rotation
vectors. An orthogonal matrix is the real analogue of a unitary matrix and is defined by the
properties R[M] = M and MM™ = MT M = I. For an orthogonal matrix to be a rotation matrix
we also require that det(M) = 1.

For example, the elements of the group SO(2) (i.e. rotation matrices in 2D) can be written as

_|cos(p) —sin(y)
M{(¢) = [sin(cp) cos(p) ] (7:8)

Another commonly encountered case is SO(3) which corresponds to all rotations in 3D.

The orthogonal group O(d). Another example of a continuous group is O(d) which is
simply the group of orthogonal matrices (i.e. without the restriction that the determinant of
the matrices equals 1). Orthogonal matrices preserve the inner product between real vectors
(z'ly') = ((z|OT)(Oly)) = (x|0TOly) = (z|y). They thus correspond to rotations and reflections.

Note that the determinant of any orthogonal matrix is +1 or —1. This follows from 1 =
det(I) = det(MT M) = det(MT) det(M) = (det(M))%. Orthogonal matrices with a -1 determi-
nant can implement reflections, e.g.

1 0
ey 0] -

performs a reflection of the vector (x,y) in the y-plane.

The unitary group U(d). U(d) is the group of d x d dimensional unitary matrices. This is
the group of matrices that preserve the length/inner product of quantum states.

For example, U(1) can be represented just as the unit circle in the complex plane [¢'?]. Or it
can be represented as a rotation around any single axis on the Bloch sphere, e.g. [R,(¢)] where
R.(¢) = e 07,

Similarly, U(2) represents all 2-dimensional unitaries, that is all unitaries on a single qubit. We
recall that any single qubit unitary can be written as

R(n,0,¢) = ¢~ (#1+0n-0) (7.10)

where we stress that for full generality we need to include the global phase term generated by
¢I. However, this global phase is unphysical. This motivates the consideration of instead the
special unitary group.

The special unitary group SU(d). SU(d) corresponds to the group of unitary matrices
with determinant 1. The restriction to determinant 1 effectively fixes the arbitrary global phase.
To see this note that multiplying a unitary matrix by a phase matrix e **T manifests as a change
in the phase of its determinant as det(e *IM) = det(e™**I) det(M) = e~ det(M).
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For example SU(2) corresponds to the group of unitary rotations to a single qubit that can be
written as

R(n,0) = e 7 (7.11)

Recall that this can be represented as the set of rotations of the Bloch vector of a state on the
Bloch sphere. This would seem to be in some sense equivalent to the group SO(3), i.e. the
group of real rotations in 3D. Indeed the groups SU(2) and SO(3) are very closely related -
more on this in a bit.

7.2 Basic definitions and properties of groups

Now that you’re equipped with a whole zoo of examples let’s go back to looking at the basic
mathematical structure of groups and some of their most important properties.

Definition 7.2.1 (Abelian and non-Abelian groups). : If a*b=bxa Va,be G , the group G
is said to be Abelian. Otherwise it is called a non-Abelian group. These groups are also called
commutative and non-commutative.

For example, U(1) is Abelian (phases commute) but U(2) is not (arbitrary unitaries do not
commute). As we will see later, whether or not a group is Abelian effects some of their most
fundamental properties. (In particular, Abelian groups tend to be much simpler to study).

Another very important concept is that of a subgroup.

Definition 7.2.2 (Subgroup). A subset H of the group G is a subgroup of G if and only if it
is nonempty and itself forms a group.

The closure conditions mean the following: Whenever a and b are in H, then a + b and a™!
are also in H. These two conditions can be combined (exercise: show this!) into one equivalent
condition: whenever a and b are in H, then a * b~! is also in H. The identity of a subgroup
is the identity of the group: if G is a group with identity eq, and H is a subgroup of G with
identity eg, then ey = eq.

Definition 7.2.3 (Proper Subgroup). We call a subgroup of G which is neither the identity nor
G itself a proper subgroup.

A fundamental result in the theory of finite groups is Lagrange theorem:

Theorem 7.2.4 (Lagrange). Let G be a finite group and H a subgroup of G, then the order of
H (i.e. the number of its elements) divides the order of G.

We prove this theorem in sec

It is easy to see that this implies in particular that if the order of a group is prime then there
is only one possible group (i.e. one unique Cayley table) for that group. To see this note that
if the order n of a finite group G is a prime, then it has no divisors, and so no subgroups. The
only group with no proper subgroups is the cyclic one Z,, for prime n - so this is the unique
group. Recall that I claimed earlier that Z3 was the unique group with 3 elements - this is why.

Let’s look back at the non-cycle 4th order group we discussed earlier with the Cayley table:

* ‘ e a b ¢
ele a b c
ala e ¢ b (7.12)
b|lb ¢ e a
clec b a e
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This has subgroups {e,a} and {e, b} and {e, ¢} which are all Zs groups. Or, thinking more physi-
cally and recalling that this corresponds to the symmetries of a rectangle as sketched in Fig.
identity and any one of the transformations (e.g. rotation by 7, reflection in the horizontal axis,
reflection in the vertical axis) each forms a group because each of these transformations are
self-inverse.

Ezercise: What are the subgroups of C3v group? Does this make sense in terms of the
symmetries of the Ammonia molecule, NH3?

A useful theorem in finite group theory is the reordering theorem:

Theorem 7.2.5 (Reordering theorem). Let G be a finite group and m one of its elements. The
ensembles mG and Gm are a re-order of G.

First lets check that this is true for an example we’ve just looked at - the rectangle symmetry
group Rs. Suppose we take the set G = {e,a,b,c} and multiply each element by the element
m = a to give mG = {a,a?, ab,ac}. Then from the Cayley table of the group in Eq. we get
mG = {a,e,c,b}. This is just the original group reshuffled. As the group is Abelian the same
applies for Gm.

This is the type of theorem where I almost feel that just staring and convincing yourself of
it is the best way forward- as groups are closed multiplying through by a group element gives
another group element and the requirement for each element have an inverse means that you
always get a different element on multiplying through. Alternatively, one can more formally
argue the following:

Demo. The map z - max is surjective (i.e. all elements have an antecedent). Indeed for any
y € G, m 'y e G (group property) and m(m=1y) =y. The map = - ma is also injective (it maps
distinct elements to distinct elements). For any z # 2’, ma € G is different from ma’. Indeed,
if max = ma’ then m~!(mz) = m 'ma’ and 2 = 2/. Hence the map is bijective and therefore a
reordering. The proofs works in a similar way for the map x — xm. (For more on the properties
of functions see Appendix [7.14) O

Group Homomorphism and isomorphism The final important concept I will discuss in
this section is that of group homomorphisms and isomorphisms. This formalises the important
idea that I have been repeatedly hinting at but glossing over - the idea of superficially different
looking groups being the same in some sense.

A group homomorphism, is a mapping between two groups which respects the group struc-
ture:

Definition 7.2.6 (Group homomorphism). A function from a group (G, *) to the group (G, x)
is an application f:G — G’ such that Va,y e G f(z*y) = f(x) * f(y).

It implies in particular that f(e) = €', (where e and e’ denote the respective neutrals of G
and G') as well as f(z7!) = f(2)~!. For instance, it is always possible to create a morphism of
any finite group to the trivial group by mapping all the elements to e’. A less trivial example
is that the group Zs is homomorphic to Z = {...,-3,-2,-1,0,1,2,...} equipped with addition
using f(xz) =1 for even numbers and f(x) = -1 for odd numbers for x € Z.
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(a) Injective but (b) Non-Injective but (c) Injective and
non-surjective surjective surjective (bijective)
A B A B A B

b

N

‘gr L

Ho L

Figure 7.3: Diagram of injective, surjective and bijective functions: (Wiki page on functions).)

A homomorphism from f:G — G’ can be bijective, i.e. be a map with a one-to-one corre-
spondence between elements in the domain and range as sketched in Fig. In this case, we
call the mapping an isomorphism.

Definition 7.2.7 (Group isomorphism). A group isomorphism is a function between two groups
that sets up a one-to-one correspondence between the elements of the groups in a way that
respects the given group operations.

If there exists an isomorphism between two groups, then the groups are called isomorphic.
From the standpoint of group theory, isomorphic groups have the same properties and need
not be distinguished. In the case of finite groups, this means that the groups have the same
Cayley table. For example, G = {1,-1} with * standard scalar multiplication, G = {I, X} or
G = {I,SWAP} with * matrix multiplication are isomorphic to Zg. Similarly, multiplication
on the unit circle in the complex plane [e’?] and rotation around any single axis on the Bloch
sphere, e.g. [R.(¢)] where R.(¢) = e are isomorphic to U(1). (However, Z is homomor-
phic, but not isomorphic, to Z equipped with addition).

Theorem 7.2.8 (Image of inverses and neutral element). If G is homomorphic to H by f: H —

G, then €' = f(e) and f(u™') = (f(u))™!

Demo. Clearly, f(e)f(u) = f(eu) = f(u) so the first property is proven. For the second, we
write f(u)f(u™t) = f(uu™) = f(e) = ¢’ so that the converse of f(u) is f(u)* O
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7.3 Basic definitions and properties of representations

Let us now return to representations. As I mentioned earlier groups encode abstract symmetries
but representations describe concrete realisations of those symmetries. Informally, a represen-
tation of a group captures the action of a group on a vector space (e.g. on quantum states).
In particular, in a quantum context, it is a map from the elements of a group to a set of uni-
taries such that multiplication of that set of unitaries obeys the same properties as the original
group. For example, the group Z» can be represented as {1, X} and {1,SWAP} acting on C?
and (C?)®? respectively. We can formally define the notion of a representation of a group via,
the notion of homomorphisms introduced above.

Definition 7.3.1 (Group representation). A representation R of a group G on a vector space V' is
a group |homomorphism| from G to GL(V), the general linear groupE]on Viie,R:G - GL(V).
The dimension of a representation R is defined to be dim(R) = dim(V).

We stress that formally a representation is by definition the map R. However, more infor-
mally the word representation is used in multiple ways. For example, informally you might hear
someone discuss the {1, SWAP} representation of Zs. Technically {1, SWAP} is a group (that
is isomorphic to Zs) and the representation is the map R such that R(e) = I and R(a) = SWAP
(where the properties of a and e are captured by the Zs Cayley table). As long as you remem-
ber that fundamentally it is the underlying map that is the representation, this casual way of
speaking shouldn’t cause too much confusion in practis

Let us give a few examples:

Trivial representation. All groups admit a trivial representation (or the Identity represen-
tation): Yge G,R(g) = 1.

Examples representations for the parity group 7, = {e, a}.

o As we said before we have the representations G = {1, X} and Ggwap = {1,SWAP} acting
on C? and (C?)®? respectively. You could also havd’| G = {1, Z} on C2.

e On R it has two representations: 1) the trivial representation R(g) =1 for g = e, a, as well
as 2) the representation R(e) =1, R(a) = -1.

o The trivial representation {I} can also of course be defined on a vector space of any
dimension.

Examples representations for O(3). Consider O(3) the group of orthogonal matrices in
dimension d = 3. We recall that this is the set of all 3 x 3 matrices M such that MM7 = 1.

e The simplest representation, called the fundamental representation, is simply the set of all
3 x 3 orthogonal matrices.

o The morphism R(g) = det(M) = +1 is a representation of O(3) on the vector space R
(indeed det(AB) = det(A) det(B)).

®The general linear group is the group of invertible linear transformations on a vector space V

5This subtlety is put nicely in [Representation Theory for Geometric Quantum Machine Learning: As an
unfortunate feature of the subject, the word “representation” can equivalently refer to the group homomorphism
R, the vector space upon which it acts V', or the image subgroup R(G) c GL(V'). Once one gets used to this, it
is not as bad as it sounds: in practice, one often thinks of a representation as being the shared data of the vector
space V' and the linear action of G on that vector space.

"This is in fact equivalent to the G = {1, X} as they are related by a unitary transformation. More on equivalent
transformations in a bit.
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Fundamental representation of continuous groups. All continuous groups have the a
‘fundamental’ representation where the matrices in the group and the matrices in the represen-
tation coincide (“up to change of basis”)ﬂ

Adjoint representation. Another important representation that is possible for any group
is the adjoint representation. Thus far we have considered representations that map vectors
to vectors, it is also possible to consider representations that map matrices to matrices. Let
V = M3(C) denote the set of 2 x 2 complex matrices. The linear super-operator

A U, AUS (7.13)

where U, = R(g) is a possible representation of G. For example, U...UT for U € SU(2) is a
representation of SU(2).

So far we have spotted the representations corresponding to a symmetry group just by ‘see-
ing them’. In fact, as I discussed earlier, the process often in physics goes the other way around.
We know the symmetry at the level of the representation and then abstractify to identify the
underlying group. But what about going the other way around - what if we have a group, and
don’t know any of its (non-trivial) representations, and want to find one?

Regular representation of finite groups. All finite groups admit what is known as the
‘regular’ representation as one of its representations.

Definition 7.3.2 (Regular representation). For a finite group of order h, one can construct the
so-called regular representation using h x h matrices as follows. First start from the following
reordered Cayley table (here for h = 3):

* ‘ e at bt
ele at bt

¢= ala e ab™t (7.14)
b|b bal e

Now the representation can be done using the following matrices for g € G: We use a matrix
which is zero everywhere except for the position that corresponds to the group element in the
Cayley table:

(R(9))ij = 99,0 (7.15)

With this definition, e is represented by the identity matrix R(e) = I. It is easy to check
that these matrices indeed follow the group algebra. You’ll work through some examples of this
in the problem sheet.

It is also possible to construct representations from a simpler (set of) already known repre-
sentations.

8Note that although the matrices between the group G and its representatives {R, : g € G} ¢ GL(V) are
identical, we think of the abstract group and its representatives as conceptually distinct.
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Equivalent representations. Consider a group G and a representation R(g)Vg € G. We de-
fine now R'(g) = SR(g)S~! where S can be any invertible matrix. This is a similarity transforma-
tionﬂ It is easy to see that similarity transformations of representations are still representations.
It is straightforward to verify that R'(g) is a representation of G (i.e., if R(gh) = R(g)R(h) then
R'(gh) = SR(g)R(h)S™" = SR(g)S™'SR(h)S™" = R'(g)R'(h)).

Definition 7.3.3 (Equivalent representation). Two representations D and D’ are equivalent if
they are related by a similarity transformation R'(g) = SR(g)S™!.

Roughly speaking, representations are equivalent if we can transform one to the other by
a linear invertible transformation. If what follows, we shall be mainly concerned by unitary
representations and transformations. In this case SST =1 and ST = S~'. This means that we
shall consider two representations as equivalent if they simply correspond to a change of basis:

R'(9) = UR(g)U".

Tensor product representation. For example, consider two representations R; and Rs
for a group G, it is straightforward to verify (check this!) that the tensor product of their
representations Ry ® Ro, i.e. the set of matrices such that

Ri(g) ® Ra(9) (7.16)

for each element g, is also a representation. For example, {I ® I,Z ® Z} is a representation of
Zy (in fact, {I®*, Z®} is a representation for any k).

Tensor product representations are fundamental in physics whenever we take the symmetry
property of a single system and want to study the properties of a composite system. For ex-
ample, suppose we have a system of n particles each of which are SU(2) symmetric. In this
case, we will be interested in the representation of SU(2) on (C?)®", and so a natural choice is
SU(2)®™.

Direct sum representation. Another useful composite representation, one that plays a key
role in physics, is the direct sum representation.

Definition 7.3.4. Consider two representations Ri, Rs of a group G acting on vector space
V1, Vs. The direct sum R; & R is a representation of G acting on Vi @ V5 defined by

(R1® R2)(9)(v1,v2) := (R1(g)v1, Ra(g)v2), forallgeG. (7.17)

Or, writing the matrices out explicitly, R; @ Ry acting on V; & V5 we have:

(R1® R2)(g) = (Rlég) Rg(zg)) , forall geG. (7.18)

That this is indeed a representation follows straightforwardly from the block structure of
Eq. (7.18). (If this isn’t immediately clear to you, do work through it explicitly). We can also
take the direct sum of the same representation, i.e., Ry @ R;, in which case we say that R; has
multiplicity of two, and we write

(R @ R)(9) - (Rl(g)

0 R1(g)) =I®Ri(g), forall geQ. (7.19)

°In linear algebra, two n x n matrices A and B are called similar if there exists an invertible n-by-n matrix P
such that B = P™'AP.
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Notice that due to the block structure of a direct sum representation the action of an element
of the representation structure of a group leave certain subspaces invariant. This will turn out
to be very important.

Hopefully it is now clear how you can take simple representations of a group and create more
complex ones. In many cases, we will in fact be more interested in going in the other direction.
Taking a complex representation and trying to break it down into a simpler one. More concretely,
one of the things representation theory is most useful for is taking a representation (e.g. say a
tensor one), and expressing it as a direct sum of representations on smaller subspaces. We will
discuss this in Section [7.6]
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7.4 A little bit on Lie Algebras

Lie groups (i.e. continuous groups) necessarily have uncountably many elements, in contrast to
finite discrete groups, and this can make them a bit of a pain to work with. It is often convenient
to work not at the level of the group elements / representations but instead at the level of the
generators of the group elements. To motivate this switch let’s start with an example.

7.4.1 Warm up example of SO(3)

Let us start by looking at the example of SO(3) (i.e., rotations in 3D). Any rotation in 3D can
be decomposed into rotations around the x, y and z axes respectively:

1 0 0 cosf 0 sinf cosf —sinf O
R;(0) =10 cos® -sinf|,R,(0)=| O 1 0 |,R.,(0)=]|sinf cosf® 0 (7.20)
0 sinf cosf —sinf® 0 cos6 0 0 1

We want to find the set of matrices that generate these rotations. That is, the set of matrices
J such that e’ = ¢ for all g € G. To do so it is helpful to look at small rotations and Taylor
expand e 7/ = T —if.J + O(6?). If 6 is small, we see that the rotation around the z axis reads

1 0 0 0
R.(0)~]|0 of=1-i0li 0 o|=1-i6J, (7.21)
0 1 0 0 0

1
0
and so we can identify the generator

0
0f. (7.22)
0

Jz and Jy can be found in the same manner. More generally, we see that if we perform an
infinitesimal rotation around each axis with angles 6,,0,,0., we have

Ve (I-i6,J;) (I-ibyJy)(I-i0.J.)V~(I-i0-J)V (7.23)
with
0z
0=|\0, (7.24)
0.
0 0 O 0 0 ¢ 0 -7 0
Jz=10 0 —i|,Jy=10 0 0],J.=|z 0 O (7.25)
0 2 O -3 0 0 0 0 O

Since we can always decompose large rotation as a successions of small ones, this means that
we should be able to integrate over these infinitesimal moves [T_UI, so that for any R(0) € SO(3)
we have

R(6) = ¢707 (7.26)

In fact, this can be checked directly by expanding the exponential. The matrices {iJ,,iJy,iJ;}
are called the "(infinitesimal) generators" of the SO(3) group.

""Note that e” = limp oo (1+ Z)™.
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Lie Group

Figure 7.4: Geometric visualisation of definition of Lie Algebra (from Representation Theory
for Geometric Quantum Machine Learning). Continuous groups are manifolds and manifolds
are complicated non-linear objects to analyse. But we can construct smooth paths in the group,
similarly to how one can construct paths along surfaces. That is, we can take derivatives along
paths in the group similarly to taking derivatives of paths on surfaces. The structure that
stores the information of “directional derivatives of continuous group paths” is the Lie algebra
g. More concretely, the Lie algebra g is defined as the tangent plane at identity of the manifold
(Lie group) G. So, paths in G can be differentiated at I to give directional derivatives in g,
and paths in g can be exponentiated to give paths in GG, just as in solutions to linear ordinary
differential equations. For instance, if for an element of the algebra X € g we define a path
g = X € G, then %g(@)‘ezo = XePX|p_o = X. For this geometric picture it’s simpler not to
explicitly factor out the —i term but the story is the same either way.

This is actually a generic phenomenon for Lie groups. Since they are differentiable, it is
always possible to write an element g of a Lie group GG as the exponential of an element J of
the corresponding Lie Algebra g. That is,

g={Jle’ eG}. (7.27)

This switch can also be understood geometrically as sketched in Fig.
Spinning things around, we can recover any J € g by starting with a one-parameter subgroup

e "7 ¢ @ and taking derivatives at the identity I = e:
d. g7
-J=— . 7.28
G oo (7.28)

Alternatively, using the Taylor expansion g = I —6.J + O(6%) where J € g, the matrix equations
defining the Lie group G induce equations defining the Lie algebra g. If G is a unitary group
(as is typical in quantum settings), then we have ng =1 and so

(I-60J+06*)(I-0J+0(6%)=1. (7.29)
Equating 6 terms, we see that JT = —J, meaning the Lie algebra u(d) of a unitary group U(d)
consists of skew-Hermitian matrices J with the standard matrix commutato

Similarly, to how Lie groups are a (continuous) set equipped with a group operation for
combining elements, a Lie algebra is a vector space equipped with an operation for combining

"The Lie Algebra can also be defined as g = {J|e/ € G}. This is, for example, the definition Florent Krzakala
and Howard Georgi use. In this case the generators of the Lie Algebra consists of Hermitian matrices. In an
earlier version of these notes I jumped between the two definitions slightly. I’'m now going to try and be consist
with the version in Eq. but its good to be aware that both versions are possible and only really differ in
terms of where the i’s appear.
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elements. Whereas the relevant group operation (in a quantum context) is typically matrix
multiplication, the relevant operation for an algebra (in a quantum context) is commutation H

To see this consider two group elements ¢; = e 17t and gy = e %272, As the group is closed
we have g1go = g’ where ¢’ is some other element in the group. Thus we have:

9192 — e—ielJl e—iGQJQ — gl — e—iB’.J (730)

for some @’. Now the left hand side of the above equation can be evaluated via the Baker-
Campbell-Hausdorff (BCH) formula:

. ) ) ) 620 020
om0V gm0z _ =01 J1=i02 T2 T2 [y Ja]vi A2 [, [ T ) i =25t e [z, T D+ (7.31)

Thus we see that the generator J', of this new group element ¢’, is composed of a linear com-
bination of the original J; and Jo and a bunch of their nested commutators. In particular, to
first order in 6; and 65 we have

610
i0'.J = i01Jy +i63Jo + %[ul,ug], (7.32)

and so iJ = (iJy,iJa,[iJ1,1J2]). Let us look at the commutation relation of these generators for
SO(3). We find:
(i, J;] = igsjn i (7.33)

with €5, the Levi-Cevita symbol. Thus we see that [iJy,iJ2] = —iJ3 and so J = (J1, J2, J3) as
expected. Note that in this case, higher order nested commutators of J; and Jy just give, up to
constant multiplicative factors, Ji, Jo or J3. Thus we see, as we saw before, that i.J1, ¢.JJo and
iJ3 form a basis for the so(3) Lie algebra |E| and so(3) is said to be a 3-dimensional Lie algebra.

7.4.2 Definitions and basic properties

Ok we’ve run through an example that has hopefully highlighted different aspects to a Lie
algebra now let’s take a step back and recap. We first pointed out that exponentiation of every
element J of the Lie algebra leads to an element of the Lie group with

a={Jle’ €G}. (7.34)

We then saw that (given the BCH formula) any element in the Lie algebra can be generated
from a linear combination of nested commutators of other elements of the algebra ¥} That is,
the elements of a Lie algebra form a vector space. It is worth stressing that the fact a Lie algebra
is a wvector space is part of their appeal. As lie algebras are vector spaces we can tackle them
via linear algebra (which is generally less painful than differential geometry). This means when
faced with a problem with a Lie group symmetry it is often worth passing to the Lie algebra to
try and analyse it and then translate the conclusions back to the level of the Lie group.

While it is possible to define a Lie algebra via its Lie group, in quantum contexts it is
common to start with generators and use them to define the algebra directly through the nested

2However, where as multiplication generates another group element; here the commutator generates another
basis operation of the algebra and to generate the full set one needs to consider linear combinations of the basis
elements.

13Note we use lower case letters or if we're feeling fancy the ‘mathfrak’ font to denote the Lie algebra corre-
sponding to a Lie group G. So, so(3) or equivalently s0(3) denotes the Lie algebra corresponding to SO(3).

Y Turning this around a set S of operators such that a Lie algebra g is spanned (as a vector space) by all nested
commutators of elements of S form a set of generators for an algebra.
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commutator relation similar to the so(3) example above. This way of defining a Lie algebra is
often known as the ‘dynamical Lie Algebra’ because it emphasises the role of the generators as
the generator of dynamics. Pennylane have a nice tutorial on this.

Definition 7.4.1 (Dynamical Lie Algebra). Given a system with a set of Hermitian operators
G = {iJi}X,, the Dynamical Lie Algebra (DLA) g is the sub-algebra of su(d) spanned by the

repeated nested commutators of the elements in G, i.e.,
g =span{iJo, ..., iJK e C su(d), (7.35)

where {}1; denotes the Lie closure, i.e., the set obtained by repeatedly taking the nested com-
mutators between the elements in G.

The above definition of a Lie algebra will suffice for our purposes. But just for completeness,
let us note that more generally they can be defined as follows:

Definition 7.4.2. A Lie algebra is a vector space g over a field F ¢ {C,R} (for us usually
over C) with a Lie bracket [-,-] : g x g — g, which satisfies the following axioms holding for all
X1,X9,X3egand a,bel,

1. Antisymmetry: [ X1, X2] = —[X2, X1].
2. Bilinearity: [aX; +bXs, X3] = a[ X1, X3] + b[ X2, X3].
3. Jacobi Identity: [[Xl,XQ],Xg] + [[XQ,Xg],Xl] + [[X3,X1],X2] =0.

The standard commutator [A, B] = AB — BA satisfies this properties and is generally the
only Lie bracket that will matter in most quantum settings.

How does this link back to the previous definition? Finally, well if we are just interested in
the standard commutator then a convenient way of identifying a Lie algebra in practise is via
identifying a set of generators and their commutation relations. The vector space corresponding
to the algebra is then defined via Eq. . For instance, the Lie algebra so(3) of the Lie
group SO(3) can be expressed by writing angular momentum operators L, Ly, L, and their
commutation relations [L;, Ly, ] = ihY,, €imnLn. More generally, given any three elements of a
Lie algebra J,, Jp, J. the constants f,,. such that

[Janb] = Z.fabct]c (736)

are known as the structure constants and completely determine the algebra.

7.4.3 Representations of Lie groups and algebras

We need to be a little careful with how we speak here. Similarly to how groups encode an
abstract symmetry and representations their physical realisation, Lie algebras encode abstract
symmetries and their representations their physical realisations. And technically, representations
of Lie Algebra’s are the map r from the elements of the Lie Algebra to matrices used to represent
it which satisfy the same Lie Algebra. Again, in casual speaking we often just refer to the
matrices themselves as the representation. More formally:

Definition 7.4.3. Let g be a Lie algebra and V be a finite dimensional vector space. A
representation r of g acting on V' is a map r: g — gl(V') that is a Lie algebra homomorphism, a
linear map satisfying

r([X,Y]) =[r(X),r(Y)], forall X,Y eg. (7.37)
The dimension of the representation r is defined by dim(r) = dim(V').
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Group, SO(3) Representation of SO(3)
o
Lie Algebra, s0(3) Representation of so0(3)

While representations of groups are unitaries, representations of Lie algebras broadly corre-
spond to the Hamiltonians (i.e., Hermitian operators) that generate those unitaries. In terms of
the SO(3) example, the matrices J,, Jy, J, are a basis for the representation of the Lie Algebra
of 50(3): they define a particular representation, in dimension 3, of matrices that satisfies the
commutation relation of so(3). However, other representations of s0(3) are possible (after all,
this is a VERY common commutation relation: all spin moments operators will satisfy it!).

An important question now arises: we see that we have one representation of the Lie Algebra
(the J) and if we exponentiate it, we find one representation of the Group (the R). However,
we know that there are many representation of SO(3) (in many dimensions).

So is it true that ANY representation E of the Lie Algebra will lead, upon ex-
ponentiation, to a representation of the group?

The answer to this question is, unfortunately, NO, in general!, but YES if the group
is simply connected. Topology plays an important role here: it is only for simply connected
groups that any representation of the Lie Algebra is also a group representation.

A manifold is called simply connected if every loop can be contracted without leaving the
surface. Intuitively, this corresponds to a space that has no disjoint parts and no holes that
go completely through it, because two paths going around different sides of such a hole cannot
be continuously transformed into each other. For example, the surface of a sphere is simply
connected but the surface of a donut is not as shown in Fig. [7.5

Connected and
simply connected

Connected but not
simply connected

Figure 7.5: Some pictures from the wiki page on simply connected spaces.

Why is it so important that the topology of the group is simply connected? This has to
do with analytic continuation and the fact that one can go from a succession of infinitesimal
moves to a large one in a single, well-defined, way. This is only possible for simply connected
topologies. The result is that if G is simply connected, there is a one-to-one correspondence

5Note, I am speaking casually here and referring to exponentiating the matrices themselves here i.e. exponen-
tiating r(X), and not exponentiating the map r (whatever that would mean).
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between their representations. But if we relax the simply connected assumption, the power of
this theorem weakens but not too much - locally there is still a correspondence between their
representations. Spelling this out explicitly is beyond the remit of this course but, if you are
interested, I provide more formal statements on this link in Appendix

7.4.4 The Bloch Sphere revisited: SU(2) versus SO(3)

Let us start by showing that any representation of SO(3) is a representation of SU(2).

To do so we consider a representation of SU(2) in v € R3. For any point in v € R, we
associate the following d = 2 Hermitian and zero trace matrix.

z T +1y
T-1y -z

M(v) =[

] = X0, + Yoy + 20, = V.0 (7.38)

where v = (z,y,z). Now, let us look how SU(2) transforms these matrices. We define the
transformation as

M' = fy(M)=UMU". (7.39)

Clearly, such transformation respects the SU(2) structure. Indeed,
Ju(fv(M)) =U(VMV DU = UVM(UV)™ = fuy (M) (7.40)

Additionally, these transformations keep the trace zero and preserve the hermitian property
(UoUN =UeUT and Tr[UoUT] = Tr[UTU0] = Tr[o] = 0 for any Pauli o), and so the transfor-
mation M’ can also be expressed as the linear combination of o5, o, and o:

I Iy ool
M’ = [x' f i v _Jr;y ] =t'o,+y'oy+2'0,=v"0. (7.41)
This means that our transformation on M implies, implicitly, a transformation in 3d with v’ =
f2%(v). This transformation is continuous and linear (Mj + M} = U(M; + M)U™*. Additionally,
it also preserves the determinant of M (as det(M') = det(UMUT) = det(U)det(M)det(UT) =
det(M), and thus it preserves the length of the 3d vector v. In this case it can only be rotation
and /or mirrors. But mirrors are NOT continuous, and thus this means that fgd(v) is a rotation
of the point v.
We have thus created an interesting bridge: fg,d('v) is just implementing rotations so that

f(v) = R(U)v (7.42)

Therefore, we have made (implicitly) a map between the SU(2) group to the SO(3) group: the
matrices R(U) (which are just the rotation matrices of SO(3)) are a representation of SU(2),
since they follow the f3¥(v) transformation, and thus the SU(2) composition rule. In other
words a representation of SO(3) is a representation of SU(2). This is essentially just a
rephrasing of the derivation of the Bloch sphere in the very first lecture.

However, the opposite is not true! In fact, it is easy to see that this relation is not an
isomorphism (Deﬁnition, because U and —U have the exact same effect EGI in eq. and
so there is not a one-to-one correspondence between the elements of the group. Therefore, both
of U and -U have the same representation in SO(3): there are multiple elements of SU(2) for

STechnically this example only works for even dimensional problems. As U is in SU(n) then det(U) = 1 and
so det(-U) = det(-I)det(U) =1 if n is even. I only mention in case you were confused by this.
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one element of SO(3). Therefore: a representation of SU(2) is not a representation of
50(3){]

Notice, however, that these elements differ only by a minus sign. We say that SU(2) is
the double cover of SO(3) in that every element of SO(3) has two corresponding elements of
SU(2) (i.e. ones corresponding to +U and -U). Alternatively, a representation of SU(2) is what
is known as a projective representation of SO(3): namely a set of operators that satisfy the
homomorphism property up to a constant.

Definition 7.4.4 (Projective group representation). A projective representation of a group G
on a vector space V is a group homomorphism R : G - GL(V) up to a constant. That is,
a morphism from a group (G, *) to the group (G’,*) is an application f:G — G’ such that
Ve,ye G f(x*y) =gy f(x) x f(y) for some constant Ay, .

The fact that some mathematical objects transforms with SU(2) rather than SO(3) is a deep
consequence of the laws of quantum mechanics. It tells us that it is possible that some object
will transform with SU(2) upon rotation! We know these objects: half integer spins!

Ok but what is going on at the level of the Lie Algebras? Well to move from a representation
of a Lie group G to a representation of the Lie algebra g, we take derivatives of paths and
evaluate at the identity. We have just seen that SU(2) is homeomorphic to the 3-sphere, it is a
3 dimensional real manifold, and so its Lie algebra su(2) is a 3 dimensional real vector space. It
thus suffices to find 3 linearly independent tangent vectors, which we can do by taking derivatives
of parameterized paths and evaluating at the identity I. Since we have explicit rotation paths
which are I when 6 =0, let us use those:

d d —i020/2 1

_Rx 6 = 75 =—i= T
TR T o 27
d d iy o2 1
—R (0 - ioy0/ - 5
TR e o 27
d d i oo 1
—R.(0)] = =—iso,
= w1

Thus a possible representation for the Lie Algebra for su(2) is:
{50'1, §O'y, 50-,2} (743)
which obey the commutation relations

1 1 1
|:§Ui,§ j]:ZEijk§Uk' (7.44)

the same commutation relations as the J;, J, and J, operators in the so(3) algebra. Therefore,
we see that the su(2) Lie algebra is isomorphic to the so(3) Lie algebra! These groups have a
deep relationship! Note the factor of 1/2 in the exponent, which was slightly mysterious in the

first lecture, ensures this isomorphism between the two algebras. This factor also ensures that
SU(2) is the double cover of SO(3). If we recall that

U(0) = e"5" = cos(6/2)1 +isin(6/2)v.c (7.45)

1"The more trivial example of this is that we have any group G is homomorphic to the trivial group. But, the
trivial group is not homomorphic to G.
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we see that for 6 = 2 we have U(27) = —I and we need 6 = 47 to regain U(4n) = I. That is,
U(#) and U(# + 27) are two different unitaries that correspond to the same Bloch vector.

If you were wondering how this all links back to groups being connected versus simply
connected. Well SU(2) is simply connected and SO(3) is connected by not simply connected E
This means that the groups can share the same representation at the level of the lie algebra but
only in the case of su(2) does this strictly lift to a representation of the group SU(2).

That all gets a little subtle but the punchline is: SU(2) and SO(3) have isomorphic Lie
Algebras (su(2) and so(3)). Any representation of SO(3) is a representation of SU(2) but not
vica versa.

'8 This is because there is an orientation component associated with SO(3) that you do not have with SU(2)
and so, in handwavey terms, a rotation by 27 leads to a twist and so is not contractable. However, as 2 x 27
rotation undoes this twist and so is contractable. I appreciate this is subtle and my answer has been very quick
here - if you want to understand this better geometrically/pictorially I recommend this youtube video and this
intuitive paper. For a deeper dive into this topic, and other topics on Lie Groups and Lie Algebras, I've been
recommended this youtube series.
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Figure 7.6: Why symmetry considerations are important for any learning task (image taken
from this blog post)).

7.5 (Quantum) Machine Learning Example

Ok time for a brief interlude from all the maths. Statistically, many of you taking this course
will end up working on a mix of machine learning, data science and artificial intelligence at
some point in your careers (whether you stay in physics or venture into the real world). As
such I want to highlight to that symmetry considerations and therefore group theory can be
really important in these areas. One thing that is also nice about these examples, unlike some
more physics heavy examples which we will discuss later, is that we already have enough of the
theoretical tools laid out to look at this application now.

So, why is symmetry important in machine learning? This is explained very nicely in this
blog post| which I’ll draw from here. In particular, let’s start with everyone’s favourite example
of a machine learning task: classifying images to decide if they include cats of dogs (Fig. [7.7)).
(If you want a less inane task consider trying to classify whether an images of tumours contain
cancerous cells. Or whether images of galaxies contain supernova.)

Figure 7.7: Task: train a classifier to decide if an image contains a cat or a dog. The classifier is
trained on a data set {(z;, i)}y, composed of a set of N images (x;) and a corresponding label

(Yi)-

There are many different transformations one can perform to an image of a cat that still
leave it as a picture of a cat - e.g. you can rotate it or reflect it and you are still left with an
image of a cat (Fig.[7.8).

We want our classifier to be invariant under these symmetry transformations. In the context
of image processing (or modelling molecules or materials) these symmetry transformations will
typically be geometric transformations. Beyond image classification other symmetry transforma-
tions, such as permutation invariance, can become important. And, of course, mathematically all
these symmetry transformations can represented by the actions of elements of a symmetry group.
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\ “Cat”

Figure 7.8: A picture of a rotated cat or flipped cat is still a picture of a cat.

7.5.1 Invariance versus equivariance.

An important distinction in the context of symmetry in machine learning is that between in-
variance and equivariance.

A function is invariant to a transformation if the function is left unchanged when its input
is being acted on by the transformation group. This was the case for function (i.e. the model)
classifying whether an image contains a cat. It would also be the case for a function predicting
the ground state energy of a molecule as shown in Fig.

05'0,8
Q"gﬁ,
“Cat”

Figure 7.9: Examples of invariant functions.

Let’s try to make this a bit more formal. We consider a function f : X - Y (e.g. the
classification or energy prediction functions in the examples above) and a symmetry group G
(e.g. rotations). Let Rx(g) be a representation of G on X. The function f is then said to be
G-invariant if

f(Rx(g9)-x)=f(x) VYgeGzelX,.

On the other hand, a function is equivariant if the function’s output transforms in the
same way as its input. When this is the case it does not matter whether you first apply the
transformation to the input and then function, or vice versa. That is, the function and the
transformation commute as shown in Fig. [7.10]

Mathematically, a function is equivariant if

f(Rx(g)r) =Ry(g)f(r) VgeG,zeX, (7.46)

where we note that X and Y are in general different spaces so the representations of the group
actions on those two spaces, denoted Rx and Ry respectively, may differ.
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Figure 7.10: Examples of equivariant functions. (Image taken from this blog post)
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7.5.2 Invariance and equivariance in quantum machine learning

I was torn whether to run through the maths here in a classical or quantum context. In the
end I have settled on working through an example from quantum machine learning because i.
this is a quantum course and so ii. based on what we have covered so far this semester I think
the quantum case is simpler to understand. However, I should stress that no one knows yet
if/where quantum machine learning will be useful. Therefore you should see this primarily as
a pedagogical example. Here are some references if you are interested in seeing this discussion
phrased in the example of classical neural networks: a [blog post and textbook, an [introductory
article, and a tutorial with code snippets. I'm going to largely work from here: Representation
Theory for Geometric Quantum Machine Learning,.

Before working through this, you might find it helpful to first look back over to the section on

quantum machine learning in Chapter 6. There we considered the binary classification problem
sketched in Fig. [7.11]

Figure 7.11: Binary classification problem using a single qubit encoding. The pink line denotes
the symmetry transformation that leaves the data label invariant. (Image from here).

More generally, we can imagine a quantum machine learning classification model as being
composed of two steps:

1. An optional embedding. Data x is embedded into a quantum state via a parameterized
map e.g. p, = U(z)poU(z)! where py is some initial state and U(z) is a parameterized
unitary (i.e. circuit).
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This embedding is optional as one can also consider quantum classification problems where
the data is given to you already in the form of quantum states. For example, classifying
pure versus mixed quantum states.

2. Define and train a quantum model. A general quantum model takes k copies of an
input state p,, processes it via a parameterized quantum circuit (PQC)E U(#) and then
performs a measurement M, (which could depend on the input z):

ho(pe) = Te[U(0)p2* U (6)T M, ]. (7.47)

This output is typically a real number, it can be turned into a label for classification e.g.
via the sign function, e.g. y = sign(hg).

In this context, a quantum model is called invariant if the action of a unitary group G is
said to leave the data labels y, invariant, i.e. if

ho(Vpa V1) = hy(pa)

for all p, with labels y,, for all 8, and for all unitaries V € G. Let us stop and make a few com-
ments. Firstly, label invariance trivially holds if the states are invariant under the symmetry
ie., if VprT = p,. However, this need not be the case! It is possible for the states Vp:,;VT and
p2 to be different but the label the same. Thus this is a wider class of symmetries than state
symmetries.

So how could you go about constructing an invariant quantum model?

The first thing to do @ is make your parameterized quantum circuit equivariant. Let
Wa(p®") = U (0)p** U (6) (7.48)

denote the function corresponding to the parameterized quantum circuit applied to k copies of
the input data state. Then, to ensure that Wy is equivariant, we require that

Wo(VERpRR(VTYOR) — VORI (0)p2RUT(0)(VI®E vV V eG, V0, (7.49)

(We have simply plugged W and the adjoint representation Ry (g)(...) = Ry (¢)(...) = V&*..(V1)®*
into Eq. (7.46))). This condition is equivalent to requiring that the PQC commutes with all group
elements

[V U6)]=0 VVeG, V6. (7.50)
The second step is to pick your measurement so that it commutes with the group action
[V M]=0 VVeq. (7.51)

While not formulated in precisely the form of Eq. (7.46)) this commutation constraint can be
also viewed as form of equivariance condition on the measurement operator.

19 Also known as a quantum neural network (QNN).
2ONote, this isn’t the only way you could go about making your model invariant but it is the only way we will
discuss here.
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It is straightforward to check that these conditions really do lead to invariant quantum
models:
ho(VpiV1) = Te[Wo (Vi VT)®F) M)
= Tr[ (V¥ Wy (p2*) (V1)) M;]
= Te[Wy (p2F) (V1) M v et (7.52)
= Te[Wy (") M;]
Zhg(pi), VVeG.
The model is invariant as claimed!

Quoting from here: Conceptually, we can think of equivariant quantum neural networks as
passing the action of the symmetry from their input, to their output, while equivariant measure-
ments lead to models that absorb the action of the symmetry.

For example, in our binary classification task considered in Fig. the labels are invariant
under bit flip, i.e. under {I, X} (as sketched by the pink line). Thus to construct an invariant
model we should use a parameterized quantum circuit and measurement operator that commutes
with X and I. Thus we see immediately that our measurement operator M should be of the
form M = X. Similarly, the equivariant parameterized quantum circuit consists only of rotations
around X. As these trivially leave the measurement operator M = X invariant we now see that
for this simple example there is no need even to train.

Let us now consider a slightly less trivial example. Consider the binary classification task
shown in Fig. where the inputs are now two coordinate vectors, x; = (z},z?) and the output
label y; depends only of the values x},z? and not their ordering (e.g., (z},2?) and (22, x}) have
the same label). That is, the output label is invariance under permutations of the inputs, i.e.
under the group {I, SWAP}.

v . 2 v A P e

yi =1 % 1 :
S R H He

v4 (1;2 > : 6—'591 z7 6—192YY E

[*] ! 1
o Y ) RED — —{ X

ZZ I v v T i

{ed

[Pr <> SWAPp,SWAP] Quantum Neural Network W ()

Figure 7.12: Binary classification problem for data living in a two-dimensional plane. (Image
from here).

We can solve this classification using a two qubit model. The qubits are both initialized in the
|+) state as previously and each input is encoded by applying a rotation of :Uf about the Y axis on
qubit j for j = 1,2 (as shown in Fig. . For an invariant model we need to use an equivariant
parameterized quantum circuit and measurement. This constraint on the measurement operator
is relatively simple - we just need a measurement operator that commutes with the SWAP
operator - a natural choice would be an operator of the form M =, X ® X +a,Y ®Y +a.Z® Z
where the o parameters could either be fixed or trainable. Similarly, the parameterized quantum
circuit needs to commute with the SWAP operator for all §. How do we ensure this in practise?

In general finding all the unitaries U(#) that commute with all the representations V' of
the elements of the symmetry group G might seem rather challenging. But this is where the
relationship between Lie algebras and Lie groups comes in handy. I'll quote from here:
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We can use the trick of passing to the Lie algebra, solving there, and going back to the
group. Explicitly, let us consider the case where U(0) is composed of a single “layer”, which is a
fancy way of saying that U(0) = e 1 for some Hermitian operator H, and for some trainable
parameter 0 € R. In particular, since this must hold for all 6, it must hold for infinitesimal
parameters. We can again use the Taylor expansion trick (Eq. ) to expand around 6 = 0.
So e”H = [ —i0H + O(6?) we get

[(U(6),V,] =-i0[H,V,] +0(6%), (7.53)

which is zero (to first order) if [H,V,] =0. That is, the quantum neural network U(6) will be
equivariant if its generator H commutes with all the representations of the group elements. In

fact, one can check that
[H,Vy]=0, VgegG, (7.54)

is enough to guarantee that all remaining higher orders terms will also commute with V;. Not
surprisingly, it is easier to solve [H,Vy] =0 at the algebra level than to solve [W(0),V,] at the
group level.

So for the permutation invariant binary classification problem we were just considering we
would need to pick our quantum gates such that all their operators are permutation invariant.
That is, we have gates of the form e 1% @ e71X or ¢70228Z  (Qpe possible example quantum
neural network of this form is shown in Fig. [7.12]

For more examples of how equivariance can be used to design good models (including some
more physics inspired ones - e.g. solving ground state problems) see Appendix
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7.6 (Ir)Reducible Representations of Groups

Our goal here will be discuss when /how it is possible to decompose a representation into a direct
sum of other representations and, hopefully, give a sense of why we might be interested in doing
this in the first place.

7.6.1 Warm up example

Consider a two qubit system and the tensor product representation of SU(2) on this space, i.e.
R(g)=Uz;0U,. (7.55)

Can we decompose this into the direct sum of two other representations? That is, can we block
diagonalize U, ® U, for all g?

To answer this we first note that U,®U, commutes with the SWAP operator [U,®U,, SWAP] =
0. This means that it is possible to (block) diagonalize U, ® U, in the same basis as the SWAP.
More generally, the following proposition holds.

Proposition 7.6.1. Let R(g) = Uy be a representation of a group G, and let H be a Hermitian
operator such that [Ug, H] = 0 for all g € G. Then, for any eigenvector |1)) of H with eigenvalue A,
Ugl) is also an eigenvector of H of eigenvalue \. That is, H is simultaneously block diagonalized
with Uy.

Demo. Observe that HU,ly) = UgH|1p) = AUg|yp). This means that H and U, are (blockPEI)
diagonal in the same basis. O

Next we recall that the SWAP operator has eigenvalue 1 on the symmetric subspace spanned
by the degenerate eigenstates {|11),|01)+|10),]00)} and eigenvalue —1 on the anti-symmetric sub-
space spanned by {|10) —|01)}. That is, it is block diagonalized in the symmetric-antisymmetric
decomposition.

It thus follows that the tensor representation U, ® U, is also block diagonalized by the
symmetric-antisymmetric decomposition of V: i.e., in the basis {|11),]01) + |10}, |00}, |10) —|01)}.
That is, every representative U, ® U, can be expressed as

0
0

U,®U, = 0

(7.56)
0 0 0

where O indicates the blocks to be filled in with the appropriate matrix elements. That is, the
claim is that if you take any matrix constructed from the tensor product of two single qubit
matrices and write it in the Bell basis ] it will have the block diagonal form shown above [

In other words, using the notation Sym?(C?) for the symmetric subspace and Alt?(C?) for the
antisymmetric subspace, we can write the composite vector space as V = Sym?(C?) @ Alt*(C?)
and it is possible to construct representations that act on these spaces separately. More con-
cretely, it can be built from the direct sum of SU(1) (i.e. just the 1 by 1 identity matrix) on
the subspace Alt?(C?) and SU(3) on the Sym?(C?) subspace. Note also, that due to the block

21The fact we have ‘block diagonalized’ rather than simply ‘diagonalized’ here allows for the fact that H and
Uy can have degenerate eigenvalues

*2The subspace spanned by {|11),]01) +|10),]00)} is alternatively spanned by the Bell states {|®*),|®7),|¥")}.

2 Brercise: If youw're not yet fully convinced, check this numerically. It’s quite cool to see it work in practise.
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structure of U, ® U, a state in the subspace Sme((CQ) remains in the subspace spanned by
Sym?(C?) (and similarly for Alt?>(C?) ).

It is important to stress that it is not always possible to reduce a representation into a direct
sum of representations. Or, equivalently, a representation will not always have an invariant
subspace. For a simple example of such an irreducible representation consider the fundamen-
tal representation of SU(2). This is simply the continuous set of all single qubit unitaries.
Clearly there is no single basis in which such matrices are all diagonal. Or, equivalently, there
is no way to split the vector space into disjoint subspaces where any vector in that space re-
mains in that space under any arbitrary single qubit unitary. Similarly, the representation
SU(2) on Sym?(C?) and Alt?(C?) cannot be further reduced ( e.g. there is no subspace within
{|11),|01)+|10), |00), [10)—|01}} that remains invariant under any unitary U®U with U € SU(2)).

Before we move on to discussing when representations are and are not reducible let me just
highlight that there is lots of physics in the simple example of decomposing SU(2) ® SU(2) into
a direct sum. And this physics hopefully gives you a sense of why reducing representations is
physically interesting.

Link with identical particles. Firstly, thinking back to when we studied identical particles,
you should recognise the symmetric and anti-symmetric subspaces found above as corresponding
to Bosons and Fermions respectively. Thus these observations could be seen as another way of
showingF_Z] that there are two types of fundamental particles that we cannot transform between.

Link with addition of angular momentum/Clebsch-Gordan coefficients. The two
blocks found above also correspond to the spin 1 and spin 0 blocks obtained when adding the
momentum of two spin half particles. That is, we have three spin 1 states:

|s=1,m=1)=]11) (7.57)
|s:1,m=0>:%(|10)+|01>) (7.58)
Is = 1,m = ~1) = [00) (7.59)
and one spin 0 state:
5= 0,m = 0) = ——(]10) = [01)) . (7.60)

V2

Here the left hand side of the equations denotes the state corresponding to the total spin s = s1+59
of two spin 1/2 particles (s1 = 1/2, so =1/2) and total spin m orientated in the z direction. On
the right hand side of the equations we denote the spin orientation of the two particles, e.g.
|10) corresponds to one spin aligned spin up with z and the other spin pointing down in the z
direction. These equations, read right to left, can be viewed as representing a change in basis
from a basis where we list the individual orientations of the spins to the resulting total spin
and orientation of the combined spins. Thus we see that the decomposition of a tensor product
representation into a direct sum of representation has a deep link with how to add the angular
momentum of composite systems.

24Technically we just consider the rather trivial U ® U evolutions here but the more general set of evolutions
that commute with SWAP could similarly be diagonalized in the symmetric and anti-symmetric subspaces.
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More generally, when we add two spins j; and jo, we have a spin that can take values j from
J = 71— 17j2| to |j1 +jo|. Correspondingly, the tensor product of representation can be decomposed
into a direct sum of representations (that cannot themselves be reduced further) corresponding
to each of the j values that the composite system can take:

D‘71 ® l)j2 = @‘jl—j2‘§j£|j1+j2|Dj . (761)

Here each representation j is of dimension 2j + 1 (where m takes integer values from —j to j
ie. m=-j,—j+1,...,7). This decomposition is often called a Clebsch-Gordan decomposition.
The change of basis from the tensor product representation to the direct sum representation
corresponds to the change in basis from detailing each particles orientation to detailing the total
angular momentum J and orientation M. This change in basis defines the Clebsch-Gordan
coeflicients:

J1 J2
gom)y =% > ldmasdz, me) (i, ma; 2, ma | j,m) (7.62)
mi1=-ji1 ma=-j2
1 J2
JM , .
= Z Z le,mﬁjz,’mz |]17m1a.]27m2> . (763)

mi=-j1 ma=-7J2

The theory of groups and irreducible representations can be used to compute this coefficients.
However, we won’t have time to cover that in detail in this course.

7.6.2 Definitions of (Ir)Reducibility.

Hopefully that example gave you some hint of what we mean by reducing representation into
a direct sum of representations. Hopefully it also gave you a hint as to why it is physically
interesting. 1 appreciate is right now it might seem like an overkill and all we have done is
rephrase ideas from quantum physics 1 in a group theoretic language. However, in more complex
scenarios we will start only with the symmetry properties and be faced with the challenge of
trying to identify the relevant subspaces. This is when group and representation theory really
becomes useful.

Let’s define the concepts of reducible and irreducible representations a little more formally.

Definition 7.6.2 (Reducible representation). A representation R(g) of a group G over a vector
space V is reducible if there exists an invariant subspace. That is, if there exists a non-trivial
(i.e. not just V or 0) subspace W of V such that V|w) € W, we have R(g)|w) € W, for any
element g € G.

In plain words: an invariant subspace means a smaller space than the actual space V', where
the application of any matrix in the representation does not leave the space. In terms of matrices,
this means that there is an equivalent representation that can be written as a block matrix with

a zero block:
(25 1)

In fact if we write all vectors in V as |x) = (5}), we see that the subspace defined by vectors

|w) = (2}) is transformed as
Rl = poy,) (7.65)

95



Quantum Physics 11 CHAPTER 7. SYMMETRY IN QUANTUM MECHANICS

so that such vectors never leave the subspace. If a representation is reducible, then there is a
basis such that all matrices can be written as such block matrices in the basis.

Definition 7.6.3 (Irreducible representation). An irreducible representation is a representation
that is not reducible.

Obviously, representations that live in dimension 1 are irreducible. One of the main uses of
group theory in quantum mechanics is to reduce representations into a set of irreducible ones.

A particular case of reducibility is complete reducibility, in which case T'(g) = 0 as well.

Definition 7.6.4 (Completely Reducible representation). A representation R(g) of a group G
is completely reducible if it splits into a direct sum of irreducible representations

Ri(g) 0 .. 0
R =| 0 D @), (7.66)
0 0 .. Ri(9)

We may wonder if all reducible transformations are completely reducible. Sadly, this is not
the case. Here is an example: the matrices

M(z) = ((1] 315) (7.67)

are a representation of the group R, +. Indeed, M (z)M(y) = M(x +y). However, we cannot
diagonalize such matrices.

The good news, however, is that in this lecture we will limit ourselves to unitary represen-
tations which if they are reducible are always completely reduciblﬂ

The rest of this chapter will be centred around developing the tools to find and use irreducible
representations. More precisely, we are going to do two things: i) Study the consequences of
having an irreducible representation, and ii) See how to get an irreducible representation. Irre-
ducible representations are call ‘irreps’ for short. I will sometimes refer to them as such.

A word of warning, the next few sections will get pretty technical. This is unavoidable. If you
are ever lost, try and construct yourself some examples of the statements being made. To avoid
getting too bogged down in technicalities some of the longer proofs will be left to appendices.

#5To see this note that since unitary transformation send orthogonal states to orthogonal states T'(¢g) must be

zero in equation ((7.64)).
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7.7 How many irreducible representations does a group have?

Let us start by presenting two theorems that can be used to deduce the number of irreps that
a group has.

Lemme 7.7.1. Burnside lemma: For a finite group of order h, there are only a finite number

n of irreducible representations a =1,...,n of dimension l,, and
n
NiZ=h (7.68)
a=1

For example, the group Zs is order 2 (i.e. contains two elements). It’s irreducible represen-
tations are the trivial representation, e -~ 1 and a — 1, and the sign representation, e — 1 and
a - —1. And this satisfies the Burnside lemma as 12 + 12 = 2. (For a proof of this Theorem see

Appendix [7.18)).

Lemme 7.7.2. Number of Irreducible Representations: For a finite group of order h, the number
of (non-equivalent) irreps is equal to the number of conjugacy classes:

N, =N,. (7.69)

To understand this second theorem, which we will prove in Section we will need to
introduce the concept of a conjugacy class.

7.7.1 Equivalence relations and conjugacy classes.

A conjugacy class is a type of equivalence class, which is in turn defined via the notion of an
equivalence relation.

Definition 7.7.3 (Equivalence relation). A binary relation ~ on a set X is said to be an
equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all
a,b,c e X, we have:

o a~a (Reflexivity)
e a~b=0b~a (Symmetry)
e (a~b),(b~c)= a~c (Transitivity)

An equivalence relation allows to divide a set into disjoints set called equivalence classes as
sketched in Fig. Of particular importance to us will be conjugacy classes (a special type
of equivalence class).

Definition 7.7.4 (Conjugacy class). Let G be a group, we define the following equivalence
relation: = and y are equivalent if there exists u € G such that v 'zu = y. We then say they
belong to the same conjugacy class.

Let’s verify that the conjugacy class is indeed an equivalence class by showing that the
relation defined above satisfies all properties of an equivalence relation.

1 1

o Picking uw =x"" we have 27 zx = x so that z ~ x (Reflexively).

o If there exists u such that v 'zu = y then z = uyu™ = (v 1) "lyu~! so that usingv =u' e G,
JeG |z =vtyv. (Symmetry).
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Figure 7.13: Graph of an example equivalence with 7 classes (from Wiki page on equivalence
classes).) Each edge represents ~ (with edges from any node to itself not shown).

“lev =bso

-1

e ifa~bandb~c, then it exists u,v € G such that u 'au = b and, by symmetry, v

that v 'au = v"'ev and vutauv™! = ¢. Using w = vu™! and w™! = uwv™! yields w™law = b.
(Transitivity).

Thus the conjugation relation divides the elements of group G into distinct classes which are
called conjugate classes or simply classes.

Let us consider for example the order 4 cyclic group:

*|le a b c
ele a b c
G=ala e ¢ b (7.70)
blb ¢ e a
clc b a e

In this case, can check that we have four conjugacy classes, each containing one member. (But,
for example, {a,b} is not an equivalence class because there is no u € {a, b} such that uau™ = b.)

In fact, this is true for each Abelian group (and the converse is true). An Abelian group
of order n has n conjugacy classes. This is a trivial consequence of commutation (i.e. uau™! =
uuta = a = b)! Looking back at Lemma this then implies that an order n Abelian group

has n irreps (irreducible representations).

A more interesting example is given by the Here we have three conjugacy classes:
{e},{cs,c_}, and the three mirrors {o,0 ,0 } (if you can’t See why check out this video). Note
that e is always a "isolated" class in 1tself. Indeed, if 2 = u teu then = = e. Looking back at
Lemma this tells us that C3v has 3 irreps.

So we now have a way of counting how many irreps we have. This can be useful because
if we are trying to find all irreducible representations of a group because it gives us a way of
knowing how many we are missing. Then Burnside’s Lemma gives us a way of guessing the
dimensions of the missing representations. But this is only so useful. Really we want to know
how to identify some of the irreps.
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7.8 Schur’s lemmas.

A key result to help identify irreps is Schur’s lemma. This discusses the link between irreducible
representations, and in particular their link with an operator that commutes with all elements
of the representation.

Schur’s first lemma gives us a criterion to determine when two representations are reducible.

Lemme 7.8.1 (Schur’s First Lemma@. Let R1(g) and R2(g) be two non-equivalent irreducible
representations of a group G, each acting on vector spaces Hi and Ho:

Ry :G - GL(H1) (7.71)
Ry : G - GL(H2) (7.72)

If there is a matriz A is such that
AR1(g) = R2(g)A VgeG (7.73)

then A = 0.

Or, turning it around, if you can find an A that satisfies Eq. (7.73]) such that A # 0 then you
representations R; and Ry are reducible.

The second lemma studies what kind of matrices commute with all matrices of a given
irreducible representation.

Lemme 7.8.2 (Schur’s Second LemmaEI). Let R: G - GL(H1) be a irreducible unitary repre-
sentation @ of a group G. If a matrix A commutes with R(g) for all g€ G

AR(g) = R(9)A VgeG,
then A =Xl for some X\ € C. In other words, A is a constant multiple of the identity matriz.

In short, if there exists an operator A that commutes with all elements of two irreducible
representations then Schur lemmas gives a very strong limit to what A can be: either a trivial
diagonal matrix, if the representations are equivalent (i.e., the same up to a change of basis), or
a zero one, if they are not. Or, turning it around, no operator - except the trivial zero operator
- commutes with all elements of two non-equivalent irreducible representations. So if you find a
non-trivial operator that does commute then the representations are reducible.

Example. To make this less abstract let’s first consider our favourite example of SU(2) ®
SU(2). We know that its irreps are SU(1) on the subspace Alt?(C?) and SU(3) on the sub-
space Sme((CQ). It follows from Schur’s Second Lemma that the only operators that com-
mute with SUs(g) on Sym?(C?) for all g is a scalar multiplication of I on this subspace , i.e.
I=|U"WUF|+ [P W P| +|P")(P*|. And this is, of course, indeed the case.

26The proof here|isn’t too bad.

2TFor a nice proof of this check out Group theory in a nutshell for physicists.

#For those of you for which these details are important (and/or those who have been confused how Schur’s
lemma is stated differently in different books/references) the statement and proof of Schur’s Second Lemma can
differ slightly depending on whether you are looking at finite or infinite dimensional representations. However, we
will not worry about these subtleties in this course. It holds in the form stated here for finite or compact unitary
representations (i.e. all representations we will be interested in for this course).
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As another example of how to apply Schur’s lemma let us consider the R(e) = [ and R(a) = X
representation of Zo group. The A = X # I operator commutes with both I and X and so we
know immediately that R(e) = I and R(a) = X is not an irrep. Note, that this is a consequence
of the Z3 group being Abelian. More generally, from Schur’s lemma, we can deduce something
very important:

Theorem 7.8.3 (Representation of Abelian groups). All irreducible representations of Abelian
groups are scalar.

Demo. Let R(g) be an irreducible representation of an Abelian group G. Then we have, Vg, h €
G, R(g)R(h) =R(g*h)=R(h*g)=R(h)R(g). Since R(h) commutes with all R(g), then from
the second Schur lemma, it must be a matrix I\, and R(h) = IA(h) for all h. Since it is also
irreducible, then R(h) = A(h) (i.e. = I\ clearly has invariant subspaces for dim(/) > 2). O

More generally, given a bunch of matrices, there are potentially many matrices that commute
with all of them. However, if the matrices form an irreducible representation of a finite group
only multiples of the identity matrix commute with them. In general, we will be interested in
problems where the Hamiltonian commutes with a given symmetry of a system. This means
that if we can identify the systems irreps we can block diagonalize the Hamiltonian.

WE HAVE A BUNCH of TREOREMS - WE ALSO HAVE SOME

TOKNOW IF REPS ARE IRREPS . TO FIND IRREPS, RIGHT 2
V2

>

Figure 7.14: You may be getting annoyed by now that I promised you theorems to identify
irreps but it seems all I've given you are theorems to check if a rep is an irrep. But remember,
these theorems also give you constraints on the form the irreps take - which can help you guess
them. That said, it’s true they do not fully identify them. But be patient. When we get to
the orthogonality theorems in a few pages time you’ll get some tools that really do help identify
them. Credit: L’heure est grave
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7.9 Irreps are all about Block Diagonalization!

In a quantum context one often considers the Hamiltonian H, and G a symmetry group that
commutes with H. More precisely, if we have a representation of a symmetry group over the
Hilbert space H, we have R(g) : H - H, and [R(g),H] =0V g € G. For example, H could be
an infinite dimensional space, that forms a basis (for instance the Fourier basis). In an infinite
dimensional space, we expect that R(g) is reducible. So, if we work hard, we can find a basis
of the Hilbert space that reduces the representation, that is we can recompose the space as
H=H1®Ho® ... where all the H; are invariant over the group transformation. At this point,
we thus have Vg € G,R(g) = Ri1(g9) ® R2(g) ® R3(g) ... where each of the R; are irreps, or
equivalently in matrix form:

Ri(g) 0 0
0 Ro(9) O
R(g) = 7.74
In this basis, we write the Hamiltonian (which is of course Hermitian) as
Hy Hi Hiz ... Hy Hiz His
H = Hoy Hyo Hsy ... _ H12 Hoy Hsg ... (775)

Hsy Hso Hsz ... Hf3 H2*3 Hss

Now, let us see what Schur’s lemma tells us. If [R(g),H] =0V g € G then we can apply the
Schur lemma between all blocks in this decomposition. Writing out the matrices explicitly, and
using R(g)H = HR(g), we see that on the diagonal we have

Hyp Ry, = R Hyy, (7.76)

for all k£ and so by Schur’s second lemma along the diagonal we have A\pI. Then on the off-
diagonal we have terms of the form

HjxRy, = RjHyy . (7.77)

If Ry, and R; are non-equivalent then, from Schur’s first lemma, the block Hj;, = 0. If Rj and
R; are equivalent then the block Hj; can be non-zero. That is, assuming only R; and Ry are
equivalent, the Hamiltonian can be written as

MI Hyp 000
Hy Xl 0 ...

H=l 0 0 XI 0 .. (7.78)
0 0 0 0

This allows us to considerably simplify the Hamiltonian just from the role of symmetry. In fact,
if all the representations are non-equivalent then all the off diagonal terms will have vanished
and we have block diagonalized the Hamiltonian - i.e. we know the degenerate eigenspaces of
the Hamiltonian. This then makes finding the eigenvalues/eigenvectors of a Hamiltonian much
easier as we can just find the eigenvalues/vectors of the individual blocks (which smaller and so
easier to handle!) rather than work with the large composite Hamiltonian.
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- -
Corporate needs you to find the differences

between this picture and this picture.

They're the same picture.

Figure 7.15:

Example for the parity group. A parity transformation (also called parity inversion) is the

flip in the sign of a spatial coordinate. In three dimensions, it refers to the simultaneous flip in
T -z

the sign of all three spatial coordinates (a point reflection): P: |y |~ | -y |. A wave function
z -z

can always be decomposed into an even and an odd component ¥ (x) =" (x) + 1~ (x), and the

application of the parity operator transforms it as

Pi(z) =Py™(z) + Py () =v"(-x) + ¢ (-z) = ¢ (2) - ¢ (@) (7.79)

Note in particular that PP = 1. The set of all parity transformations that can be obtained by
the parity operator is thus limited to 2. The set of of these transformations forms the parity
group Zs = {e,p} that has the following Cayley table:

ko RN¢]
T oo
o T T

We recall that from Lemma [7.7.2]and the fact that Abelian groups of order n have n conjugacy
classes, that this group has only two possible irreducible representations in dimension 1 on R:
(i) Ri(e) =1 and R(p) =1 and (ii) Ra(e) = 1, Ra(p) = -1.

Consider now a problem with a Hamiltonian that commutes with any parity transformation.
The Hamiltonian lives in a large (possibly infinite) Hilbert space H. Now, we consider a basis of
‘H made of even and odd functions (such as the Fourier basis): {¢](x), ¢35 (x),...,¢7(z), d5(x),...}.

This basis defines invariant subspaces with respect to parity, i.e. for any possible represen-
tation R of the parity group, even (odd) basis function stays even (odd) under any application
of R(e) or R(p). We can therefore use this basis to decompose the Hamiltonian into irreducible
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representations of R(e) and R(p) as

1000 e
0 1 00

R(e)=] 0 0 1 0 and R(p) =| " 1 0 o0
0 00 1 o

where in R(p) the rows/columns with +1 correspond to even basis states and the rows/columns
with -1 correspond to the odd basis states. That is, we have

Ri(g) 0 0 0
0 Ri(g) O 0
R(g)=| 0 Rag) 0 (7.80)
0 0 0 Ru(g)

Applying the Schur lemmas, and noting that R;(g) and Ra(g) are non-equivalent irreps, we now

obtain that
_(Hi1 O
H = ( 0 Hgg) . (7.81)
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7.10 Orthogonality theorems

We have just seen that if we know a systems irreps we can use them to block diagonalize a
Hamiltonian. But we still don’t have all the theoretical tools we need to identify irreps in the
first place. We will set some of these out in this subsection.

7.10.1 Grand Orthogonality Theorem

We are now in a position to state the grand orthogonality theorem. Similarly to how the
orthogonality of eigenstates of a Hermitian operator allows you to find a single eigenstate and
then identify other eigenstates by construction, we will see that this theorem allows us to take
one irrep and identify others by this orthogonality constraint.

We can think of irreducible representations as giving "vectors of matrices" ([R(g)]ij)gec in
a vector space of dimension |G|. The Grand Orthogonality Theorem provides orthogonality
relations between these vectors. Let me start by stating the theorem in its full glory:

Theorem 7.10.1 (Grand Orthogonality Theorem). Let R, and Ry, be two non-equivalent unitary
irreducible representations of a ﬁm’t@ group G of order N. Let ng and ny be the dimensions of
the vector space for R, and Ry. Then the grand orthogonality theorem states that

ZG % [Ra(g) f]jk [Ry(9)]im = abdjmOik (7.82)

The grand orthogonality theorem is a consequence of Schur’s lemma, for a derivation see
Appendix [7.17]

Now let me try and unpick it a little for you. Let’s first consider the case of two non-
equivalent irreps (i.e, @ # b). Then the grand orthogonality theorem implies that the vectors
of matrices corresponding to any two non-equivalent irreps are orthogona]@ In particular, we
have

ZG[Ra(g)T]jk[Rb(g)]lm = 0,V a+b,Vi,j kL. (7.83)

Next let’s consider the case where a = b so that we’re just looking at the properties of a single
irrep. In this case we firstly have an orthogonality relation between the elements of the irreps

ZG[Ra(g)T]jk [Ra(9)];,, = 0 ifj#mand/orl+k. (7.84)
ge

Finally, the grand orthogonality theorem provides a normalisation condition for these vectors in
the case where j =m and [ = k. Concretely, we have

> [Rul) Ty [Ralo)]yy = o (7.9

where N is the order of group G and n, is the dimension of the vector space of representation

R,.

29The theorem can also be generalized to compact Lie groups.
39Note, that in fact the condition the Grand Orthogonality Theorem imposes is stronger than simply the
orthogonality of these vectors. That would be the claim that ¥, Ra(9)"Ry(g) = 0 which is equivalent to

Yo ¥;[Ra(9) 155 [Ro(g) ]k = 0 for all 4 and k. This is implied by Eq.(7.83) but Eq.(7.83) is stronger.
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Examples. As ever, let us try and make this a little less abstract by considering some exam-
ples. Let us start with the Zs group. It is Abelian so its irreps are one-dimensional. Specifically,
we have:

Ri(e)=1,Ri(a) =1 (7.86)
Ro(e) =1,Ra(a) =-1. (7.87)
As these are one-dimensional irreps we can drop the subscripts j, k,I,m in Eq. and have:
S Ri1(9)'Ra(g) = Ri(e) Ra(e) + Ri(a) Ra(a) = 1x 1+ 1x (=1) =0 (7.88)
g

in agreement with Eq. (7.83)). Similarly,

ZRI(Q)TR1(Q) =1x1+1x1=2
g

S Ro(g) Ra(g) =1 x 14 -1x (<1) = 2. (7.89)

As the order of the group is 2 (N = 2) and the dimension of the irreps are 1 (n4 = 1) this agrees
with Eq. .

As a less trivial example, let’s consider C3v. Remember, this consisting of two rotations
(clockwise and anti-clockwise) and three reflections (on each axis). A possible irreducible rep-
resentation @ are the following six real matrices:

_L _\B _L V3
“«=\i i)k A (7.90)
2 2 2

Let us consider an example of the normalisation condition first:

> R'(g)nR(g)n =12 +1%+ (—%)2 + (—l)2 + (—1)2 + (—1)2 =3= 9

2 2 2 2 2

which satisfies Eq. (7.85) as the order of the group is 6 (N = 6) and the dimension of the irrep
is 2 (na = 2). Now let’s demonstrate the orthogonality of the (1,1) and (2,2) elements:

ot e ()3 () () ()0

It is straightforward to verify the orthogonality of the other elements.
A direct consequence of the grand orthogonality theorem is that

Proposition 7.10.2. A finite group can only have a finite number of inequivalent irreducible
representations. Specifically, the maximum number of possible irreps is given by the order of the
group.

This is clear from the orthogonality theorem. Thinking of irreducible representations as
giving "vectors of matrices" ([R(g)]ij)gec in a vector space of dimension |G|, the theorem tells
us that those vectors must be orthogonal. But there are at most |G| orthogonal vectors in a
vector space of dimension |G|, and so the number of irreducible representations must be finite.
In fact, we will calculate the number of irreducible representations for any finite group explicitly
when we introduce characters.

31'We will discuss how to check that this is indeed an irrep and discuss other irreps of C3v in Section [7.11.1
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7.10.2 Group averaging (twirling)

You may have noticed that the grand orthogonality theorem looks a lot like an average of an
object under the adjoint action of the group. To see this consider the quantity:

(X)a = - 3 R(9)XR(g)'. (7.91)

For example, if R(g) = Uy is a unitary representation then this is just the average output of X
after being evolved by each unitary U, in the group,

(X)q = % S U, XU (7.92)

If this representation is irreducible then we can apply the grand orthogonality theorem to get
the following Irrep Group Averaging Corollary:

(X)o =55 20 3[R hinXoms [ R(9) 1yl (H
=$ > OO im Xmjll) (K|
Jklm (7.93)

where n, = d is the dimension of the vector space of the representation.

Let’s consider the group average of the single qubit Pauli group G = {£(7)0,, £(i)oy, +(i)0., (i)}
over an arbitrary single qubit initial state p. This is an irreducible representation onto a d = 2
vector space and so from Eq. ([7.93)) we should have

(Pl = 9 (7.94)

That is, averaging the effect of applying each of the Paulis on a given state gives a maximally
mixed state.

If it helps to make this less abstract and mysterious we can also compute (p)g explicitly. To
do so we first note that in each term of the form ngUJ the +1, -1, +i, — signs cancel out, i.e.
(io,)p(—io,) = o,po,, and so we can write

1
(p)a = Z(Gx,oaz +0ypoy +0,po, +Ipl). (7.95)

If we write the state in terms of its Bloch vector, p = %(I +7.0) and remember the properties of
Pauli matrices (e.g. 0;0;0; = —o; for i # j but a? = 0;) then we have

1 1 Tz —Tz —Tz Tz
] PR Y1 Y g Y Y | P 0

Tz Tz Tz Tz

in agreement with Eq. (7.94)

All this discussion of orthogonality theorems so far (i.e., both the grand orthogonality the-
orem and the group averaging corollary) has been framed for finite groups; however, it also

106



CHAPTER 7. SYMMETRY IN QUANTUM MECHANICS Quantum Physics I1

carries over to compact (i.e. closed and bounded) Lie groups. And all the continuous groups
we normally care about U(n), SU(n), O(n), SO(n) etc are compact. In this case the finite
average sum % >4 becomes a continuous integral over a uniform measure J du(g). This uniform
measure is called the Haar measure and the average is called Haar averaging - it’s exact form
and properties are beyond this course but I highly recommend this blog or this review. In any
case, for continuous groups the average over irreducible representations is given by:

X)a = [ dp(o)Ua(9)XU(g)! = L THX] 1. (7.97)

The operator [ du(g)Uz(9)...Uz(g)! is sometimes called the twirling operationl?l

For example, if you apply random unitaries to a single qubit state and then average the
states you get out you will end up with the maximally mixed state. Note you effectively saw
this in the decoherence problem sheet - but then I was nice and made the calculation simpler and
had you just average over a mix of rotations around the o, and o, axes rather than arbitrary
unitaries.

If you think back to the decoherence problem sheet you’ll remember that if you only averaged
over R.(#) = e 7= rotations then you ended up not at the maximally mixed state but on
projecting the state onto the Z axis. How can we understand this?

The first thing to note is that we cannot directly apply Eq. because that only holds
for irreps and R, (#) = ™= is not an irrep. To see this note that here we are considering U(1)
which is an Abelian group and so all its irreps are 1D. So we need a generalization of Eq. ((7.97)
for reducible representations.

Any reducible unitary representation can be written in the form
U(g)=@Ux(9) =) Us(9)® I (7.98)

where & denotes the subspace that U, does not act on. Let us repeat the calculation in Eq.
but this consider a reducible representation written as in Eq. . Again we’ll do this cal-
culation for a finite group but it generalises to continuous groups. Thus if we use the grand
orthogonality theorem to repeat the calculation in Eq. we find:

um:izU@wa

:—EZ(U (9)® I:) X (Un (9)' ® I1)

g zx'

f
EZ(U (9) ® Iz) X (Ux(9)' ® Iz) (7.90)

« ® Iz

E%IH&“IH ZI

2
X

where II, denotes the identity projector onto the subspace spanned by the representation. That
is, the input is projected down onto the irreps. (As a sanity check note that if we are actually
looking at an irrep then we have II, = I and Tr, = Tr and so Eq. (7.99)) reduces to Eq. (7.93)).

32In a quantum information context it is such standard terminology that I thought everyone called it this.
However, apparently not... which lead to a few awkward conversations before I realised this.
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Figure 7.16: Left: We want the average of state p = %(]1 +7-0) by R.(6) where r = (rz,ry,72).
If we rotate p around the z-axis it goes to p’ = (1 + 7' - o) where 7’ = (ryrys72). So if we
calculate the average it would be a density matrix with a vector in the Block sphere equal to
(0,0,7,) which is along the z-axis. Right: And when we have all Pauli matrices, it will be an
arbitrary rotation. So the state p = %(]1 +7-0) rotates and goes to p” = %(]1 + 7" - o) where
r'"" = (ry,ry,r.) is another arbitrary vector. Then the average is a density matrix with vector
zero in the Block sphere.

Again, while I have worked through this calculation for a finite group it also carries over to
averaging over all the standard continuous groups we are interested in.

Ok so what happens when we average a state p by R.() = %727 Well the relevant group
here is U(1) and so the irreps in this case are both 1D ({1} and {e7?}) and we have:

U= (o So) =0+ ey (7.100)
such that IIp = |0)(0] and II; = |1)(1]
(pho =1 @ THALIL = 0bI0)OYOl+ (A1) (7.101)

Thus as we expected (inline with Problem Sheet 5) this averaging kills off all coherence and
projects onto the Z axis. For a visualisation of the effect of twirling on the Bloch sphere see

Fig.
Ezercise: What happens if you twirl a qubit state over the group SU(2) ® SU(2)?

7.10.3 Petit Orthogonality Theorem.

We just saw that the grand orthogonality theorem is effectively an orthogonality relation between
"vectors of matrices" ([R(g)]ij)geq. We will now consider the petite orthogonality theorem, its
simpler corollary, which is an orthogonality relation between vectors composed of their traces
(xr(9))gec where we have defined

xr(g) = Tr[R(g)]. (7.102)

We further note that Tr(R(x)") = x5(z).
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Figure 7.17: Motivational cat. Here’s also a link to one of my [favourite cat videos. It’s an
old one, and a slow burner (from an era pre-tiktok when videos could be more than 60 seconds),
but I think it’s one of the best.

Theorem 7.10.3 (Classes & Traces). In a representation R, all the elements which are in the
same conjugacy class have the same trace.

Demo. If there exists u such that z = v~ 'yu then

Te(R(z)) = Te(R(u'yu)) = Te(R(u")R(y)R(u)) = Te(R(u)R(u™")R(y)) = Tr(R(e)R(y))
= Tr(R(y)) (7.103)
O

From the Grand Orthogonality Theorem, we find

Zk: Zé % [Ra(Q)T]jj [Bo(9) ]k = Zé %X;(Q)Xb(g) = Oab Zk:éjkéjk =N 04b (7.104)
Jk g€ ge j

where in the final line we use the fact that 2%‘:1 i k0 = Z%zl d;k = nq. Thus we see that the
vectors of traces of two irreps are orthogonal. Or more formally:

Theorem 7.10.4 (Petit Orthogonality Theorem). Let R, and Ry denote two non-equivalent
unitary irreducible representations of a finite group of order N, we have

> Xa(9)xs(9) = Ndap (7.105)
geG

As elements in a conjugacy class have the same trace, one can equivalently write the petit
orthogonality theorem by summing over the number of the conjugacy classes, i.e. we have

Ne
> 11X (Cu)xo(Cp) = Néap (7.106)
p=1

where n,, denotes the number of elements in class p and N, is the total number of conjugacy
classes.

For example, in the case of C3v we have three equivalent classes: {e},{c;,c_}, and the three
mirrors {o,0° }. We see in Eq. (7.90) that y(e) = 2, x(cs) = x(c=) = -1 and x(0) = x(¢') =
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X(an) = 0. Thus, in line with Eq. (7.106)), we have 1 x 22 +2x (-1)? +3 x 0% = 6.

We stress that we can interpret this theorem as an orthogonality relation of N, (the number
of representations) vectors in a space of dimension N, (the number of equivalent classes). Indeed,
for any representation a we can define the (N.-dimensional) vectors:

[Ja)], = \/%XQ(CM) for p=1,...,Ne. (7.107)

There are N, of these vectors for the N, different irreps. It follows from Eq. that this
set of N, vectors are all orthogonal. Since the maximum numbers of orthogonal vectors is N,
we have

N, < N,. (7.108)

That is, the number of representation is smaller or equal to the number of conjugation classes.
This is the first step towards proving Lemma (i.e. that the number of irreps is equal
to the number of conjugacy classes) which we stated without proof earlier. In turns out this
bound is tight (this is another consequence of the Grand Orthogonality Theorem - for a proof
see Vincenzo Savona’s notes on page 37) leading to Lemma
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Figure 7.18: Motivational Panda. Even if you're struggling a little to follow by this point
you're still doing better than this panda. (God knows how these animals survive in the wild).

Again, that was quite lot of quite technical material. And we’ve got more to come. So here’s
a panda. And if fluffy animals aren’t your thing here’s a |clip| of two guys trying to kayak down
a melting ski slope.

7.11 Characters

We saw above that the traces of a representation of a group are useful. The set of traces associ-
ated with a representation are known as the character of the representation. Characters provide
an elegant and systematic approach to analyzing and categorizing irreducible representations,
as well as ascertaining the reducibility of a specific representation.

Definition 7.11.1 (Character). The set of all traces {xgr(g)} is called the character of the
representation R.

As we saw above, two equivalent representations have the same character. Indeed if Ra(g) =
SR1(g)S™!, then using the cyclic property of the trace we have Tr[Ry(g)] = Tr[SR1(g)S™!] =
Tr[R1(g)]. In fact this is a sufficient condition as well:

Theorem 7.11.2 (Characters of Irreps). Two irreps are equivalent if and only if they have the
same character.

Demo. We already proved that the condition is necessary. To prove it is sufficient we reason by
contradiction. Assume two irreps R; and Rs are not equivalent but have the same character.
Then using the petit Orthogonality theorem, we find that the sum of (modulus of) trace squared
should be zero, which is impossible as the norm squared is positive and non-zero (the identity
conjugacy class has trace 1). O

Or, turning it around, different (non-equivalent) irreps have different characters.

Using this approach, we can now compute degeneracy numbers for representations, that is
compute how many copies of an irrep a given reducible representation contains. We first write:

R(g) = R171(g) [$) Rl,z(g)... [$) Rl,bl (g) [$) Rg,l(g) [$) R272(g)... [S) R2’52 (g) = @a,xRa,x(g) (7.109)
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where z = 1,...,b, with b, denoting the degeneracy number. The question is how to find b,7
Using the characters of each irreps, we know that:

Ri1(g) 0 0 0
0 .. 0 0o ...
xr(@)=Te[[ 0 0 Rip(e) 0 ]| =2baTr[Ra(9)] =D baxalg). (7.110)
0 0 0 RQ,I(Q) e i a

As the trace of all representations within the same conjugacy class are the same we can equiva-
lently write

XR(Cu) =Y baxa(Cy) - (7.111)

We can combine this expression with the petite orthogonal theorem to find an expression for b,,.
To do so we multiply by n,x;(Cy) , where n, is the number of element in class C),, and sum
over classes

N Ne

Z ”quj(Cu)XR(CM) = ”quaXZ(Cu)Xa(Cu) (7.112)

p=1 p=1 a

N
= > ba > nuX3(Cu)xa(C) =D baNdgp = Nby (7.113)

a p=1 a
so that
13 1R,
ba = N Z nuXa(Cu)XR(Cu) = N Z n/iXa(C,LL)XR(C}L)' (7.114)
p=1 p=1

We thus now have a formula for each number of irreps contained in a given representation:

Theorem 7.11.3 (Computing Degeneracy). Assume a decomposition in irreps as

R(9) = ®auRax(9) (7.115)

forx=1,....b,. Then we have
1 "
bo = 37 22 7uXa (Cu)xn(Cp) (7.116)
o
Remember this formula! It will be very useful in the problem sheets this week.

Another interesting consequence of the petite orthogonal theorem is the following one:

Theorem 7.11.4 (Sufficient condition for irreps). A necessary and sufficient condition for a
representation R to be an irrep is that

Nc
>, mulx ()P =N (7.117)
pn=1

Demo. Using Eq.(7.111)) and the petit orthogonality theorem (Eq.(7.106))), we find that

Ne Nc
z n#|x(0u)|2 = Zbibj Z nuXi(CM)*Xj(C’u) = NZbﬂ)j&'j = ]\TZ:bZ2 (7.118)
p=1 1,J pn=1 i,J A

Being irreducible means having only one of the b;=1, which proves the theorem. O
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For a finite group, it is easy to find the characters listed in table in the literature (google is
your friend!), listed as follows:

irrep\ class | C1(e) Cy Cs Cy Cs
Ry 1 1 1 1 1
Ry dy  x2(C2) x2(C3) x2(C1) x2(Cs)
R3 d3  x3(C2) x3(C3) x3(C1) x3(Cs)
Ry di xa(C2) xa(C3) xa(Ca) x4(Cs)
Rs ds  x5(C2) x5(C3) x5(C1) x5(Cs)

7.11.1 Example with C3v.

Ok we now finally have the tools to put everything together and show how orthogonality rela-
tions can be used to identify irreps.

Let us again consider the C3v group, i.e. symmetry of the triangle. We first recall that

it is a non-Abelian group of order 6. The conjugacy classes are C. = {e},C1 = {c4,c_} and
Cy ={o,0',0"} and so, as we saw before, from Lemma ((7.7.2]) there can be only 3 irreps.

We saw the 2D irrep in Eq. (7.90)):

(7.119)

-1 0 ’ % @ " % _4

There we simply claimed that this was an irrep. Now we can use Theorem [7.11.4] to check.

Namely we have,
N.
St nux(C)P = 1x22+2x (-1)2+3x0=6=N.
pn=1

(7.120)

What are the other irreps? We can of course have the trivial irrep where every group element
is represented by a scalar equal to one. The trivial 1D irrep:

R(e)=1,R(cy)=1,R(c-)=1,R(c)=1,R(¢") =1,R(c") =1 (7.121)

(This is indeed an irreducible representation as 1 +2x1+3x1 =6 in line with Theorem |7.11.4)).

Now to identify the missing irrep. From Burnside’s Lemma we know that it has to be 1D
(i.e, 12+ 22 + 1% = 6 implies [ = 1). From the petit orthogonality theorem we know that the
characters of this final representation must be orthogonal. Thus denote the characters of the
missing representation as (Xe, Xc, Xes Xos Xo» Xo) We have (1,1,1,1,1,1).(Xe, Xe, Xes Xos Xos Xo) =
Xe+2Xce+3xo =0and (2,-1,-1,0,0,0).(Xe, Xe» Xes Xos Xos Xo ) = 2Xe—2Xce = 0. Thus we have x, =
Xe and xo = —Xe. The only 1D representation that satisfies these conditions and Lemma
is thus:

R(e)=1,R(c;) =1,R(c_) =1,R(c) =-1,R(c") = -1, R(c") = -1 (7.122)
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(Check for yourself that this is indeed an irrep for C3v!)
Thus for the character table for the group C3v we have Table [7.13]

| e 203 3oy,
A |11 1
As |1 1 -1
E |2 -1 0

Table 7.1: Character table for point group C3v. Here Al and A2 deontes the 1D representation
in Eq. (7.121) and Eq. (7.122)), and E denotes the 2D representation in Eq.(7.90)).

racters

Figure 7.19: Note that in the above example we could get away with just studying the characters
and the petite orthogonality theorem to identify our irreps. However, in general the characters
will not suffice and you’ll have to have already identified some non-trivial irreps and then can
use the grand orthogonality theorem to help you identify the remainders. That said, even in this
case knowing the character at least helps you guess the diagonal of your irrep. Credit: Mehdi
Haddad.
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7.12 Projectors

In the last section and in the problems for last week you saw how to reduce a representation
into a direct sum of irreducible representations. (For example, in Problem 2 we saw how a
3D representation of C3v could be written as a direct sum of the groups 2D and 1D irreps).
In general, Theorem allows us to compute how many times any irrep appears in any
representation we are trying to reduce. But we have yet to establish a general strategy for
finding the basis in which the representation is block diagonalized to the sum of irreps. We
address that in this section.

7.12.1 Basis notation

Let us start by introducing basis notation. As we saw in the previous section, we can take a
representation and write it as a direct sum of irreducible representations. That is, we can write
R(g) = ®q,2R(a,x(g), or equivalently

Ri(9) 0 0 0 R11(9) 0 0 0

0 Rl(g) 0 0 e 0 Rlyg(g) 0 0

R(g)=] O 0 Ry(9) 0 = 0 0 Ry1(g) 0
0 0 0 Ro(g) ... 0 0 0 Realyg)

We are going to denote the element in this basis using 3 indices as : {|a, j,z)}. That is, we can
write

(a,j, $| R(g) |ba k, y> = 5a,b6x,y [Ra,x(g)]jk (7-123)
Here [Rq2(9)] jx 18 just the j, & element of the matrix for the representation R.(g). Here:

e a=1,2,3,... denote type of representation, i.e. indicate each of the non-equivalent repre-
sentations Ry, Ra, R3,.... At this point: R,(g) acts in a subspace H,.

e The same representation can be used multiple times, as we have seen in the previous
example. The x index denotes which of these equivalent representation we consider.

o Finally; {|a,j,x)} with j = 1,2,3,... is used to represent a basis within the xy, copy of
subspace H,.

7.12.2 How to construct projectors

The question we address in this section is how to construct projectors onto |a,j,z). To do so,
we start from

R(9) = ®axRax(g) (7.124)

and
Rz =) {a,l,z[ R(g) la,m,x)|l)(m] = Y [Ra(g)Jim|l){m] - (7.125)

Im Im

so applying the representation to the vector |a, j, z) gives:

R(g)la,j, ) = ;[R(a(g)]kj ja, k, x) . (7.126)

Now we multiply by [Ry(g)]}/;, and sum over the group elements to give:
Y[Rk R(9) la, g, x) = 37 Y [Ro(9) iy [R(a(9)]kjla, k, )
kg

g 7.127
- S VIR L[ Rla()is o b.2). (7-120)
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and now, using the grand orthogonality theorem, one finds

. . N
Z[Rb(g)]k,j,R(g) la,j,z)=>" n_5jj’5kk'5ab la, k,x)

g ko (7.128)
= Eé 8 la, k', )
= n abljj D) .

a

Thus, we see that we can define

= Fa Eg: Ry(9)13;R(9) (7.129)
such that we have
M la g, 2) = 77 Zg:[Rb(g)] ki 1(9) la, j,x) = Oap la, k, ) (7.130)
That is this operator satisfies:
I} |a,j,x) = |a,k,=) (7.131)
Azj b7, z) = 0 otherwise (7.132)

so that if we know one vector of the basis, then we can find all the other ones! And I}, can be
used to find that first vector.

Now, let us take the trace. We find

n
Py = ZH Z ; Z Ry(9)]};R(9) = == Zxa(g)R(g) (7.133)
This is a projector on the basis of the representation! In other words we have

Po=Yla.d.o)a gl = 2 D (9)R(9). (7.134)

In summary

e P, is a projector in the space generated by one irreducible representation, that is the space
of all |a, j,x) for all j and z. That is, on the Hilbert space H, = @3 Ha 2

o 11§, is a projector on the subspace |la, j, x) for all z, but with a fixed j (that is , one of the
dimension of the representation).

. sz is a generalised projector.

As ever let’s quickly convince ourselves that this does actually work by looking at a quick
example. Consider the Pauli group G = {+(i)os, +(i)oy, +(i)0, (i) }. We first note that all
Pauli’s are traceless and so their contribution vanishes leaving us with only the contribution
from the identity terms. Thus we have:

2
P,=—(Te(D)" T+ Te(-1)"(=I)+ Tr(il)* (i) + Tr(=il)* (-iI))
16 7.135
; (7.135)
=—{U+I+1+1)=1,
16
as expected. (Note the similarities between this and the group averaging results in Section (7.10)).
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7.13 Ammonia Molecule Example

Consider the ammonia rpolecule shown here:
t

Figure 7.20: Credit: Stefan Visnjic

Let us end by tying everything together with the example of the vibrations modes of the
ammonia molecule (NH3). This will be a classical treatment; however, the lessons carry over
to quantum problems. For a more detailed introduction to the symmetry properties of the am-
monia molecule see Chapter 1 of Vincenzo Savona’s notes. You will also have the pleasure of
working through this example in all its gory details in the problem sheet this week. In fact, if
you want to take a stab at that problem sheet without any hints, stop reading now and have
a go at it first. However, there’s quite a bit to put together so I thought this week I'd use the
notes to talk you through it.

The ammonia molecule consists of three hydrogen atoms arranged in a triangle and one
nitrogen atom located on the vertical axis passing through the center of the triangle (see Figure
7.21). In molecular physics, it is known that for small displacements from the equilibrium
positions, the restoring forces on the four atoms are proportional to the displacements. The
molecule behaves as a system of coupled harmonic oscillators with 12 degrees of freedom (three
spatial coordinates for each atom). Let’s denote R, Ra, R3, and Ry as the coordinates of the
three hydrogen atoms and the nitrogen atom. If the equilibrium positions of the four atoms are
Rj(.O), where j =1,...,4, then the displacement vectors are given by u; = R; —R](.O). Let my and
mpy be the masses of the hydrogen and nitrogen atoms, respectively.
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Figure 7.21: Scheme of the NH3 molecule. In the figure, you can also see the numbering of the
four atoms and the choice of the reference frame.

The symmetries of ammonia correspond to the symmetry group of a triangle in 2D. That
is, we spot immediately that the relevant symmetry group here is our favourite C3v with group
elements: e,c,,c_,0,0’,0" (i.e., identity, rotations by +27/3 and reflections in each of the axis
of the triangle). So what is the representation of C3v on the 12 dimensional space spanned by
u := (uy,ug,us,uy) corresponding to the spacial displacements of the atoms that ammonia is
made up of?

Well the representation of the identity is easy that’s just:

R(e) = ]112><12 = (7136)

o O o=
o O = O
o= O O
= o O O

The ¢, rotation by 27/3 cyclically rotates molecules 1,2, and 3 (i.e., sends molecule 1 to 3, 2 to
1 and 3 to 2) and corresponds to a 27/3 rotation about the z axis in the x,y plane. The rotation
c_ is just the converse of this. Therefore we have:

00 S 0 1B
S0 0 0 . 2 2
R(cy) = 0 S 0 0 with S = @ -1 0
000 S 0 0 1
0 s o0 o . (7.137)
1 3
Rey-| 0 0 st o0 e U
€)=g1 ¢ o o ™ |- 3 0
0 0 0 S—l 0 0 1

The o reflection around the y axis is also easy to spot. This just switches the positions of
molecules 1 and 2 and sends -z to z (and vice versa) (see Fig. [7.21)) and leaves all other
coordinates invariant. Similar analysis can be applied to the o9 and o3 reflections. Thus we
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have:
P 2o
R(o)=|"1 with My=| 0 1 0
0 0 M 0 0 01
0 0 0 M
My 0 0 0 PRV S
2 2
R(o") = 8 ]\22 ]\042 8 with My =| 3 _1 ¢ (7.138)
0 0 0 M 0 0 1
0 0 M; 0 T
Y74 0 M3 O 0 _ 3/3 %
R(c") = My 0 0 0 with M3 = -3 1
0 0 0 M 0 0 1

Ok so now we have a representation on the 12d space spanned by the coordinates of the
displacements of the ammonia molecule. We expect that this 12d representation is reducible.
Indeed we know this as we’ve already seen that there are 3 irreps of C3v in Section 21D
irreps and 1 2D irrep. To save you flicking back I'll just copy them down to here:

The trivial 1D irrep:
Ri(e)=1,Ri(cy) =1,Ri(c.)=1,Ri(0) =1,R1(c') =1, Ry (") =1 (7.139)
The 1D sign irrep:
Ro(e) =1,Ra(cy) =1,Ra(c-) =1, Ro(0) = -1, Ra(0”) = =1, Ra(¢") = -1 (7.140)

The 2D irrep:

L3 -1
R3<c+>:(¢§ %)7R3<c_>=( % 21) G
2 2 2 2
1 0 1 V3 1 _V3
m()- 1),Rg<a'>:(3§ 21),Rg<a">:( 2 3)
2 2 2 2

The corresponding C3v character table is shown in Table [7.13

e 2cy 3oy,
R | 1 1 1
Ro | 1 1 -1
Ry | 2 -1 0

R |12 0 2

Table 7.2: Character table for point group C3v.

So how do we write our 12d rep in terms of these irreps? Well we can use Theorem
to compute the number of times each of these irreps appears in our rep. That is, we can use

b= < S mxi(Cxa(C) (7.142)
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where b, is the degeneracy factor of representation a, n, is the number of group elements in
conjugacy class u and N is the order of the group. Thus we have

1
blz6(1><1><12+2x1x0+3x1><2)=3

1
b2:6(1X1X12+2X1X0_3X1X2):1

1
63:6(1><2><12—2><1><0+3><0><2):4

And thus, we can express R in terms of the irreducible representations of Cs, as follows:

R=3R; ® R ® 4R3. (7.143)

We now know how to compose R into irreps. But we do not yet know the basis to do so.
That is, we need to look for a basis where 3 x 1 vectors are invariant under R;, where 1 x 1
vectors are invariant under Ro, and 4 x 2 vectors are invariant under Rj E To achieve this, it
suffices to choose an arbitrary basis (we choose for simplicity v; = é; where &; is a normalized
vector with the i-th entry being the only non-zero entry) and apply various projectors.

Recall from Eq. that a projector onto a basis state of an irrep takes the form:

1y

11}, = %2 S [Ry(9) iy o) (7.144)

where ny is the dimension of the representation b and N is the order of the group. That is, we
have and we have

ﬁ%y ’CL?.jvx) = ‘CL?kvx) (7145)
0 otherwise (7.146)

A%j |b,j’,£13)

where |a, k, z) is a basis for the reduced representation. So if we apply Hz ; onan arbitrary state
and get a non-zero vector, we are left with a (non-normalised) basis state. If we get a set of
these we can create an orthonormal basis via the gram-schmidt procedure.

Let us start by constructing the projector corresponding to Rj:

~ 1
1
II11 =z

SR @) R() = é(R(e) + R(cs)+ R(c1) + R(o) + R(e') + R(6™)).  (7.147)

g

Thus we have:

1+ M, S_1+M1 S+ M;j

0
. 1| S+M 1+Ms; S7t'+M;, 0
1 _ 4+ 1 3 2
thy = 6|St+M; S+My, 1+M; 0 (7.148)
0 0 0 S
where we have defined S =1 + M; + My + M3 + S + S~'. Similarly for Ry we have
1 . 1
17, = 6 > [R2(9)]11 R(9) = E(R(e) + R(c:) + R(e1) = R(o) = R(0") - R(0")). (7.149)

g

33By comparison, remember the 2 fold tensor representation of SU(2) decomposed into a direct sum of irreps
of irreps on SU(3) and SU(1) in the Bell basis. We currently know that R = 3R; & R @ 4R3 in some basis but we
do not know which yet. In our warm up example the three Bell states {|v.),|¢+),|¢-)} and
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so we have the same as above but get a minus sign in front of each of the M; terms. That is,

]L+M2 St-M, S-Ms; 0
. 1l S- 1-M; S'- 0
2 _ 1 3
HH_G S—l—Mg S-My, 1-M; 0 (7.150)
0 0 0 0

where we note that 1—M; —My—-Mz+S+S~1 =0. I'll leave it up to you to compute f[zl)’l yourself.

We can now use the projectors to find a basis for each of the irreps. Let us start with R;.
We can find the first 3 basis vectors by evaluating u = f[h'v and to give a set of 3 linearly
independent vectors w in this basis. One possible choice (not necessarily unique, also dependent
on the basis v;) is to select: I} vy, II},v3, and II},v15. Then each of these vectors needs to
be orthonormalized using, for example, a Gram-Schmidt algorithm. We’ll use 4 to denote the
vector of the constructed basis after they have been orthonormalized. It’s an iterative procedure,
before adding a vector to the basis, it needs to be orthonormalized with respect to those already
in the basis.

Let’s see what this looks like for Ry. We start by evaluating

1+M, S7'+M S+DMs 0
1| S+M,; 1+ Ms S_1+M2 0
6lSt+M;s S+My, 1+M 0

1v3 1.3 V3
{

R 7__7_70707__70707070
412 4" 12 6

7l
u1,1 ZHH’Ul = V1

which if we normalise gives

1 1 1 1 1
1 ,0,— 0,0, - 0,0,0,0 7.152
b (2 23 223 B ) (7.152)

Let’s do another one
uy 3 = 1T},v15 = (0,0,0,0,0,0,0,0,0,0,0,1) = @y 3 (7.153)

which conveniently is already normalised and orthogonal to #1,;. You can similarly generate a
third one as
1 1

w2 = 1T}, v3 - (5 :( Wi 0,0, f f 0,0, 0) (7.154)

where in this case you need to explicitly apply Gram Schmidt to ensure i 2 is normalised and
orthogonal to 41 ; and 4 3. I've given you the answer above but please do work through and
check you get that yourself.

The basis for Rs is simple as its only 1D. For example, we can just do ﬁ%lvl to get

A 1 1 1 1
=117 7 0,—.=,0,— 0,0,0,0,0 7.155
uz 1 11V1 - U1 = (2\/— 27 ) 2\/— 27 ) \/— ) ( )

Finally we come to the basis for R3. This is more subtle. For Rs, we need to find four pairs
of invariant vectors that live in the same invariant subspace. We can do this by creating the
first vector using the same procedure as above, i.e. as u = Hﬁ)v for some v. On normalizing
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we'll have @ = |3,1,z). Then to find another vector in the same invariant subspace we can take
u' = Hg)ﬁ such that we have

I3, [3,1,2) = [3,2,2). (7.156)

This way we can be sure that 4 and 4’ leave the same invariant subspace. It’s a little long to
do but works. I’ll leave the fun* of doing so to you.

Putting it all together, we end up with a set of ortho-normal vectors. We can then use these
to construct the unitary that transforms into the basis in which R decomposes into irreps:

A A A A A A A A Al Al Al Al
U = (@1,1,01,2,%13,1T271,U31,1U32,U34,1U33,%31,0'32,%34,%33) (7.157)

Why is this good to know? Well from Schur’s lemmas we know that we can use the irrep
structure to block diagonalize any operator that commutes with all representations of elements
of the group. Thus we see immediately that we can block diagonalize any 12d operator that
commutes with R(g) for all g.

Let’s look at an example of this. To realistically describe the harmonic modes of the am-
monia, a precise parametrization of the elastic constants would be necessary. In general, we
cannot express the harmonic force on an atom as the sum of harmonic forces exerted by the
other atoms because the harmonic constant for the force between two atoms will be influenced
by the presence of the other atoms. However, in the context of this exercise, we can introduce a
highly simplified model without fear, which allows us to familiarize ourselves with the symmetry
properties. We will assume that the system is simply characterized by two harmonic constants:
kg for the restoring force between two hydrogen atoms and kg for the force between a hy-
drogen atom and the nitrogen atom. We have made a strong approximation by assuming that
the harmonic force between two atoms is isotropic.

Once the masses and elastic constants are given, we can write the potential energy as follows:

1
V(ui,uz,uz,uy) = §kHH [(w1 - u2)? + (ug - ug)® + (up - u3)?]
1
+ §kNH [(u1 —114)2+(UQ—U4)2+(113—114)2]. (7.158)

The force acting on a given particle is obtained from the gradient of this potential with
respect to the corresponding displacement variable:

0%u; )%

which allows us to write the equations of motion for the system:

0%u
H atQI - _kHH(ul_u2)_kHH(u1_u3)_k3NH(ll1—114),
82112
H g = ~kpgp(ug—w) - kpp(uz —u3) - kyy(ug —uy),
82U3
H gpm = —kpa(us—w) —kpp(us —ug) - kyg(uz —uy),
62u4
Noop = —knm(ug-w) - kyg(as—az) - kyg (g - us). (7.160)
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In this simplified notation, it is implied that the variables u;(¢) depend on time. Such a system
of coupled oscillators is characterized by "normal modes." A normal mode is a specific solution
to the equations where the 12 degrees of freedom depend on time according to the same
harmonic law:

u;(t) = uj.o) sin(wt) . (7.161)

Here, u'? is a constant vector. By substituting the solution ([7.161)) into the set of equations

J
(7.160]), we obtain:

A = L ) b ) bl )]
wruf - miH [rp (0 = u®) + b (uf” = uf”) + kg (uf” - u)]
w2u§0) = mLH :k:HH(u:())O) - ugo)) + kHH(uéo) - ugo)) + kNH(u:())O) - uflo)): ,
wQuio) = mLN ikNH(uZ(LO) - ugo)) + k:NH(uio) - ugo)) + kNH(uiO) - ugo)): . (7.162)

(0)

Subsequently, to simplify the notation, we will represent u; "’ as simply u;. We can define the
vector in the 12-dimensional space as:

u = (ug; ug; uz; ug) (7.163)
The system of equations (7.162) can be expressed in the compact form:

Au = w?u, (7.164)

Here, A is the dynamic matrix of the system, obtained straightforwardly from the form
(7.162) of the equation of motion and takes the form:

ADH AHH AHH AHN
AHH ADH AHH AHN

A= 7.165
Auy Ao Apm  AmnN ( )
-Apn —-Apn -Apn 3ApnN

where we have defined ADH = aDHl, AHH = CLHH]., AHN = CLHN]. ADN = CLDN]. are 3x3 matrices
multiples of the identity and apyg = (QkHH + kHN)/mH, agH = —kHH/mH, aAgN = —kHN/mH,
apn =kgn/mn.

Exercise: Show this!

To find the normal modes of the molecule we need to solve the eigenvalue problem in
Eq. . That is, we want to diagonalize A. We can use our new found knowledge of
the irreps of R to do this. That is, the matrix A = UTAU (where U is the basis change we
worked so hard to find earlier in Eq. ) is block-diagonal:

Alxl
A2><2
‘ Alxl

Y
I

Asxs (7.166)
A
Asx3

A
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with :
~ 3kHH + kHN
Apyy = 25HH T VAN (7.167)
my
~ kun _ V3kun
_ my my
Agyo Sy ks (7.168)
mN mN
3
3kHH +5k:HN 6k‘HH _ 2\/;kHN
Smy Smy my
~ 3
Asys = 6kx kg ook V2N (7.169)
5mH 5mH my
3 3
_ 2\/EkHN \/;kHN 3kHN
mN mN mN

The rows in the matrix A separate the different invariant subspaces R;. Exercise: Show this!

Thus we see that the use of group theory has reduced a problem consisting of diagonalizing
a 12 x 12 matrix to a problem requiring the diagonalization of a 2 x 2 matrix and a 3 x 3 matrix,
which is much simpler!

Now we can use some physical arguments to intuitively understand what will happen if we
fully solve the problem. For example, we noticed that the system is invariant under translation,
so a translation along z should not cost any energy. To see this, let’s look in the subspace
related to I'y and search for a null mode. Clearly, 1211><1 is not zero, so flgxg must have a
zero eigenvalue. Moreover, by cleverly combining ;2 and @3, we can generate the vector
(0,0,1/2,0,0,1/2,0,0,1/2,0,0,1/2), which is effectively a translation of each atom along z. To
find the other two null modes related to translations along z and y, we need to look in I's. We
will find that As.3 must also have a zero eigenvalue.

WHAT GIvES PEOPLE
FEELINGS OF POWER

MONEY
STATUS

)
12K12 MATRIK

Figure 7.22: Credit: L’heure est grave
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Appendices

7.14 Properties of functions

Consider two sets, X and Y. A function (or map) f from X to Y is defined such that, for each
element z belonging to X (denoted as x € X), there exists a unique element y in Y associated
with z. We represent this element as y = f(z) and call it the image of x under the function f.

We write it as:
f: X->VY | xzoy=f(z). (7.170)

The set X is called the domain of f, and Y is its image. The set of elements in Y, which are
images under f of elements in X is called the image of X under f and is denoted as f(X). In
general, f(X) is a subset of Y (we write f(X) cY) and is not necessarily identical to Y.

The function f is injective if:
f(x)=f(a") = z=2". (7.171)

For an injective function, two elements of X cannot have the same image in Y. A function is
surjective if f(X) =Y. For a surjective function, every element of Y is the image of at least one
element of X. A function that is both injective and surjective is called bijective.

Let f be a function from X to Y and g be a function from Y to Z. The composition or
product of these two functions h: X — Z is defined as:

h(z)=g(f(x)) . (7.172)
The function h acts from X to Z and is denoted as:
h=gx*f (7.173)

or simply gf when there is no possibility of confusion with other operations. It should be noted
that f * g is not necessarily well-defined, and when it exists, it is not necessarily equal to g * f.
For example, consider real-valued functions f(z) = 22 and g(y) = ¢¥. We have:

(g f)(x)=g(a?) =™ (7.174)

and
(f*g)(x) = f (") =™, (7.175)

The composition of functions is associative, meaning that if u, v, and w are functions from
X toY, Y to Z, and Z to W, respectively, then:

(w (v xu))(@) = (wv) * u)(@). (7.176)
For each x € X, both sides of this equation correspond to the element:
w(v(u(z))) (7.177)
in W. Therefore, we can write:

(wr(w*u))(z)=((wrv)*u)(x) =w*v*u. (7.178)
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(a) Injective but (b) Non-Injective but (c) Injective and
non-surjective surjective surjective (bijective)
A B A B
b
® L ]
® L ]

Figure 7.23: Diagram of injective, surjective and bijective functions: (Wiki page on functions).)

If f: X - Y is a bijective application, then for each element y in Y, there is a unique element
x in X such that f(z) =y, and, naturally, each element z has an image in Y. Therefore, we can
define a bijective application Y - X, y — x such that y = f(x). This application is called the
inverse of f and is denoted by f'.

Often, we consider applications from a set X to itself. An example is given by real (complex)
functions of a real (complex) variable. We define the identity application as:

e: X>X |, zre(x)=zx. (7.179)

This application is clearly bijective. If f: X — Y is a bijective application, f~! exists, and
we have:

(J 7 * @) == (7.180)

for each x. Therefore, we write:
flef=ex (7.181)

where we denote the identity application of X by ex. Note that we also have:
fxft=ey (7.182)

Theorem. Let X and Y be two sets containing the same finite number n of elements>]
The following three statements are equivalent:

(i) f: X =Y is surjective,

(ii) f: X =Y is injective,

(iii) f: X - Y is bijective.
Proof:

(i) = f(X) =Y. Thus, f(X) is composed of n elements, which implies (ii).

(ii) = f(X) is composed of n elements. It follows that f(X) =Y, which can be reduced to
property (i).

Since (i) and (ii) are each a consequence of the other, (iii) is also true, and the theorem is
thus proved.

34Note that this theorem is not valid for two sets with different numbers of elements.
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7.14.1 Proof of Lagrange Theorem, Right and Left cosets

Let G be a group and H one of its proper subgroups. We can define an equivalence relation
—different from the last one— between the elements of G as follows: if z,y € G and 27 'y € H
then z and y are equivalent and we write x ~ y.

This is indeed an equivalence relation:

1

e aa=eVaeG, and e € H, so that a ~ a.

e if @ ~ b then a™'b e H. The inverse of a™'b is b™'a and since H is a group, b"'a € H, so
that b ~ a.

e ifa~bandb~c, then a™'b and b~'c are both in H, thus so is the their product a 'bb~tc =
1

a “c.
This equivalence relation therefore makes it possible to divide the elements of G into disjoint
classes. If 271y € H, then y is equal to an element of H multiplied on the left by z. We indicate
the set thus constructed by the symbol

Cp=xH (7.183)

which the call the left co-set associated to x.

The map H — xH is one-to-one (bijective). Indeed, each element z € xH is the image of
272 € H so that the map is surjective. But the map is also injective since for y, vy’ € H, we have
ry=zy =y=y'

We could also define a second equivalence relation z ~ y if yz~' € H and which this case, we
can define the concept of right co-set Hx in the same way as before.

These concepts are very useful, and allows in particular to prove Lagrange Theorem:

Demo. Consider the co-sets on the left of H. They are all disjoint or identical (since they are
equivalence classes). If there are n distinct left co-sets, their union is G. So, if we denote by ¢
and h the orders of G and H respectively, then g = nh and the theorem is proved. O

Let us give an example for the following order 4 group

* ‘ e a b ¢
ele a b ¢
G=ala e c b (7.184)
blb ¢ e a
cle b a e
that has the subgroup H = {e,a}:
*|le a
H=el|le a (7.185)
e
We can now construct the left co-sets:
Ce=eH ={e,a} (7.186)
Co=aH ={a,e} =C, (7.187)
Cy=bH = {b,c} (7.188)
C.=cH={c,b} =C (7.189)

And we see indeed that we have two left co-set of order 2.
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7.15 Composition of Conjugacy classes theorem statement and
proof

Theorem 7.15.1 ("Composition" of conjugacy classes). Let G' be a group, and Cy and Cy two
of its conjugacy classes. Then we have

Cy * Cpy =Y nuaCh (7.190)
A

with ny,y integer. Here the multiplication C,, x C, is defined as the entire set [xy] for all x € C,
and y € Cy,. Additionally, n,,\ = nyn and niyy = ny1y = 65

To prove this, let us first prove a variant of the reordering theorem:

Theorem 7.15.2 (Reordering theorem within conjugacy classes). Let G be a group, m one of
its elements, and C one of the conjugate classes. Then the application C' —m~'Cm is bijective
into itself: The ensemble m™'C'm is thus a re-ordering of C.

Demo. First notice that this is a map into itself since for any y € C, m~'ym € C (conjugacy
class property). Second, the map is surjective. Indeed, for any y € C, it exists 2 = mym™' € G
such that y = m~'am. By definition, x is thus also in C' and therefore for all y € C' there is
an antecedent in C. Third, the map z — ma is injective (it maps distinct elements to distinct
elements). For any z,z’, we have m™tzm = m~ta'm implies that mmtzmm™ = mm tz'mm™"
so that x = 2. O

We shall soon prove that n,, is indeed an integer. But first, let us note indeed that
Nuux = Nuwx, because the two sets C), » C, and C), * C), are identical. Indeed

C, *Cy, =[uv] = [uv(uilu)] = [u(vuilu)] = [uvuflu] = [(uvuil)u] =C,*C,

since u represents all the element of C,,, and since, from the previous theorem, (uvu~!) represent
a re-ordering of the all the element of C), as v changes. Additionally, we also see that, denoting
the class that contains e are C1, that C1 * C), = C,, so that ny,\ = ny1\ = 0,2

Let us now prove that n,, is an integer. First we prove the following lemma:

Lemme 7.15.3. A necessary and sufficient condition for a set [R] to be composed uniquely of
a set of entire classes of a group G is that

VueG, u ' [R]u=[R]

Demo. The condition is necessary because, if indeed [R] is composed of entire sets, then in each
of these sets S, u™'[S]u is itself the set S by the reordering theorem.
To see that the condition is sufficient, let us proceed by contradiction and write

[R]=[R']+[R"]

where [R'] is the largest subset of [ R] made of entire classes, and the reminder [R"] thus must
contain elements that are not an entire class. Since [R'] satisfy u '[R']u = [R'] then

U—I[R//]u _ [R”] )

e cannot be in [R"] since it is, itself, a class. Let us suppose [R"] is not empty, and z € [R"].
Then it must exists y € G, conjugated to x, which is not in [R”]. Since y is conjugated to x we
have v~ lzu = y for some u € G. But then since u™'[R"]u = [R"] for all u, y must be in [R"].
We have thus reach a contradiction, and [R"] is empty. O
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Now we can proceed. Let H be a finite group of order h and conjugacy classes C; = {e},
Cy,...,Ch,...,Cn, its classes. We shall denote by n, the number of elements in the class C),
and by N¢ the total number of classes. We have, of course

Nc
Ynu=h (7.191)
p=1

Let C, and C), be two classes of H, and consider the product
C,*Cy =[uv] (7.192)
where u and v are elements of C), and C,,. Then for each x € H, we have
1C, * Oy = [27 uwz] = (o7 (e Hve] = [(a7 ) (27 o) ] (7.193)

Using the theorem of rearrangement, we see that [(z 'uz)(z lvxr)] is just a reordering of [uv]
so that
x_ICM *Cyr=C,xC, (7.194)

Applying lemma then prove theorem

7.16 Proof of Schur’s lemma

Let us prove Schur’s lemma. We are going to need the definition of "kernel" and "image" of an
operator.

Definition 7.16.1 (Kernel of an operator). The kernel KerA of an operator A:V; — V3 is the
set of vector vy € V4 such that Avy =0.

Definition 7.16.2 (Image of an operator). The image ImA of an operator A :V; — V3 is the
set of vector vy € V5 for which Jvq € V] such that vy = Av;.

Theorem 7.16.3 (Rank-Nullity theorem). For any operator A : Vi — Vs, define Rank(A) =
dim[Im(A)] and Nullity(A) = dim[Ker(A)], then dim[V;] = Nullity(A) + Rank(A).

7.16.1 Proof of lemma 1

Demo. For all g € G we have:

o Vv € KerA we have A(R1(g)v1) = R2(g9)Avy = 0. This means that the vector Ry(g)vy is
also in the kernel of A. In other words a vector in W = ker A stays in W upon transfor-
mation by R1(g),Vg: W is thus a stable sub-space of Ri(g).

o From a similar reasoning, we can deduce that the image W' = ImA is also a stable subspace
for Ro(g). Indeed, this requires implies that if a vector can be written as ve = Awv,
then Ry(g)ve can also be written as Av|. This is the case since Ra(g)ve = Ra(g)Av; =
ARl(g)’Ul = Av'.

We thus conclude that W = KerA is a stable subspace R1(g) and that W' = A is a stable
subspace of Ro(g). However, by assumption, both representations are irreducible, so the only
subspaces are either 0 or the entire space. We thus have either:

e KerA =0, in which case the image is not empty, so that imA = V5. But this implies that
the transformation A is invertible, but then A™*Ry(g)A = R1(g)Vg, and Ry and Ry are
equivalent, which contradicts the hypothesis.

o KerA =V, in which case A =0 (and the image is empty:imA = 0).
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7.16.2 Proof of lemma 2

In this case, we have a map between either the same, or between equivalent representations.
Additionally, V1 = Vo =V, and A is a square matrix. If the representation are equivalent, we can
always rotate the space so that they are indeed identical.

Let us consider then that Ry(g) = R2(g) = R(g)Vg.

Demo. By the fundamental theorem of algebra, it exists an eigenvalue A € C such that det(A -
AI) = 0. Consider then the equation

(A= AD)R(g) = R(g)(A- ). (7.195)

so that if v € Ker(A — AI') then R(g)v also in Ker(A - AI). W = Ker(A - AI) is thus a stable
subspace of transformation by R(g)Vg. Given R(g) is irreducible, either W =0 or W =V. W
cannot be zero, because at least the eigenvector of A corresponding to A is in W! Therefore
W=V.

We this have Ker(A - AI) =V, so that (A—-AI) =0 and therefore A = \I. O

7.17 Proof of grand orthogonality Lemma

Demo. Consider any matrix X and the matrix M defined as

M =73 Ri(g" )X Ra(g) (7.196)
geG

Then we have, for any y € G

MRy(y) = QEZGRl(g‘l)XR2(g)R2(y)
= gEZGRl(y)Rl(y’l)Rl(g‘l)XRQ(g)R2(y)
- Rl(y)QEZGRl(y’l)Rl(g‘l)XRz(g)Rz(y)
- Rl(y)geZGRl(yflgfl)XRﬂgy)
- Rl(y)géRl((gy)’l)XRz(gy)
= Ri(y) %Rl(h’l)XRz(h) =R (y)M

We can thus use Schur’s lemmas on M. Since R; and Rs are not equivalent we have M =0 so
that

2(:; Zl:[Rl(g‘l)]ijjz[Rz(g)]zm =0 (7.197)

but Ri(g7') is Ri(g)' so that

%ZZ[Rl(g)]Lijz[Rz(g)]zm =0 (7.198)
g€l g
%Z;[Rl(g)];kal[RZ(g)]lm =0

Using Xj; = 0 except for one pair jl for which Xj; =1 leads to eq.(7.83).
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We now turn to eq.(7.85). If we construct the matrix M using the same representation, we
get again M R(x) = R(xz)M and by the second Schur lemma:

> R(g7)XR(g) = c(X)I (7.199)
geG
which, in full matrix notation, means
> 2RO Xl R im = (X)dkm
geG jl

We just need to compute the constant. Let us work on the diagonal, when k = m, and sum over
k so that we have

>, VARG Xal R = nae(X)
geG jlk
S Xa D[R DGR = nac(X)
geG jl k
> Zle[R(Q)R(g_l)]lj = nge(X)
geG jl
> 2 Xy = nac(X)
geG 4l
DX = me(X)
geG
ox) = Ny
nA
Using again X;; = 0 except for one pair jl for which X;; = 1 leads to eq.(7.85). O

7.18 Proof of Burnside Lemma

We can now prove Burnside lemma. Consider the regular representation (which we introduced
in the previous chapter) that is obtained using N x N matrices for a finite group of order N.
Then we have a amazing fact: Any irreducible representation D of G appears in the regular
representation dim(D) times:

Theorem 7.18.1 (Regular representation decomposition). Consider the reqular representation
of a group. Then we have the following decomposition in irrep

R'(9) = ®a,2Ra,2(9) = ®aRaRa(g) (7.200)
where R, is the dimension of the representation a.
Demo. We simply apply
ba = % ;”uXZ(Cu)XT(Cu) (7.201)

and using the fact that for the regular representation all characters are zero except for the one
corresponding to e, we find

o= Xi(C) = NEN = R, (7.202)
O
This finally allows to prove Burnside’s lemma, by simply counting the dimensions:
Lemme 7.18.2 (Burnside lemma).
% d?=N (7.203)
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7.19 Representations of Lie Groups and Lie Algebras

The following theorems hold on the relationship between representations of Lie groups and Lie
algebras [}

Theorem 7.19.1 ((Lie group reps induce Lie algebra reps)). Let G be a matriz Lie group with
Lie algebra g. If R is a representation of G on V', then there exists a unique representation r of
g on V' given by
d
r(J) = E(R(etx)) , for all X eg. (7.204)

We call r the representation of g induced by R.

Theorem 7.19.2 ((Lie algebra reps lift to simple Lie group representations)). Let G be a simply
connected matriz Lie group, and let r be a representation of the corresponding Lie algebra on V.
Then there is a unique representation R of G with the property

R(eX)=e"X) | for all X €g. (7.205)

Theorem 7.19.3 ((Lie algebra reps locally lift to Lie group reps).). Let G be a matriz Lie
group, and let r be a representation of the corresponding Lie algebra on V. Then using Theorem
1, we can always locally define a representation R on G by the mapping

R(g) =" X)), defined for all g = eX nearby I. (7.206)

Here, by “nearby” we mean “wherever the exponential map is a diffeomorphism”. Indeed, in this

region, all g can be written as g = ™.

3% These statements are taken from [Representation Theory for Geometric Quantum Machine Learning - see
there for further discussion.
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7.20 Examples of symmetries of quantum models

Here I show a list of examples of quantum models and their symmetries taken from Represen-
tation Theory for Geometric Quantum Machine Learning. While these examples are framed in
a QML context they are more widely applicable.
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Example 11: Discrete symmetries

Bit parity with bit-flip symmetry: Let n be an even number of qubits. Consider a problem of classifying
computational basis product states according to their parity. Here, p; = |4;)(;|, with |¢;) = |2;,2i, ... 2;, ),
and where z;, € {0,1} the parity of |1f;) is defined as y; = f(|v%)) = Y_p_; 2, mod 2. Defining the spin-flip
operator P = ®;.‘:1 X;, where X; is the Pauli-x operator acting on the j-th qubit. One can readily see
that while P [¢;) # |1;), the parity is invariant under P, i.e. f(P |w:)) = f(|4:)). For a concrete example,
f(P01)) =1 = f(|10}). In other words, the states are not invariant under the symmetry, but the labels are.

e States: Bitstring product states |¢;) = |2i, 2, .. - 21, ) € (C2)®", where z;, € {0,1} and n even
e Labels: Parity y; = f(|s)) = X5, 2, mod 2

e Group: Z; = {1,p}

e Representation: R:G — GL((C?)®™"), where 1 - [¢;) = |t), o - [¢u) = P |ds)

Qubit reflection parity: Consider a problem of classifying states according to their qubit-reflection parity.
Defining the qubit-reflection operator R := R1 nRon—1... R|nsa),|n/2)+1, Where R; ; swaps qubits j and j/,
and writing p; = [¢;)(;], the states will have label y; =0 (y; = 15 if p; is an eigenstate of R with eigenvalue
1 (—1). Here, one can readily verify that Rp; RT = p;.

Qubit permutations: Learning problems with permutation symmetries abound. Examples include learn-
ing over sets of elements, modeling relations between pairs (graphs) or multiplets (hypergraphs) of entities,
problems defined on grids (such as condensed matter systems), molecular systems, evaluating genuine multi-
partite entanglement, or working with distributed quantum sensors. Consider for instance a problem where
an n-qubit p is a graph state encoding the topology of an underlying graph. One can create such state
by starting with the state |+)®", and applying a unitary U@#®) for each edge (a,b) in the graph. Here
Uleb) = g=iv((10X0)"®L"+(11X1))"®2") jg ap Ising-type interaction. By conjugating the state with an element of
Sn, one obtains a new quantum state whose interaction graph is isomorphic to the original one.

e States: Quantum states on qubits, where the qubit labeling index do not matter.
e Labels: (Here, any label will work, since the states themselves are invariant).
e Group: G = 5, the symmetric group on n letters

e Representation: R :G w— GL((C%)®"), where the 2-cycle (j,5') - [¢) = SWAP; ;« [1;). Note that since
any permutation in S,, can be expressed as a product of swaps, this defines our representation on all
permutations.

Translation invariance: Let H a Hamiltonian and consider the problem of classifying energies y; of a
set of eigenstates |¢;). Suppose H = Z;;] hj i1, where h;;,, is a nearest-neighbor interaction and we
impose periodic boundary conditions so that n+1 = 1. Then H commutes with the translation operator 7, :
(C%)®» — (C?)®", which translates the state 1) to the right by g sites (e.g. 70 = 1 and 7, |01101) = |01011}).
We can then use Prop. 5 to argue that the energy label y; is invariant under the group of translations, so
F(|[¥i)) = f(74 |[¢04)) for all translations T,.

o States: Eigenstates [¢;) of a Hamiltonian H on a ring of n qubits
o Labels: Eigenenergies y;, i.e. H ) = s [¥i)
e Group: G = Z,, the cyclic group of order n.

e Representation: 7 :G — GL((C?)®"), where 7, translates to the right by g sites

Figure 7.24:
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Example 12: Continuous symmetries

Unitary transformations and purity: Consider a problem of classifying pure states from mixed states.
The dataset here is composed of states with label y; = 0 (y; # 0) if p; is pure (mixed). Since the purity
is a spectral property, then the labels in & are invariant under the action of any unitary. Note that here

F(Up:UY) = f(pi), but in general Up;Ut # p;.
e States: States p; € D(H).
e Labels: Pure y; = 0 and mixed y; # 0.
e Group: G = U(d), the unitary group on H.
e Representation: U :G — U(d), where g p; = ngiUg.

Orthogonal transformations: Consider a problem of classifying orthogonal (real-valued) states from Haar-
random states. The dataset here is composed of states with label y; = 0 (y; # 0) if p; is a real-valued
state (a Haar random state). Here, the labels y; = 0 are invariant under the action of any orthogonal
unitary, as conjugated a real-valued state by a real-valued unitary yields a real-valued state. Note that here
F(Up:UY) = f(pi), but in general Up;Ut # p;.

e States: States p; € D(H).

o Labels: Orthogonal y; = 0 and mixed y; # 0.

e Group: G = O(d), the orthogonal group on H

e Representation: U :Gw— O(d), where g- p; = ngiUg

Local unitary transformations and the XXX model: Consider the problem of classifying ground states
of the Heisenberg XXX model H = JZ;‘;I(X;,‘XJ-H + YY1+ ZjZ541). Here, y; =0 (yi = 1) if p; is a
ferromagnetic (antiferromagnetic) ground state of H with J < 0 (J > 0). Since H commutes with the total
magnetization operators S, = 37, X;, Sy = 30, ¥;, 8. = 37, Z;, then the labels are invariant under
the action of the same local unitary acting on all qubits. That is, f((®} U)pi(®; UT)) = f(p) for any local
unitary U.

o States: Ground states of the X X X chain p; € D(H)

e Labels: Ferromagnetic y; = 0 and antiferromagnetic y; = 1

o Group: G =U(2)

e Representation: U:Gw— U(d), where g p; = (Ug @ - @ Ug)ps(Uyg @ - - @ Uy)T

Local unitary transformations and multipartite entanglement: Consider the problem of classifying
pure quantum states according to the amount of multipartite entanglement they posses. Here, y; = 1 if the
states posses a large amount of multipartite entanglement (according to some measure), while y; = 0 if the
states are separable. Since local unitaries do not change the multipartite entanglement in a quantum state,

then we have that f((®} U;)p: (@5 U} )) = f(pi) for any local unitary U; acting on the j-th qubit.
o States: Pure states p; € D(H)
e Labels: y; € [0,1], where 0 means separable and 1 means “highly entangled”
o Group: G=U(2) x --- x U(2), (n times)
o Representation: U : G +» U(d), where (g1,...,gn) - pi = Uy, @ -+ @ U,y )pi(Uy, @ - @ Uy )}

Figure 7.25:
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Chapter 8

Perturbation Theory

Say you have some system H of an n particle system and want to calculate its eigenspectrum
(i.e. its eigenvalues and eigenstates) or the dynamics it induces. In certain cases this is easy -
e.g., if the n particles are non-interacting, if we can identify its symmetries to Block diagonalize
the Hamiltonian or if we can apply physics intuition to transform into some other clever basis
where diagonalizing the Hamiltonian is easy. But generally this is hard and we need to resort
to approximation techniques.

Perturbation theory is an approach to handling complex Hamiltonians by breaking up the
Hamiltonian into ’easier’ terms that you know how to diagonalize and small corrections that
we can treat as inducing perturbative corrections. Exactly, how to do this in practise depends
on whether there is or isn’t a time dependence, whether there is or isn’t degeneracy in the
eigenstates, as well as the available computational power. Let’s start with the simple non-
degenerative time-independent case.

8.1 Non-degenerate Time-Independent Perturbation Theory
Let’s consider a physical problem governed by a Hamiltonian H, which we decompose as
H=Hy+\V (8.1)

where Hj is a Hamiltonian with known eigenenergies and eigenstates (i.e. its the easy part),
A € R* is a real positive parameter determining the strength of the additional term V' which is

DIAGONALIZE
= VE e
_ |HAMILTONIAN

Figure 8.1: Caption
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treated as a perturbation of the system. We are interested in studying the limit of this problem
where A is small (i.e., the limit of small perturbations).

Let |¢,,) denote the known eigenstates of Hy and €, the associated eigenenergies. The goal
of this section is to establish techniques to determine the eigenenergies of the total Hamiltonian
H. For sufficiently small perturbations A, it is reasonable to assume that the eigenstates [, ) of
H will be "close" to |#n ), and the associated energies E, will be close to €,. In the limit of very
small A, the solution can be expanded in powers of A:

[n) = [6n) + MDY + N2 o)) + - (8.2)
En=en+AEW + N2EP) 4 .. (8.3)

And Schrédinger equation is written as:

(Ho+AV) (I6n) + MDY + A2 ) + )
= (en+ ABD + N ED + ) (1) + A1) + N2 [g2) + ) .
(8.4)

Our goal is to find explicit expressions for the perturbations to the eigenstates |w7(lk)) and cor-

rections to the eigenenergies E,gk) for k=1,2,....

The equation [8.4] must be satisfied at each order in A. This allows us to iteratively identify
. % (k)
the corrections Ej, ' and [¢p,”).

Zero-th Order. At order 0 we simply have the unperturbed eigenvalue problem:

FIO |Pn) = €nlon) -

1st Order. At order 1 we have:
Ho D)+ V[gn) = en[0()) + B [60), (8.5)
To isolate the first order correction to the eigenenergy, Efl), we can bra through with (¢,|:

<¢n|ﬁ0|¢r(zl)> + <¢n"7|¢n) = €n<¢)n‘¢7(zl)> + E7(ll) (‘bn’(bn) (8'6)

—_—
=1

en(Dnl$D) + (6nVdn) = en(dnllV) + ED (8.7)

where in the second line we have used Hy|¢o) = € |¢o). We therefore find that the first order
correction to the energy of Hy due to V is given by:

B = (ulVIgn) (8.8)
and so the eigenenergies of H to 1st order are:
En = en+ MoulVIgn) + O(N?) (8.9)

What about the first order correction to the eigenstate? Our goal will be to write the
correction in the basis of the original eigenstates:

D) = S (dmalto{) ) - (8.10)

m
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Thus we need to compute the overlaps (¢m|¢,(7,1)). To do this we start with Eq. (8.5 but instead
bra through with (¢,,|. This gives

=0
5m<¢m‘w7(11)> + <¢m"7|¢n) = €n<¢m|¢r(zl)> (8'12)

which can be rearranged to give:

(SmlVIn)

€n —€m

(mlD) = (8.13)

This looks promising but what is going on for m = n? To understand this remember that {|i¢y,)}
are the eigenbasis of H and so form a normalised eigenbasis with

(Unltnr) = Onnr (8.14)
For n =n this constraint can be rewritten to first order in A as
= (Pnltn) = (Gnlén) + A({Dnlb$) + (05 ]6n)) + O(N?). (8.15)
As ) is positive we therefore have that:
(Dnlo$) + (5D [dn) = 29%e((¥ {7 [6n)) = 0. (8.16)

We are free to choose the global (unphysical) phase of the original eigenstates |¢,) such that
(¢,§1)|¢n) is purely real. Thus we end up with

(Gnlti)) = (fPlén) = (8.17)
Putting this all together we have that

m V n
W)= > <¢; Vi >!¢m) (8.18)
m¥+n n
and so the eigenstates of H to 1st order are:
Vién
[9n) = 6n) + A + OO2) = [6) 44 Y Mw ox).  (8.19)
m+n n
2nd Order. At order 2 we have:

Ho [p)+ VIS = en [0P) + BV [950) + B [6n) - (8.20)

To get the second order energy correction we can again bra through with (¢,,| which gives:
5n<¢n|wr(?)> + <¢n|v W}T(Ll)) = 6n<¢n|wr(?)) + Er(zl)<¢n|w7(11)) + E1(12) : (8‘21)

On cancelling terms, recalling that (qbnwr(bl)) =0 and substituting in Eq. (8.18)), this gives:

) 2
B = (V1) = 3 0ol lond g g, ) - 5 HonlVIE g

m#+n n m#+n €n — €m

For the second order correction to the eigenstate things start to become messy but you can
keep on iterating this procedure to obtain an explicit expression for the eigenstates to second
order. You'll be pleased to know I won’t make you do this in this course.
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Comment 1. The above calculation implicitly assumed that the energy levels are non-degenerate.
If you have degenerate eigenvalues (i.e. two different eigenstates with the same energy) then the
denominator in Eq. (8.18) blows up. We will come back to how to deal with this case later in
this section.

Comment 2. For this approximation to be valid we need the second order correction to be
small compared to the first order correction. How can we check this? To derive one way
of checking let A be the energy difference between ¢, and the nearest energy level i.e. A =
min,, |6, — €,]. Then we can write:

(Om|V|on
2] -| 5 HexlViol)
(bl V)|

m#n |6n - €m|

(| V160)[*

m+n

:z( (6ul V1) (Sual V6n) = |(@]V1610) \)
1
A

(¢6nlV%16n) ~ (@l V16n)")

The condition |E,(L2)| < |E,(LI)| is satisfied as long as,

1 A A A
< ((@ul72160) = (6alV16)") << (@nlV16) (8.23)
or equivalently, as long as:
<¢n|f/2|¢n> %
————— —(on|V]on) | < A. 8.24
(OnlV]dn) OnlVlon) (524

A more restrictive but also easier-to-verify condition would be to require that the elements of
the perturbation matrix are small compared to the energy level spacing. In other words, we
impose:

{GmlVon)

€n —€m

«< 1.

8.1.1 Examples

Ezample 8.1.1. Harmonic Oscillator Exposed to a Constant Force. Suppose we consider
particle in a Harmonic well subject to a constant force:

P 1
H=—+-mw?2® - qFEx. (8.25)
2m 2

We can write this Hamiltonian as H = Hy + AV with

2
p 1 2.2
Ho=2 4+ =
075, "M (8.26)
V =—qFEx
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and A = 1. We know the energies of Hy, as this is just the simple harmonic oscillator with
energies

€n = hw (n + %) (8.27)

and eigenstates |n). To simplify things, we express V using the lowering and raising operators

h
V = —qFEx =—qE\/ (a+al) (8.28)
2mw

with a|n) = \/njn—-1) and a'|n) = v/n + Ijn+1). To find the 1st order corrections to the energies,

we use B = (n|Vn):
EW - —-qE\/ L(n|(a +a')n) =0 (8.29)
2mw

and thus the first order correction to the energy vanishes B
To find the 2nd order corrections to the energies, we write

Eq(f) =y W (8.30)

m#n tn T €n

_PEh « [{ml(a+ah)n)P”

8.31
2mw A, hw(n-m) (8:31)
E* « |(m|(a+ah)n)]?
=5 > (8.32)
MW= mzn (TL - m)
To simplify this we use the fact that aln) = /n|n - 1) and a'jn) = v/n + 1|n + 1) to find
2 _ *E*h 5 Vr{m|n = 1) + Vn+ I{m|n + 1)|? (8.33)
" 2mw hw(n —m)
Bty (R /] VTR (8.34)
2mw?\n-(n-1) n-(n+1) '
2 122
qFE
=— 8.35
2mw? (8:35)
So, up to second order, we have
1 2E?
En:hw(n+—)— = (8.36)
2] 2mw?

Note that for this simple example you can just solve this Hamiltonian exactly by seeing that a
constant force simply shifts the equilibrium position (the position where the force vanishes) to
zo = qE/(mw?) as

2 2 2 2
1 1 B E
H=p—+—mw2x2—qu=p—+—mw2(:U—q—) _(q_)
2m 2 2m 2 mw? mw? (8.37)
) .
1 1
= 2p_m + §mw2 (z-20)% - émwzx% .

2 2
Thus you can see that the perturbation reduces the energy by %mw%% = qujiz. We therefore

see that in this case 2nd order perturbation theory gives us the exact values of energies for the
Hamiltonian. However, this is is only true for this simple example and not generally the case.

!An alternative way of seeing this would be to note that |n) are even under reflections 2 - —z but z is of
course odd and the above equation corresponds to integrating an odd function for z = —co to = = co.
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Ezample 8.1.2. Potential of a Diatomic Molecule. Consider the following Hamiltonian
H = Hy+V with:

for ¢ > 0 and ¢ < 0. Note that to make our life less miserable here we have picked units such
that Aw =m =1 (in contrast to the previous example).

257

20

1571

Figure 8.2: Correction to the potential

The energy and eigenstates of Hy for the system are already known- this is just a standard
quantum harmonic osccilator. Concretely, we have €, = (n + %) The goal is to determine the

E,Sk) for a fixed n. From Eq. the first order correction to the eigenenergies is given by:
EW = (n)ci® + qit|n) .

To evaluate this let’s introduce creation and annihilation operators such that = a + af. It is
immediately noticed that the term ¢4® does not contribute because only terms with the same
number of &' and @ operators give rise to non-zero coefficients (alternatively, note that the
eigenstates |n) are symmetric under - —2). Next we note that:

4 2
2t =(a+a') = ((a)* +aa' +ata +a?)
= (a)* + (a)%a™ + (a)%a’ + (a)%a'a
+a'?(a)% +aMa%aa’ + aa +aa’(a)?

+aal’

A

+aataa’ +aatata +al(a)®

+ataat? + ataaal + afaata

where the last equality is obtained by again noting that only terms with equal numbers of
creation and annihilation operators lead to non-zero contributions. Thus (after a bunch of
algebra which I will leave it up to you to fill in) we find:

(n] (at +a)" |n) = (n] (a)? a"2n) + (nfal® (@)% |n) + (nlaataTaln) + (njafacaln) + (njaataa’|n) + (nfataataln) =
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And so we have

1 1
enw(n+§)—6|q| (n2+n—§) : (8.38)

8.2 Degenerate Time-Independent Perturbation Theory

As mentioned earlier, the approach described above fails when Hy has degenerate eigenvalues
because of terms of the form En}em = % in Eq. (8.18). In this section we show how we can deal
with this case.

For simplicity, we assume for now that only for the ny, energy state is there an N-fold
degeneracy. That is, we suppose that the initial Hamiltonian Hy has energy €, with NV degenerate
states ¢, t=1,...,N.

Let us start by finding the first order corrections E,(Ll). To do so, we expand our eigenstate
[tn) in powers of A. However, this time we replace the 0-th order term |¢,) with a linear
combination }; cj|<;5nj) of the degenerate states because we are unsure of what combination of
these states yields the “correct” 0-th order contribution to |¢,). That is, we can write:

[Wn) = 3 cildn;) + MDY + APy + ... (8.39)
J

and the energy is given by
En=en+ AEW + X2 EP) 4 (8.40)

as previously. Again, working from the Schrodinger equation H|¢y,) = Ey|t),,) to first order in A
we have:

HoloM) + Y ¢;VIgn,) = enltstD) + BV Y cjlén, )
J J
Similarly to the non-degenerate case we next bra through with (¢p,|,

J

<¢nz|HOW)1(11)> + Z cj(¢nzlv|¢m) = en(énz‘wr(zl)> + E7(11) Z Cj<¢ni|¢nj>
J

and cancel the ¢, terms to give:

Y bnilVidn;)ej = BV X cjlonlon,) = B Y iy = Bfe
J J J
The terms (@, [V|én,) = Vij are the matrix elements of V' in the {|¢y,)} basis of degenerate 0-th

order states. Thus we have:
> Vigej = EMe;
J

This is precisely an eigenvalue equation. The first order corrections Ey(ll) are the eigenvalues
of V in the degenerate state basis and the corresponding vectors ¢; characterize the “correct”
linear combination }3; cj|¢y,) in the O0-th order term of the eigenstate [¢),).

Finding eigenvalues and eigenvectors of a matrix are equivalent to diagonalizing it - so, when
we carry about this procedure for finding the 1st order corrections to the energies of degenerate
states, we just diagonalize the perturbation Hamiltonian V.

Comment 1. Note that in the context of perturbation theory for a non-degenerate physical
system, the perturbation appears at order 1 in )\, while here we have a correction to the zero-th
order state.
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Comment 2. In general, a perturbation allows us to lift degeneracy, i.e., obtain energy cor-
rections Efllz) that are all different. Any remaining degeneracies are actually due to intrinsic
symmetries, directly related to the physics of the problem. This links back to the previous
comment - it is because the degeneracy is lifted that the Oth order contribution changes.

8.2.1 Examples

Ezample 8.2.1. Trivial example. We first note that this approach trivially works for the case
of a Hamiltonian H = Hy+V with Hy = al. In this case eigenstates of Hy are trivially degenerate
and the eigenvalues and eigenvectors of the perturbed Hamiltonian can be found by finding the
eigenvalues and eigenvectors of the perturbation V.

Ezample 8.2.2. The Stark Effect. The Stark effect is an important phenomenon in atomic
physics where one observes the splitting of the degeneracy of one-electron atoms in an electric
field. In this example we consider the Hamiltonian of a one-electron atom (e.g. Hydrogen) in a
constant, uniform electric field E which points only in the z direction. We neglect spin in this
example. (If you can’t remember the physics of the hydrogen atom now is a good moment to
recap it!) The Hamiltonian of such a system is

2 2 2 2
H:p_m+p_y+p_z_ € —eEz=Hy+V
2m  2m  2m  4dmwegr

where V is identified with the term —e£z. The nyy, energy eigenvalue of the unperturbed Hamil-
tonian is n’-fold degenerate. In this example, we will consider the case of n = 2, which has
a 4-fold degeneracy; the corresponding degenerate eigenstates are given in |nlm) notation by
|200), |211), |210), |21 - 1).

To find the 0th order correction to the eigenstate and 1st order contribution to the eigenen-
ergy we need to diagonalize V' in the eigen-space spanned by |200), [211), [210), |21 -1). Le., we
need to find the eigenvalues and eigenvectors of:

(200]V[200)  (200[V[210)  (200[V]211)  (200|V|21-1)

(210[V[200)  (210[V]210)  (210[V[211)  (210[V|21-1)

(211|V[200)  (211|V]210)  (211|V]211)  (211]V|21-1)
(21 -1|V|200) (21 -1|V|210) (21-1|V[211) (21-1|V|21-1)

7 (8.41)

This looks like a nasty thing to work with but luckily it turns out most of the terms are zero.
Each of the 16 matrix elements is of the form:

Vimarm =(2,1,m|z[2,I',m') = /]f uf, (1 cos 0wy r? sin dOddr (8.42)

where we recall that

uUQQy o< (1 — L) 677‘/2(1’0
2&0

-r/2ap

U1 o< 7 cos e (8.43)

upy o< 7 sin fePe /20

up_1 o< 7 sin fe P T/200

where a is the Bohr radius. Looking first at parity, it is clear that z = r cos(#) has odd parity.
And thus any term along the diagonal is the integral over an odd function and so is zero. Similar
parity arguments apply for Vi_; 11 terms. Secondly, f027r e"d¢ = 0, so any term with a single w1y

143



Quantum Physics 11 CHAPTER 8. PERTURBATION THEORY

or uj—1 contribution vanishes, e.g. Vio,1-1 = V11,00 = Vi-1,00 = 0. Thus we end up with only two
non-zero terms corresponding to Vpo o1. Thus we have left with:

0 o 0 0
~ o 0 0 O
V= 0 0 00
0 0 00

where (if you do the integrals) ao = —3e€agp. It is now easy to sedﬂ that the eigenvalues of V are
+3e€ag and 0. The corresponding eigenkets are 2_1/2(1, +1,0,0), (0,0,1,0) and (0,0,0,1) (with
the final two eigenstates still degenerate). We conclude that as soon as the slightest perturbation
is switched on, the system is in the state of lowest energy, i.e.,

1

ﬁ(yzoo) +]210)) (8.44)

[¥) =

with energy Ej = —3apef.

2The top left hand block just corresponds to diagonalizing o, and the lower block is just the all zero matrix.
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Chapter 9

Time-dependent Hamiltonians

So far, we have focused on approximating the eigenstates and eigenvalues of systems described by
time-independent Hamiltonians. What happens when we can no longer neglect time dependence?
We want to solve the equation:

S 16()) = A1) 19(0). (0.1)
Equivalently, we can always write
[6(t)) = U(t, t0) [¢(to)) (9.2)
for some unitary U (t,t0). If the Hamiltonian is time-independent, it has the form
U (t,to) = e H(t-t0), (9.3)

but when there is explicit time dependence we cannot use this simple expression. This chapter
will be give you some tools for computing the propagator in this case.

We will start by deriving something call the ‘Dyson series’. This gives an exact expression for
the evolution operator of a quantum system with a time dependent Hamiltonian. Unfortunately
this expression is in most cases so disgustingly messy that you can not do much with it. We will
then explore the interaction representation which (partially) simplifies the picture. Finally, we
will go back to perturbation theory (this time ‘time-dependent perturbation theory’) to show
that if the time dependent part of the Hamiltonian is only a small perturbation then calculations
again become nice and tractable.

9.1 Dyson series

I warn you that this is a slightly fiddly derivation - but it’s one of those derivations everyone
needs to see at least once.

Plugging our expression for the evolution operator, Eq. (9.2)), into the Schrodinger equation,
Eq. (9.1)), we have

; 0

ot

As this holds for any state we thus have

lﬁ%ﬁ(tv tO) = ﬁ(t)ﬁ(t, tU)a
U(to, o) = 1.

U(t.to) |6 (to)) = H(2) |6(1)).- (9-4)

(9.5)
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The exact time evolution operator in the case of a time dependent Hamiltonian is obtained by
solving this system of equations. Integrating the first equation from ty to t gives:

t " t N N
i [Man Lo o) - [ dt1 (1)U (41, t0)
to f% to

= i(U(t,t0) - 1) = ﬁ; dt H(t1)U (t1,t0).

Therefore,
U(t,to) = ]l—z'/totdtlfl(tl)ﬁ(tl,to)
= ]L—z'ftotdtlﬁ(tl)(]l—i/totl dtQﬁ(tl)U(tg,to))
- ]l—iftotdtlfl(tl)+(—i)2 ftotdtl ftotl dto H (t1)H (t2)U (2, t0)

v S i) [ [ [ ) () ) (1)
fopuc] to to to
where t; > t;_1 for all i. (Note that the final U(¢,,tp) term vanishes, i.e, becomes an identity, in
the limit that n — oc.)

This looks pretty messy and hard to work with. In particular, its a pain how each of the
integrals range depend on other parameters we are integrating over. It would be much nicer if
all the integrals were between ty and ¢. To do so E], we will need to introduce the time ordering
operator, T. This is defined as follows:

T[H(t)H(to)-H(t,)] = H(t: ) H(t:,)~H(t:)), where t >ty > >t . (9.7)

That is, the time-ordering operator tells you to reorder the operators so the time arguments
of the corresponding operators decrease as you go moves from the left to the right. You end
up with an expression where the largest time appears in the argument of the first (left most)
operator and the smallest time appears in the argument of the last (right most) operator. For
example, if to > ¢t; then you have

T(H(t1)H(t2)) = H(t2)H(t1)- (9.8)
Ok, so how does this help to simplify Eq. ? To see how let’s look at the term:

t t ~ ~
Jo= [ty [t I(0)H (1) with ty < (9.9)
0 0

In this expression the integration over to is performed first from ¢y to t1, and then ¢ is integrated
from to to t. This represents all the pairs (t1,t2) where to < t; < t. Geometrically, we can
visualise this as looking for the area of the shaded area in Fig. a). Now, as ty < t; we have
T[H(t1)H(t2)] = H(t1)H(t2) and so we are free to insert 7" into the above integral to give

Jo = fttdtl fttl dizH (t1)H(t2) = fttdtl fttl dtoT [H(t1)H(t2)] (9.10)

Next, we are free to change the order of integration (this is equivalent to integrating over the
shaded region in Fig. [0.1[(b) which is the same as the region in (a)). Thus we have

= [Can [ anHE)HE) = [dn [ dnH @) () 0.11)

0

'n places here I am directly copying from [these notes- you may prefer to go and read the original.
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N X
A A

A
N

(a) (b)

Figure 9.1: The integration region, ty < t; <t and ty < ta < t1, used in Eq. (9.10) (b) The
integration region, ty < to <t and t9 < t1 < t, employed in Eq. (9.11)) after interchanging the order
of integration. (Image from this nice set of notes on the Dyson series.)

As the integration variables, t; and ts, are dummy labels, we can relabel the integration
variables in the final expression in Eq. (9.11) with by ¢; - t2 and ¢ — 1 to give:

Jy = fttdtl fdtQH(tg)H(tl) - fttdtl fttdtQT [H(t)H(t2)]. (9.12)

In the second equality we have inserted the 7" symbol. As now t9 > t; (after the relabelling), in
this case we have T'[H (t1)H (t2)] = H(t2)H (t1). That is, the integration region now consists of
the area of the half square above the diagonal line shown in Fig.[9.1)(a).

We now have two different expressions for Ja,

Jz—fto dtlfo dtsT [H(t1)H (t2)] f dtlf dts T [H (1) H(t2)]. (9.13)

Therefore, 2.J5 is equal to the sum of the two integrals given in Eq. (9.13). By adding the two
integrals, the dependence on the integration limit ¢; disappears. The integration region is now
the area bounded by the full square. After dividing by two, we end up with,

By / "ty I "dtsT [H () H (1)) (28)

That is, we have successfully decoupled the limits.
Iterating this procedure, you find that the time evolution operator can be written in the
form:

O(tto)=1+ 3 (—i)”l'/tdtlftdtg /tdtnT(ﬁ(tl)---ﬁ(tn)). (9.14)
n=1 n: Jio to to

Note the presence of the corrective factor % due to the fact that the integral over each of the
n! possible combinations of the positions of ¢; remains the same because the operator 7' always

rearranges the ¢; in such a way that they return to their initial positions. It is customary to
condense the expression into the form:

U(t,to) = T(e‘iﬁsﬁ d“ﬁ(m). (9.15)
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Note 9.1.1. 1. If the Hamiltonian H is independent of time, then clearly [ﬁ(tz),ﬁ(t])] =0
for all ¢;,t;. As such, the operator 1" acts trivially on the product of Hamiltonians. So we
have:

R ) 1 t t t o .
0(t, to) =1+2(—¢)n—f dtlf dts - f dt, T (B (t)+F (t,))
n=1 n' to to to

00 t t t N ~
=1+2(-¢)"lf dt1/ dty - f dtnH(t1) - H(tn),
= n! Jto to to

N TN N
which, in exponential notation, gives U(t,tg) = e i fig L H (t) Moreover, since H is inde-
pendent of time, ftz dt'H(t") = H(t—-tp), and the time evolution operator can be rewritten

as U(t,tg) = (e_m (t_tO)). As such we indeed recover the standard expression for the
evolution under a time independent Hamiltonian (Eq.(9.3)).

_iftf) dtlﬁ(tl) _ e—’i /tto dtlﬁ(tl)

2. In general, there is no guarantee that T(e . Therefore, you

have to go back to the uncompressed expression for U and explicitly compute each
term of the expansion before summing them. This is generally pretty painful unless you
get lucky and a recurrence relation between all the terms is found. Therefore, we usually
focus on situations where we can limit the expansion to a few terms.

3. In the context of quantum computing it is common to attempt to approximate U (t,t0) by
breaking the continuous time evolution down into discrete time steps and use:

U(t,to) ~ ] PRGOS Udise (t, o) -
J

where 6t = t/m; for some integer m;. It can be shown that the resulting approximation is
upper bounded by

2
t my
f dsH(s) -6t 3 B (ty +rot) (9.16)
to r=1
where ||...|| is any matrix norm that is unitarily invariant. The key thing to understand

about this approximation is that you are effectively breaking the continuous evolution of
the Hamiltonian down into discrete time blocks and assuming that each block (approxi-
mately) commutes.

9.2 Interaction Representation

You are already familiar with the formalism of quantum mechanics from the Heisenberg and
Schrédinger perspectives. In this section, we introduce a new representation called the interac-
tion representation.

Let’s begin with some reminders:

1. In the Schrodinger representation, it is the states |pg(t)) that explicitly depend on time.
The evolution is governed by the following equation:

S l6s(0) = (D) |65(1).

In this representation, observables are fixed operators, and any time dependence they have,
if at all, is intrinsic and not governed by H.
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Figure 9.2: T had no idea what is meant to be going on in this meme when I first saw it and
just thought it would just make this page a little more colourful. Then Someone sent me this
link and I realised it was a brilliant explaination of the interaction picture. Credit: L’heure est
grave.

2. In the Heisenberg viewpoint, the time dependence is instead transferred to the operators.
The state vectors are assumed to be fixed, and their time dependence is intrinsic. The
system’s time evolution is governed by:

|m (1)) = 05 (t0)),

O (t) = Uk(t,t0) Os (1) Us (t, to)
3. These two definitions lead to identical expectation values:
(6 ()| On(t)|on(®)) = (on®)| ULt t0)0s(®)Us(t,t0) |61 (1))
= (04 (1, 10) 05 (1)] UL (1, 10)Os (1) Ts (1, 10) [Uh (1, 10) 65 (1))
= (Us(t,t0) UL (1, 10) 05 (1)| O (1) |Us (2, 10) U (1, t0) é5 (1))
= (6s(t)| Os(t) [9s(t)).

In other words, both representations lead to the same physics and we are free to pick which
ever one makes our calculations easiest.

The interaction representation is a kind of "blend" of these two points of view. We start with
a problem described by a Hamiltonian of the form:

H(t) = Hy+ V().

We will treat the time dependence due to the perturbation V as evolving the states (Schrodinger-
style) and the time dependence due to Hy as evolving the observables (Heisenberg-style).
Let us start by defining the evolution of states and operators in the interaction picture as:

Oy (t) = etflo(t=t0) O (4)e~iHo(tt0)
(9.17)

(pr(t)) = ¢ Hol=10) g (1)) = o) g (1, 1) |5 (t0)) -
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It is straightforward to check that this is consistent with the Schrodinger picture as:

(61(1)]| Or(t) |61 (1)) = (@s(t)] e Hol=t0) i Ho(t=t0) () g (1) =1 Ho(tt0) giflo(t=t0) |5 (1))

A (9.18)
= (¢s(8)| Os(t) |ps(1)) -

If this seems a little arbitrary and pointless currently, don’t worry, it will hopefully become
clearer in a bit while it is useful. But before we get there let’s keep going with seeing how this
representation works.

We can implicitly define the interaction evolution operator U 1(t,to) as:

|or(t)) = Ur(t,to) |¢r(to))
This, combined with the second equation in (9.17)), gives us an explicit expression for U; (t,t0):
Uy(t, o) = Mo 14 (¢ 1), (9.19)

Let’s now have a look at how such an operator evolves. Differentiating it gives:

%ﬁf(t,to) = H0(=10); 1 TTs (4, 1) — i€ M0 (10) FT($) Ug (, to)
= —ie!Mo(=10) (F (1) - Ho) Us(t,to)
= —ie MUY (1) g (1, 1)
_ _Z-eif{o(t*to)f/(t)efﬂflo(t*to)eiﬁo(t*to)ﬁs(t’ to)

—iVi(t)Ur(t, to)-

where in the final line we use the definition of an operator in the interaction picture from
Eq.(9.17). Thus we have that the analogue of the Schrodinger equation for the evolution operator
in the interaction picture is given by:

0 . s
i Ur(t.t0) = ViU (1, to). (9.20)

The key thing to notice is that in the equation that governs the evolution of the evolution
operator in the interaction picture, i.e., Eq. , it is the perturbation that plays the role of
the Hamiltonian! That is, we have simplified the differential equation we need to solve to find
the propagator by hiding Hy. If we push the analogy a bit further, we can use similar reasoning
as we used to find the propagator in the Schrodinger picture, to obtain an expansion of U 1(t,t0):

N e t t t N N
Urtto) =1+ 2 (=) [ dty [t [t (Vi(t2)~Vi(ta0))
= 10 A " (9.21)
:H+Z(—i)”—'f dtlf dty - f dtnT (Vi(t1)Vi(t, - 1)),
i=1 n: Jtg to to

which, similarly to before, we can also put in a more condensed version:
A A . rt 1Y) ’
Ur(t,to) =T (e_lfto vt )) .

As mentioned earlier, such an expansion is only meaningful if it is possible to truncate the sum
from a certain term onwards. This is feasible when V' (¢) is a small perturbation.
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9.3 Transition Probabilities

Consider a system described by a Hamiltonian of the form

H(t) = Hy+ V(1) (9.22)
where
~ 0if t <ty
V= { V(t) if t > to. (9.23)

We will use [n) and E,, to denote the states and eigenvalues of the unperturbed Hamiltonian.
Suppose the system is in the eigenstate |i) at t = g, so its temporal evolution is determined by:

oo

[65(t)) = Us(t,to) i) = D ca(t) |n),

n=0

where ¥.°°|cn|? = 1. Since the states |n) are orthonormal, projecting the state |¢s) onto the
state |n) determines the coefficient ¢,, and this holds for any n € N:

en(t) = (nlos(D)) = (nlUs(t.to)li)
= {nle™ T, (8 1)) 1)

Ep (t-t
_;jEn(t=tg)

—e TR (n|Ur(t,to)li) -

The amplitude ¢, (t) is simply the amplitude to find the system in eigenstate |n) given that
it started in state |¢). Thus the transition probability P,., from the initial state |i) to any
eigenstate |n) of Hy is simply the mod-square of this:

Pron = [(rls (D) = lea () = | (|01 (t,t0) )]

Note that by assumption V(t) =0 for all t < tg, so |i) is not only an eigenstate of Hy but also of
H for t <ty. Let’s determine the expression of the transition probability at the first order in V.
Note that (from Eq. (9.21)) in the first order in V' the propagator is of the form:

~ t ~
Uf(t,to):ﬂ—ift At Vi (),
0

and so (assuming n # ) we have

(nl0r (e, o)) =i [ty (nlF 2, 0}

t -~ R »
=—i | dty (n]eToOtOY (¢ 1) e Ho(ti=to)|)
to

t . A
=i [ dtye EEO) (1, 1))
to

and finally

t . N 2
—i [ dtye” EnmEDto) (017 () 10)]i)| (9.24)

to

Pi—m,:

This is the first-order time-dependent perturbation theory expression for the computation of a
transition probability. Let’s now evaluate it for some common cases of interest.
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Turning on a constant perturbation. Let’s consider the special case where the potential
(once turned on) does not depend on time. That is, let’s suppose that

~ 0if t <ty
V= {Vift>t0,

and [9.24] becomes:
. t , 2
P, (t) =‘(n|V|z)f dit, e~ (En=Ei) (t1=t0)
to

2

e~ (En=E;)(t-to) _ 1
En - Ez

|2 4 Sin?((En_Ei)(t_tO))
(En_Ei)2 2 .

1

- [

= [(n|V]i)

Without loss of generality we can take ¢y = 0 and rewrite our expression for P;_,,(t) as
Proan(t) = [0V £ (Bn - Ey), (9.25)
with f(w) = ﬁ sin (%t) and w = F,, — E;. The function f(w) is sketched in Fig. Note that:

0 for %t =km
f(w) =

4 sewt _m
Elf?—Q‘f‘]{fﬂ',

where k is an integer. Thus we see that at a fixed time ¢, the probability of transitioning to a
state |n) will be highest for those such that w = E,, — E; satisfies w < 27“

3 27 -m 0 T 27 3w

Figure 9.3: This is a plot of f(w) where the horizontal axis is given in units of wt/2.

We now do something which is standard in physics textbook derivations but would make a

mathematician cry E| and say

lim sm?ﬂ =7td(x). (9.26)

t—o0 1-2

2I'm honestly all for ‘physicist maths’ normally but this one is a stretch even by my standards. If I find time
T'll try and dig out a reference to a better derivation and/or write up one myself. If you come across one you like
in the meantime feel free to email me. The discussion here might also make you feel a bit better.
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We thus obtain the Fermi golden rule:

—>00 UJ2

~ 1 ~
lim P (1) = 4{nfV]0)* lim — sin® (%t) = 2t (Vi) [ 6(En - E) (9.27)

where the final line we use w = E,, - F;.
It is sometimes more useful to work with a transition probability per unit time, in this case
we have

0P, (t)

AL 12
o 2 |(n|V]i)| 0(E, - E;). (9.28)

Oscillatory potential. Let’s suppose now that the potential is given by

~ 0if t <ty
V= { V() + Ve ™t if t > 1. (9.29)

From Eq.(9.24)), the equation for the transition probability is now given by:

t , R . R ‘ 2
Piy = —i_[o dtleZ(En—Ei)tl (<n|V|Z->6wt1 +(n|VT|z') e—zwtl)
1 — e U(En-Bi)+w)t N 1 = e~ i((Bn—Ei)-w)t ) 2
- (n| Vi) + = i
En_Ei+w En_Ei—w

At long times, transitions to energy states with E, = E; +w are favoured, and (via a similar
analysis to above) we find:

Wi (t) = 27 |(n|V1)|* 6( B - Bi+ w) + 22 |(n|V i) 6 (B - B - w).

Notice that the first term in the sum corresponds to an energy loss by the system, while the
second term represents an energy gain by the system. This variant of Fermi’s golden rule is very
important, as it explains how optical transitions occur in the presence of an oscillating external
electromagnetic field, for instance, between levels of an atom or a solid due to application of
laser light.

Nearly constant perturbation. Let’s now consider the case of a nearly constant perturba-
tion

V(t)=Ve

where € is real and positive. Instead of turning on the perturbation at time ¢y, we here assume
that it turns on very slowly from ¢t = —co. We will take the limit ¢ — 0 at the end of the
calculation to describe a constant perturbation.

Let’s write the perturbative expansion of U 1(t,—00). For the sake of simplicity, which will
become clear later, we will use the first form for the propagator obtained before the introduction
of the time-ordered operator (i.e. Eq. but with # — V;):

t t t1
UI(t,—oo):f—z'/dtlffl(tl)—fdtlfdtgvf(tl)VI(t2)+---. (9.30)

Let’s now look at the transition amplitude:

en(t) = e Ent (n|U (8, 10)]i) (9.31)
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iEnto

where we have omitted the constant phase e . Combining the previous two equations and

now keeping terms to second order in Vi gives:

eiEntcn(t)z_ifdtl <n|f/](t1)|i)—fdt1]dt2 (n|‘71(t1)‘71(t2)|2')

I I

Let’s start with the first integral. The calculation here proceeds in the same manner as for a
constant and oscillatory perturbations. First we recall that

ff](t) _ eiHotV(t)e—iHoth
emot Vect e-z’ﬁoth

Using the properties of the eigenstate we then have:

! t
Il=fdt1 (n|Vr(t1)]3) :(n|f/|i>fdtlei[(EnfEi)tmetl]

exp (i((En - Ei)ty — ict1)) |

i(E, — E; —i€)

= (n|V]0)

If we were to stop at the first order, we would find the golden rule as follows:

eZet

Peon =leaOf = |0V P

and so

2
APy .

dt

2ee
(En - Ei)Q + 62

= | (n]¥7Ji) P (9.32)

Wisn =

Let’s check that our result here agrees with that obtained for the constant perturbation in the
limit that € = 0. To do so we first note that

) 2662€t
ll—{% 22+ed 2mo(x)
and thus
. sz—»n Sy 12
hrrol = 27| (n|V]i) |0 (B, - E;) . (9.33)

That is, we find we do indeed regain the previous result in Eq. (9.28).

But what about to second order? Let’s now calculate Is:
t t1
L= [t [ des 3 (nlVi(t2)lm) (mlVi(t2)li)
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where we have introduced I as ¥, |m)(m|

L= (n]V|m) (m|V]i) f dt, f dtoexp (i(En — Ep — i€)t1) exp (i(Em - E; — i€)to)

m
%

exp (i(Ey, — E; - ie)tg)
Z(Em - EZ' - ie)

3M

(n|V]m) (m|V|i) fdtlexp(z(E - E,, —i€)ty)

t

<n|V|m) m|V|’L /dtlexp (i(Ey — By —i€)ty )EXp (i(Ey, — E; —i€)ty)

Z(Em - Ez - iﬁ)

SM

n|Vim) (m|Vi) exp (i(E,, - E; — 2i€)t)
(B — B —i€)(En — E; - 2ic)

:_?

The term exp (i(E, — E; — 2i€)t) [(E, — E; — 2i¢) is the same as in I; (except for € — 2¢, which
doesn’t change anything in the limit € — 0). If we start from

t t t1
exp(iEnt)cn(t):f-i[dtlvl(tl)—1[dt1fdtgf/l(tl)f/l(tg)

and replace the two previous results, we have

t t 51 2
Pron =l =|i [ atVit) +1 [ dn [ Vi(t)Vi(t2)
N ~ 2
o (n[V]m) (m|V]i) e
= [(n|V
Vi + e e | B E)Ee e
and
~ A 2

. dPig ~ - (n[V|m) (m|V'|i)
161_{% o = Wien = 27 |(n|V]i) + ; BB _i0" 0(E, - E;)

which is the second-order transition rate for a time-independent perturbation V. Note the sum
over intermediate states |m) typical of second-order perturbation. Here, a very suggestive image
is that the system undergoes "virtual" transitions to states |m) without conserving energy since
they occur in an arbitrarily short time before going to state |n).
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Chapter 10

Variational Principle

10.1 General Idea:

Consider a physical system described by a Hamiltonian H. Let’s write H in terms of its eigen-
decomposition H = ¥ ; F;|$;){$i| where we suppose that the energy levels are labelled in increas-
ing order with E; < F;,1 with Ej the ground state energy. It follows that for any state [¢0), the
average energy of that state (|H|y), will always be greater than or equal to the ground state
energy FEy. This rather obviousF_-] statement is given the name of the variational principle:

(Y|H ) > Ep.

This inequality becomes an quality (again obviously) if and only if 1)) = |¢g), and ¢g is non-
degenerate. I think this statement hardly needs proving but in case its helpful here is that proof
in the discrete case (and the continuous case easily follows by using properties of the integral):

(|H|p) By |(¢]dn)

Nk

0

> By Y (¢l
n=0

3
I

NgK

= FEp <¢|¢n><¢n|¢)

n=0

Note that I have provided the statement above assuming, as is standard, that the state i) is
normalised. However, the variational principle is often stated more generally for the case of a
(potentially) non-normalized state. In this case you first need to normalize by hand such that

becomes —L and so the variational principle becomes:
) ] 1) princip

AR, B (10.1

(L)

We can use the variational principle to find an approximation of the ground state of H. The
idea is to come up with a parameterised guess for the state |¢)), and then we use the variational

T generally try and avoid calling things ‘trivial’ or ‘obvious’ but I really do think this statement is. And
recognising so is actually helpful. Of course the lowest energy a state can have is the ground state energy! As
a result I've always found naming this claim as the ‘variational principle’ at best a bit grandiose and at worst
slightly confusing.
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The average
energy of any state is
always more than
the ground state energy

The Variational
Principle

Figure 10.1:

principle to find the parameter values that minimize . This method generalizes to excited
states. For any [¢) € H such that (¢pg|t)) = 0, the following inequalityEl is always satisfied:

WiHW) | o

(Y1)

The proof of this fact is identical to the proof of the variational principle for the ground state
since the term involving |¢g) drops out by the choice of [)).

Ok, so the basic idea of the variational principle is pretty simple (I promise!). Let’s now look
at how it is applied in practise. Again, I hope you’ll agree that the basic idea of how to apply
it is straightforward enough. That said, as we’ll see, actually doing the full calculation can lead
to some annoying integrals.

Ezample 10.1.1 (One-Dimensional Harmonic Oscillator). The system’s Hamiltonian is given by:

H=-—— — 4+ —muw?z?. (10.2)
2m dz? 2
—_——— N——
-7 -

We introduce a (non-normalized) trial function:

1
2 +a

Ya(x) = (10.3)

with a > 0. Note that this choice is physically unrealistic because the wavefunction should
decrease exponentially as x goes to infinity. Our goal is to compute the energy of H in the state

*We’re assuming here that the ground state is non-degenerate. If it’s degenerate you need the constraint that
|¢)) has zero overlap onto the space spanned by the ground states.
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|t)) and then find the a that minimizes this energy. To do so, we need to compute:

2 7 2
() =5 [ et

2mc>o 2+adr?z?+a

N 1 r z?

Vi) = -mw? f dr——o :
{YIVIg) = gmw J Ty (10.4)

Ty p—

= rT——.
J (22 +a)?
This will allow us to compute the average energy of our guess as a function of x as

By WA _ @I | (01710) 105)

(W) (W) ()

And then all we need to do is find the minimum of the function E(x), and this will be our guess
of the ground state energy.

Computing the integrals is the hard part. I'll leave that fun to you and just state the results
here Pl

0 1 T
- da = 10.6
wiv) = [ Ty = (10.6)
N o ] R 4?2 1 1
Hlw) = f L n"a 2.2) L
(UIH) —ooac2+a( dex2+2mwx)x2+ax
h2 e 622 -2a 1
o or e, f 10.7
2m J-oo (22 +a)* v (:1:2 + a)2 (107)
S h—2 + 1mwQa
" 20312 \ 4ma 2 '

The energy corresponding to a state [, ) is therefore given by

(olHa) B2 1 1

Ble) = e~ ama " 2

and we seek a such that the energy is minimal:

dE(a) ~ h* 1, I h_2:>a_ h
da  4ma? 2 2 ~4m V2

Our approximation of the energy of the ground state is therefore given by

h hw
E (mw\/ﬁ) = ﬁ ~ 0.72hw (10.8)

This approximation is considerably higher than the exact (known in the case of the harmonic
oscillator) ground state energy: 0.72hw > 0.5hw.

3Don’t worry, in the exam Il give you enough hints for you to be able to figure it out without being an
integration wizard. If you want some hints for this one, go check out Vincenzo’s notes.
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Ezample 10.1.2 (One-Dimensional Harmonic Oscillator:). We could now similarly determine the
first excited state of the one-dimensional harmonic oscillator. The Hamiltonian is still given by
Eq. Let’s set ﬂ wa(x))m with a > 0. This function is odd under the inversion z - —x.
Therefore, it will be orthogonal to the ground state (), which is even.

For the computation, we will need the following integrals:

r 1 5 35m
]:fd—z_—m I = 20T -9/
) M@ vat T 16" 57 128"
x 2
T T 637
J:f—:_—?’/2 I = 2207 -11/2
7 @ra)t 16" 6 256"

x 4
X i
) T Ervayr T 16"

It follows that we can compute the kinetic energy term as:

. h2 2 d? z?
o= T & .
(GalTlga) 2m J_ x(xQ +a)?dz? (22 +a)?

SN
" 2m dz (22 +a)?

h2~/~d 1 422\
= — x —_ —

2m (z2+a)?  (2%2+a)?
= h—2 fda: - 3 + da 2
" 2m (22 +a)? (22+a)3

h2
:5E(w4—wmg+1&fk)

h? (45w 105 63w) 72
16 16 16

2m
3 h?
= Zgp—q 2
16 2m
And the potential energy term is given by:
N 9 r zt
V]¢a) = [
(alV160) = g [ et
L 9
== k
5wk
= Zmw?a 32
32

Finally, the norm is given by:

r x’ T -5/2
(¢alda) -_{ diﬂm =Jy = 6%

“Note we chose to divide by (z? +a)? rather than (22 +a?). This is because if we picked z/(z*+a?) then even
those the function is square-integrable the potential term would eventually diverge.
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Thus putting this mess together we have

2 4 2
E(a) = E (ﬂaq/2 + mwza_?’/Q) . (a_5/2) = 3;—1 + %mwga (10.9)
ma

To find our approximation of the energy of the first excited state we just minimize this:

dE) WL L
da  2ma? 2
2
dB(a) _ SR71 1 o
da 2m a2 2
2
=a?= 332 (10.10)
mew
h
a==V3—
mw
2
Ey(a)< S me V3,
2m hy/3 2

Thus we approximate the energy of the first excited state as:
E1(a) = V/3hw ~ 1.732hw,

which is larger than, but not too far off, the known of the energy of the first excited state of the
oscillator of E$T = 1.5hw.

More generally, if one cannot use a symmetry argument, one can always seek a state |¢) that
minimizes the energy expectation value, E = (¢|H|¢) /(¢|¢) with the constraint (p[p) = 0, where
|4} is the variational solution found for the ground state. If |¢) is a good approximation, then
its component orthogonal to |0) will be minimal. In this case, there is a high probability that
the variational solution |¢) will be almost orthogonal to |0) and will also provide a relatively
good approximation to |1).

Note 10.1.3. Note that the variational approach makes error calculations extremely complicated
(we can’t do it unless we have a better approximation - but then we would just use that in the
first place!) Furthermore, for any arbitrary wave function ¢, minimizing the error actually leads
to restoring the Schrédinger equation.
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10.2 The variational Principle for an arbitrary ansatz

These final two sections are non-examinable. I include them in case you are interested.

We can try to find the exact solution to the problem using the variational approach. Consider
a Hamiltonian H and an arbitrary state ¥(z). The energy expectation value is given by

B[, v*] = Wlil) = [ doy iy

Since 1) is a complex-valued function, we consider E to be a function of ¢ and ¥* (i.e., of R(v))

and J(v)).
Introduce an infinitesimal variation d¢*(x) of ¥*(x), with d¢*(z) - 0. We are treating 1

and ¢ as two independent variables, and thus
E[w,0" +0v] = [ dav B+ [ dosy* iy
and
OF = Bl +80*] - B[v,0*] = [ dwov Hy

It is necessary to introduce the concept of a functional derivative at this point. Alternatively,
we can imagine a function v "discretized" on a grid x;, j = —o0,---,1,2,---. In this case, we can
interpret this problem in a variational context with an infinite number of parameters (w;-‘ =
0*(z;). This way, we recover the concept of a traditional derivative.

To minimize E, we need §FE = 0. Now,

SF - f das* By
In the discretized version,

0E =3 5¢; Hp
J

and the (true) derivative of E with respect to ¢5 is

OF .
Sor - Vi
w.
J
The minimization condition is then
oF .\
=Vji=Hy;=0Vj=1;=0
ﬁw;

and similarly for 7.

This strange result is because we forgot the norm constraint. We need (1|¢)) = 1. And if we
do not have this, we can ways just set 1; =0 to set the energy to 0.

To find a constrained minimum, we use the Lagrange multipliers. We want to minimize
(¢|H|1h) with the constraint (1[1)) = 1. We introduce the functional

B[, 0" AL = (0lH) - A1) - 1) = [ do*fro - ( [ devro-1)
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As before:
oF = [ dusw Ho -2 [ desvre
The condition §E = 0 for arbitrary variation d¢*(x) implies equality of the integrands:
Hip =\

It’s the Schrédinger equatioN! The variational principle, without additional conditions, should
lead to the exact solution of the problem (but hasn’t made the problem any easier).

Reminder 10.2.1. (Harmonic OscillatoxEI). We have

N D 1
=2 “pw?z?
2 2
with [#,p] = ih. Let’s introduce
. mw . .1
A=\ —2&+i——p
2h V2mhw
it [ 1 R
a'=\/—%—i——p
2h 2mhw
h
2=1/ (@' +a)
2mw
h
p=i m2°" (a'-a

We note

There is a ground state |¢g) such that
algo) =0
The spectrum is
Frfon) = o (5 ) i)

The norms are

A" |¢n) = Vn+ 1lgn)
a |¢n> = \/ﬁ|¢n—1>
(ah)"

|pn) = Vo Po)

The {|¢n)} are non-degenerate, we thus have (¢;|¢;) = d;;.

Note 10.2.2.

®Vincenzo Savona’s notes, which I am working from here, have a couple of pages recapping the quantum
harmonic osccilator at this point. It’s not entirely clear to me why. So I will skip in the lecture. But Physicists
love modelling things as a harmonic osccilator so it is good to have this stuff dialled so I'll this here in the notes
in case it is helpful for anyone.
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and
h
(8n]3%6n) =+ = (2 +1)
mw
(uliI60) === "2 (24 1)

h
for n =0 we have AZAp = 5

For a Harmonic oscillator in isotropic 3D, we have

=—+—-m
2m 2
Note 10.2.3.
DI° =3+, + 1>
%7 = 2%+ 9% + 22
thus

A

ﬁ=Hm+I§Ty+fIZ

=2 22z
2m 2
2
A 1
a=2v “mw?(?
2m 2
2
A 1
=2z Zp2s?
2m 2

Separable hamiltonian:

(2, y,2) = Yn(2) P (y)&(2)
~ 1 ~
where H ¢, () = Epyp(x), with B, = hw (n + 5), similarly for §j and 2. Thus H = E,,,,;;v, with

3
E, = hw (n +m+1+ 5) Why is the harmonic oscillator so important?

1. Except for pathological cases, all systems admit a harmonic approximation.
Example 10.2.4. Central Potential. We have

O Re I’ a

2u0r?  2mr?2 r

One could start from the solution of the harmonic problem and calculate more accurate
solutions using perturbation theory.

2. Quantum Field Theory for Multi-Body Systems. The state of a free particle with momen-
tum Ak corresponding to one quantum of energy can be written as |1). Thus, two particles
in the same state will have twice the energy, which can be understood as the state |2)
of the harmonic oscillator, and so on. The states of IV free particles are described as an
infinite set of harmonic oscillators, one for each Ak.

More formally, this result can be obtained from the consideration that the wave function
(r) can be treated as a dynamic variable, and thus as an additional operator, denoted
by ¢ and ¥'. This procedure is called second quantization.
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10.3 Hartree-Fock Theory

Let’s consider a system of N spinless Fermions. If you've forgotten the lecture of indistinguish-
able particles now might be a good moment to go back and revise it. But just to recap the
basics, the state of such a system is anti-symmetric under exchange of any two particle indices.
Thus we can write the general state as:

[¥x) = Z sign(P)Plz1, 22, ..., TN) (10.11)
IPGS

where sign(IP) = -1 if P involves an odd number of index swaps and sign(PP) = 1 if IP involves an
even number of index swaps. We note that given the Pauli exclusion principle, no two Fermions
can be in the same state (i.e. ng =1 for all k), so each state in the sum here is unique and so
the normalization is simply \/%

Now, it’ll be convenient here to switch notation and write this in terms of the wavefunctions
explicitly. That is, we will work within the Hilbert space Hi of single-particle states, where
the set {¢n, } -, represents an orthonormal basis of single-particle wave functions. Under these

considerations, any wave function for N particles 1) can be expressed as:

U(zr, Y, sign(P)Pén, (21) - ¢ny(2N) (10.12)

1
TN) = ——
VN!pes,

Or, equivalently, we can recognise this expression as a determinant and can write:

1 anlz(ﬂfl) ¢nNE$N)

Y(z1,-,2N) = NI

: : (10.13)
Oy (1) - Oy (aN)

We can now use our new found appreciation for the variational principle and can consider
the ¢, as variational parameters. The Hartree-Fock approximation involves representing the
ground state as a single Slater determinant, so we need to choose the ¢, that provide the best
approximation.

The Hamiltonian of the system is given by H=T+ V, where

e The operator T is the total kinetic energy of the system, which is the sum of the kinetic
energies of the NV particles:

. N N
-Yi-Y o
j=1 j=1

e The operator 1% represents the potential energy of the IV particles, given as the sum of
potential energies of each pair of particles:

V:Z‘A/i»j7

i#]
where Vi j = V (2, 2;).

We work within the Fock space. We have:

N
(VITT) = ; nilions) =2, [ do67, (DT ()60 (), (10.14)
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and
N
(WIV10) =2 3 (60,007 160,00,) ~ (Sn 6, V16n,60.)) (10.15)
2,7=1
1 N
=3 Z [ dxld:cQ(qu(:cl)qbn](a:Q)V(xl,xg)gbnz(xl)gbnj(xg) (10.16)
O () )V (o) (o) () (101D

You should recognise this type of expression from when we studied indistinguishable particles
- first term in the expression for (1)|V|yp) is called the "direct term," while the second is the
"exchange term."

The goal is to minimize (¢p|H|1p) = (| Tp)+(1)|V [1)) subject to the N? constraints: (Dn;ldn;) =
0; ;. We use Lagrange multipliers to solve the constrained minimization problem.

Theorem 10.3.1 (Constrained Extrema via Lagrange multipliers). Seeking the extrema of a
function F(x,y) under a constraint f(x,y) = 0 is equivalent to searching for those of the function:

H(:v,y,)\) = F(.%,y) —)\f(a:,y)

Thus we are tasked with minimizing:

= (WHY) = 3 Nig ((dnildn;) = 6i5) - (10.18)

7]

We have N? constraints of the form (@n;|dn,) = d;j so initially it might seem that we need
to introduce N? Lagrange multipliers. However, with a little thought we can see that the
constraints with respect to swapping ¢ and j and so it follows that A;; = )\; j which halves the
number of constraints we need to deal with.

We consider ¢ and ¢* as independent variables. As an example, the variations with respect
to ¢y, yield:

6T =Y f dadds, (2)in, ().
J
Similarly, the variations in V are:

oV =% [ dar [ dxg(a%(xlm (22)V (1), (2) - 6%(.@2)%(x1>v¢m<:c1>¢n](x2))

j#l

And the variations in the constraint term give:

IT s (0} =1) = T [ dwdsi (@)5(a).

We want to minimize F = (y|H1h) - YijNi ((¢nl|¢n]) 8;j) with respect to ¢p,,. We, there-

fore, impose W =0 for all 4, which leads to the equation:

R N . A N
b, () + ) f dl‘2(¢2j($2)v¢m(9€)¢nj(952) = &5, (2)V o, (%) P, (96'2)) = > Xijfn; ().
j=1 J=1
(10.19)
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Without loss of generality we can chose to work in the basis in which the matrix A is diagonal.
That is, without loss of generality we can take \; ; = €;0; ; and we end up with the Hartree-Fock
equation :

h? A ~
5V 2on, (2) + 1/dﬂ?z(ﬁj(m)v%i(w)%j(372)—¢Zj(f€)V¢ni($)¢nj($2)) = €ifn, ().
(10.20)
Or, equivalently, we can write this more compactly as:
(I'(z) + Vi (z) = Ve(2)) ¢n,(2) = €in, (2) (10.21)
where we have defined )
W
T(x):= va
N A
Vie(e)i= Y, [ dwagy (22)Vn, (22) (10.22)
j=1

N A
Vi(@) =3, [ doad] (2)V 60, (o0).

Thus we see that we have decoupled the original eigenvalue problem defined on the N particle
system into a set of N eigenvalue problems for each of the single particle states. This looks
easier! The first term is the kinetic term, the second term is a potential energy term (which we
will look at more closely in a second) and the third term is the ‘exchange term’ arising from the
anti-symmetrization properties of the fermionic wave-function.

Ok, let us look more carefully at the Vg («) term (which corresponds to the direct integral
term in the potential . Let’s suppose that the potential has the form:

2
V(w1 20) = ——— (10.23)
|71 — 22|
We can then rewrite the Hartree term as:
VH(x) _ f dage 2‘¢n] 2)’
_ l’2|
/ d ] 1|¢7LJ ('T)|
|£L' x9|

|z — xol

That is, the second term in the Hartree Fock equation can be interpreted as an effective potential
generated by the average potential generated by surrounding particles. That is, the Hartree
potential energy is a functional of the density p(x), as p is a function of a single variable. Note,
however, that the potential term depends on the wave-functions of all the other electrons.

If the exchange term Vg is negligible, then the initial N-body problem reduces to a one-body
problem leading to the simplified Hartree equation:

2
G0, () + Via ()m, () = 16, (). (10.24)
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The Hartree energy is then given by:

E = qﬁm!t\% fdxlfdx 2 PAr)p(r2) (10.25)

i= |‘T1_‘T2|

While the Hartree equation has simplified the problem in the sense that we now have a set
of equations for each of the one-body wavefunctions, solving these exactly is challenging as the
potential term depends on the wavefunctions of all the particles via the density term p(x). So to
go further the general strategy is to pick a clever guess functional form for the density and then
apply the variational principle. This is the core idea of what is known as density functional theory
- a very powerful and widely used tool for approximating the energetic structure of many-body
systems. At its core is the following Theorem:

Theorem 10.3.2 (First Hohenberg-Kohn Theorem). The energy E of the ground state of an
N -particle system defined by H is an unknown functional of the density p(z).

If you are interested in knowing more on this I recommend Giuseppe Carleo’s master’s course
on methods for simulating quantum systems.
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Let |yy),|¥2), [t3) € Hy, |@) € Ha, dim(H,) > dim(Hs2)

|%1) [%1) |9)
[91) [92) | [¥1) (¥

Table 1: Is this loss?

Figure 10.2: And let’s end with one more meme. I originally gave this the wooden spoon award
because my reaction, similarly to many of you I guess, was ‘is this even a meme?’. But having
now had it explained to me I have to concede its pretty clever. And if you don’t get it - that’s
just a healthy sign that you don’t spend too too much time online.
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