
zV ¼ 3/2. Moreover, from equation (7), it follows that z r ¼ 3. In
addition, the above result does not depend on details of the trading
strategy, such as the specific value of d. (The Supplementary
Information indicates a number of ways in which one can weaken
the assumptions of independent and identical distributions made in
this Letter.)

Although our model is mainly motivated by the regularities of
returns, volume and number of trades taken separately, we also
make predictions for the joint behaviour of those quantities. In a
given time interval Dt, there will be J ‘rounds’ where a fund manager
creates one or more trades. Each round j creates a volume V j, a
return ^V1=2

j and a number of trades V1=2
j : Then the total

volume, number of trades, and returns, will be V ;
PJ

j¼1Vj; N ;PJ
j¼1V

1=2
j and r ;

PJ
j¼11jV

1=2
j ; with 1j ¼^1: As a measure of

trade imbalance, we use N 0 , the number of buyer-initiated trades
minus the number of seller-initiated trades28, and V 0, the number of
shares exchanged in a buyer-initiated trade minus the number of
shares exchanged in seller-initiated trades.

We next focus on equal-time relationships between V, N, and V 0

(ref. 24), using data from the ‘Trades and Quotes’ data base (New
York Stock Exchange; http://www.nyse.com). These equal-time
relationships are found to be universal across the large set of
stocks analysed in ref. 24. Figure 3a shows that the prices impact
function Eðr jV

0
Þ produced by the model matches data. We observe

that J .. 1 (aggregation over several trades) flattens the shape of the
price impact versus V. We study a variant of Fig. 3a in Fig. 3b, which
plots EðV 0

jrÞ: Surprisingly, the shape is now roughly linear, a
feature predicted by the model. The cause of the linearity is,
again, the aggregation over several trades. Figure 3c, E(NjV 0 ),
tests the model prediction that periods with large volume imbalance
V 0 are periods where a large number N of trades are made. One sees
that the data display a relationship that is similar to that predicted by
the model. Figures 3a–c support the view that large returns and large
numbers of trades go together with large volume imbalances V

0
.

It is an important feature of the model that large trades beget
more trades. Indeed, in our model:

jN
0
j, N ð16Þ

for large N and is dominated by one large fund manager who desires
to trade a volume V j , and creates a number of orders V1=2

j ; so that
Nj , N, jN 0

jj and jN 0
j have the same order of magnitude, V1=2

j :
Relation (16) means that most trades have the same sign, that is,
move the price in the same direction—with the sign of the trade of
the large fund manager. Equation (16) is indeed consistent with the
empirical data shown in Fig. 3d. This contrasts with a simple
alternative model where each desire to trade would create only
one trade, as in a competitive market. In this alternative model we
would have N 0

¼
PN

i¼11i;where e i ¼ ^1, leading to jN 0
j, N1=2 in

the tail events or E½N jN
0
�, N

02 in contrast to the data in Fig. 3d.
Figure 3e supports the view that in periods of high volume
imbalance V

0
, most trades change the price in the same direction.

Indeed, the data and the model exhibit a similar sharp transition of
N
0
/N as V

0
changes sign. A
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Defects and their associated long-range strain fields are of
considerable importance in many areas of materials science1,2.
For example, a major challenge facing the semiconductor indus-
try is to understand the influence of defects on device operation, a
task made difficult by the fact that their interactions with charge
carriers can occur far from defect cores, where the influence of
the defect is subtle and difficult to quantify3,4. The accurate
measurement of strain around defects would therefore allow
more detailed understanding of how strain fields affect small
structures—in particular their electronic, mechanical and chemi-
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cal properties—and how such fields are modified when confined
to nanometre-sized volumes. Here we report the measurement of
displacements around an edge dislocation in silicon using a
combination of high-resolution electron microscopy and image
analysis inherited from optical interferometry. The agreement of
our observations with anisotropic elastic theory calculations is
better than 0.03 Å. Indeed, the results can be considered as an
experimental verification of anisotropic theory at the near-atomic
scale. With the development of nanostructured materials and
devices, we expect the use of electron microscopy as a metrological
tool for strain analysis to become of increasing importance.

High-resolution electron microscopy is a likely candidate for
atomic-scale strain mapping, as images are formed of the atomic
lattice. In principle, therefore, strain and local deformation can be
determined directly by measuring the displacement of the lattice
fringes in the image. However, there are a number of difficulties that
have to be overcome before this can be achieved with sufficient
accuracy and reliability. First, the displacement of lattice fringes in a
high-resolution image do not correspond exactly to those of the
atomic lattice. Recent theoretical predictions have nevertheless
shown that for small strains and centrosymmetric crystals (as
here) the correspondence is almost exact5. Second, specimen prep-
aration has to be optimized to provide images with sufficiently high
signal-to-noise ratios and to avoid undue strain relaxation and
buckling6. Last, computational methods have had to be developed
in order to extract the information from images, and to eliminate
the optical distortions introduced by the microscope itself.

Different approaches have already been applied to the measure-
ment of localized displacements using electron microscopy. (1)
Displacements of individual atomic columns at interfaces have been
determined to 0.1 Å accuracy by comparing image simulations with
experimental images7. (2) Twin boundary expansions have been
measured to 0.04 Å by elimination of lens aberrations by focal
reconstruction8. (3) A combination of high-resolution electron
microscopy and selected-area electron diffraction has been used
to determine the positions of atoms in the unit cell for perfect
crystals to 0.02 Å (ref. 9). Error analysis in these cases, even the most
rigorous7, concerned only the measurement itself.

In order to establish high-resolution electron microscopy as a
metrological tool for strain analysis at the atomic level, it is therefore
essential to determine the displacement field for a known object and
to compare the results directly with theory. Here we propose a
method for measuring continuous displacement fields around
defects using the geometric phase technique10, and apply the

analysis to a pure edge dislocation—a textbook case for elastic
theory owing to the fundamental role played by dislocations in
plasticity11. We will show that experimental measurements and
theory agree to within 0.03 Å.

Mapping displacement fields using high-resolution electron
microscopy was first proposed12 for the study of strained semicon-
ductor multilayers. The method we use is an extension of a
technique first developed in optical interferometry13, and later
proposed for the study of defects14. We have aimed to obtain the
highest accuracy possible by optimizing specimen preparation, and
by introducing correction of the optical distortions due to the
projector lenses of the electron microscope.

The geometric phase approach is based on combining real-space
and Fourier-space information, an idea first proposed for the
analysis of sound in terms of wave packets15. Displacements are
measured by calculating the ‘local’ Fourier components of the lattice
fringes in an image16. In this formulation, the intensity in an image,
I(r), is written as:

IðrÞ ¼
g

X
Ig ðrÞe

2pig·r ð1Þ

where g are the reciprocal lattice vectors describing the undistorted
lattice. The local Fourier components are obtained by filtering in
Fourier space, and have an amplitude and phase:

Ig ðrÞ ¼ Ag ðrÞe
iPg ðrÞ ð2Þ

where the amplitude, Ag(r), describes the local contrast of the
fringes and the phase, Pg(r), their position. The phase is related
simply to the displacement field u(r) by the following relation:

Pg ðrÞ ¼22pg·uðrÞ ð3Þ

and by measuring two phase images, Pg1(r) and Pg2(r), the two-
dimensional displacement field, can be determined10:

uðrÞ ¼2
1

2p
½Pg1ðrÞa1þ Pg2ðrÞa2� ð4Þ

Here a1 and a2 are the basis vectors for the lattice in real space
corresponding to the reciprocal lattice defined by g1 and g2.

For the particular case of dislocations, analysis in terms of the
phase can be developed from the general definition of the Burgers
vector b:

b¼

þ
L

7u·dl ð5Þ

where L is the closed loop around the defect. Substitution of

Figure 1 Geometric phase analysis of an edge dislocation seen end-on in silicon. a, High-

resolution electron microscope image in [11̄0] orientation, Burgers vector b ¼ 1/2[110],

Fourier transform inset; b, (111) lattice fringes obtained by filtering (magnified for display

purposes); c, (111̄) lattice fringes; d, phase image of (111) lattice fringes; e, phase image

of (111̄) lattice fringes. Colour range 0 to 2p rad.
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equation (4) for the displacement field results in the following
relation:

b¼2
1

2p
a1

þ
L

7Pg1·dlþ a2

þ
L

7Pg2·dl

� �
ð6Þ

which shows that discontinuities will be observed in the phase. A
numerical way of determining their value from phase images has been
proposed17. If the phase discontinuities are of the form 2np on going
clockwise around the dislocation core, the Burgers vector will be:

b¼ n1a1þ n2a2 ð7Þ

the simplicity of which attests the naturalness of the phase
description.

Electron microscopy was carried out on specially prepared silicon
bicrystals18. Thin foils were prepared by mechanical polishing to a
thickness of about 70 mm followed by ion milling in a Gatan
DuoMill at 6 kV. The amorphous surface layer was removed by
chemical etching in a HF 10%-HNO3 90% solution at 0 8C. Image
processing was carried out using routines written for the software
package Digital Micrograph (Gatan). Distortions of the displace-
ment field due to the projector lenses were corrected to better than
0.1% across the whole field of view, using images of perfect crystal
taken under identical experimental conditions.

Figure 1a shows a high-resolution image in [11̄0] orientation of a
dislocation seen end-on in silicon, taken on a JEOL 200CX operat-
ing at 200 kV (spherical aberration ¼ 1.1 mm, point resolution
0.22 nm). Phase images were calculated for the two sets of {111}
lattice fringes (Fig. 1b, c) using gaussian masks, and are shown
in Fig. 1d, e. The basis vectors for the phase calculation are
the following: g1 ¼ [111̄]*, g2 ¼ [111]* and a1 ¼ 1/4[112̄],
a2 ¼ 1/4[112], where an asterisk indicates reciprocal space coordi-
nates. The phase increases monotonically around the dislocation
cores, with an abrupt change from 0 to 2p radians owing to the
normalization of the phase in the range of 2p. In both cases the
phase discontinuities, n 1 and n2, are unity, indicating one extra
(111̄) and (111) plane and therefore: b¼ a1þ a2 ¼ 1=4½11�2� þ
1=4½112� ¼ 1=2½110� corresponding to a pure edge dislocation—
the Lomer dislocation.

Taking the x axis parallel to [220] and the y axis parallel to [002],

the displacement field u ¼ (ux,uy), calculated from equation (4), is
shown in Fig. 2. (The double discontinuity is due to the fact the
largest lattice spacings in the x direction are the (220) lattice planes
for which n ¼ 2.) Also shown in Fig. 2 is the displacement field
calculated using anisotropic inelastic theory with the standard
elastic constants for silicon11. Qualitatively it can be seen that the
agreement is excellent. In order to analyse quantitatively the results
and because of the complexity of the equations, it is useful to
consider the result as given by isotropic elastic theory:

ux ¼
b

2p
vþ

sin2v

4ð1 2 nÞ

� �
ð8Þ

uy ¼2
b

2p

1 2 2n

4ð1 2 nÞ
lnr2þ

cos2v

4ð1 2 nÞ

� �
ð9Þ

where r and v are the polar coordinates centred on the core position,
and n the Poisson’s constant. The first term in u x describes the
discontinuity in the displacement field, and increases linearly in v; it
is the main contribution seen in the calculated and experimental
displacement fields. The displacement in uy has again two terms,
this time one depending uniquely on r and the other in v. We shall
now consider in detail these sinusoidal variations in ux and uy.

Figure 3 shows the sinusoidal contributions to the displacement
field, obtained by subtracting the theoretical first terms in each case.
The variation in approximately sin2v and cos2v can be seen clearly.
For a quantitative comparison with theory, the variation has been
measured around a circle of radius 7.5 nm averaged over 1 nm
radially for ux and uy (Fig. 4). It is here that we see clearly the effect
of crystal anisotropy: the amplitude of the variations in the [110]
and [001] directions are not the same. Isotropic theory is therefore
not sufficient to describe the experimental displacement field
measured here. Another detail is well reproduced—the sinusoidal
variations lean slightly towards the smaller angles, that is, the
positive slope is steeper than the negative. This is due to a small
term in sin4v in the displacement field due to the anisotropy but
difficult to extract analytically from the equations. The agreement of
the measured displacement field with the anisotropic theory (solid
curves in Fig. 4) is striking, with a root-mean-square deviation of
0.03 Å, and no fitting parameters.

Figure 2 Experimental and theoretical displacement fields. Displacement field

u ¼ (u x,u y) calculated from phase images (a, b) and anisotropic elastic theory (c, d).

Colour range for u x (a, c) is 0 nm to 0.192 nm, and for u y (b, d) is 20.271 nm to 0 nm

(lattice spacings d 002 ¼ 0.271 nm, d 220 ¼ 0.192 nm).

Figure 3 Sinusoidal component of the displacement field. Experimental and theoretical

displacement field for u x (a, c) and u y (b, d), respectively. Colour range ^0.3 Å. Circle in

a shows location of measurements reported in Fig. 4.
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To further quantify these measurements, we have determined the
amplitude of the sinusoidal variations for radii between 5 nm and
10 nm from the core and for two values of defocus (Table 1). The
final experimental result is taken as the average for the two defoci,
and the error their standard deviation. It can be seen that the
agreement is within error bars of 0.005 Å, or 0.5 pm. As an extra
check on results, the two defoci taken separately agree to within the
experimental error. The amplitude difference between ux and uy

predicted by anisotropic theory is only 3.4 pm. An accuracy of better
than 1 pm is therefore necessary to distinguish with confidence
isotropic from anisotropic elastic theory.

If we assume now that the elastic constants of silicon are
unknown, we can obtain an estimate from the experimental results.
In silicon there are just three independent coefficients (c 11, c 12 and
c44) but only two measured values (amplitudes in the [110] and
[001] directions). If we fix the value of one coefficient arbitrarily, we
obtain a precision of 5–10% for the other two, and a precision of
about 20% for the coefficient of anisotropy H. We could imagine
measuring the displacement field for a dislocation in a different
orientation to reduce the number of degrees of freedom. For non-
cubic crystals, measurements would at least give an estimation of
the degree of crystal anisotropy.

We have shown that continuous displacement fields can be
measured at the nanometre scale to an accuracy of 0.03 Å, assuming
anisotropic elastic theory to be correct. Indeed, predictions con-
cerning the amplitude of displacements agree to better than 0.01 Å,
100 times the resolution of the electron microscope used. With this
accuracy it was possible to distinguish between isotropic and
anisotropic elastic theory. The most important factors are sample
preparation, calibration of optical distortions and the resulting
signal-to-noise ratio of the image. Thin film relaxation6 was not a
factor, as no significant modification of the displacement field was
observed as a function of distance from the core (in the region
analysed). The possibility now exists of extending the analysis to the
core region of dislocations to test the limits of elastic theory and of
microscope imaging. More generally, the approach should allow the

experimental validation of atomistic modelling of strain, which is
being used increasingly for devices and materials at the nanometre
scale. A
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The emission of volcanic gases usually precedes eruptive
activity1, providing both a warning signal and an indication of
the nature of the lava soon to be erupted. Additionally, volcanic
emissions are a significant source of gases and particles to the
atmosphere, influencing tropospheric and stratospheric trace-
gas budgets2. Despite some halogen species having been
measured in volcanic plumes3 (mainly HCl and HF), little is
known about bromine compounds4 and, in particular, gas-phase

Figure 4 Angular variation of displacement field. Sinusoidal variation at radius 7.5 nm

from core (see circle on Fig. 3a), measured experimentally and from anisotropic theory.

Root-mean-square deviation from theoretical values is 0.03 Å (3 pm).

Table 1 Experimental and theoretical displacement amplitudes

ux amplitude uy amplitude
.............................................................................................................................................................................

Experiment 18.3 pm ^ 0.5 pm 21.9 pm ^ 0.4 pm
Theory 18.6 pm 22.0 pm
.............................................................................................................................................................................

Top row, the mean and standard deviation of the amplitude of displacements around the dislocation
core (see Fig. 4) measured for radii between 5 and 10 nm. Agreement with anisotropic elastic theory
(bottom row) is to within 0.005 Å. † Present address: Meteorological Service of Canada, Toronto, Ontario M3H 5T4, Canada.
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