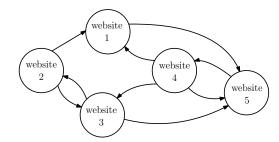
Examen de Science des Données, PHYS-231, 2023/24


Nom/Sciper:

Instructions:

- Durée de l'examen : 3 heures, 26.01.2024 de 9h15 à 12h15, salle CM1105, CM1120.
- Matériel permis : 2 pages (i.e. une page recto-verso ou deux pages recto) de notes personnelles, papier, matériel pour écrire.
- Les problèmes peuvent être résolus dans n'importe quel ordre.
- Écrivez votre nom et prénom sur **toutes** les feuilles additionnelles que vous rendez. Vous pouvez utilisez la dernière page si vous avez besoin de plus d'espace.
- Le nombre total de points est 75.

1 PageRank & graphes [8 points]

1. (2 points) Donnez la matrice d'adjacence $A \in \{0,1\}^{5 \times 5}$ du réseau de sites web donné ci-dessous. $A_{ij} = 1$ si le site web j a un lien vers le site web i, sinon $A_{ij} = 0$. Les indices i et j indiquent respectivement les lignes et les colonnes de A.

- . (1 point) Quel site web a le plus grand degré sortant (out-degree)? Quel site web a le plus grand degré entrant
- 2. (1 point) Quel site web a le plus grand degré sortant (out-degree)? Quel site web a le plus grand degré entrant (in-degree)?

 $3.\ (1\ \mathrm{point})\ \grave{\mathrm{A}}\ \mathrm{quelle}\ \mathrm{condition}\ \mathrm{une}\ \mathrm{matrice}\ \mathrm{est\text{-}elle}\ \mathrm{stochastique}\ \mathrm{par}\ \mathrm{colonnes}\ (\mathit{column\text{-}stochastic})\ ?$

	point) Ecrivez la version stochastique par colonne (column-stochastic) de la matrice d'adjacence A donnée ci-dessou à les colonnes doivent être normalisées par le degré sortant (out-degree) du site web correspondant.
	$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$
5. (2	points) Pour rappel, la matrice de Google G pour $PageRank$ est définie comme
	$G = (1 - \epsilon)S + \epsilon I \tag{1}$
	i I est la matrice dont chaque élément vaut $1/n$ et $\epsilon \in (0,1)$. Expliquez pourquoi nous ajoutons le second terme de le mme et pourquoi nous avons besoin de la pondération en $1 - \epsilon$ et ϵ .
n	point) Vous lancez l'algorithme $PageRank$ sur le sous-ensemble de Wikipédia de toutes les pages web comprenant lot-clé « physique », et vous obtenez une liste des valeurs $PageRank$ pour ces pages. La page web considérée comm plus pertinente selon $PageRank$ est-elle celle ayant la plus petite ou la plus grande valeur?
L	

SVD [8 points] 1. (2 points) Soit une matrice $X \in \mathbb{C}^{n \times d}$. Définissez la décomposition en valeurs singulières (SVD) de X. 2. (2 points) Soit une matrice $X \in \mathbb{C}^{n \times d}$. Définissez ce que sont les vecteurs singuliers à gauche et à droite (left and right $singular \ vectors$). Quel est leur lien avec la décomposition en valeurs singulières de X? 3. (2 points) Soit une matrice $X \in \mathbb{C}^{n \times d}$. Quelle est la meilleure approximation de rang k de cette matrice, c'est-à-dire celle qui minimise l'erreur quadratique moyenne (c'est-à-dire la norme de Frobenius de la difference entre X et son approximation)?

 $\mathbf{2}$

Ε	Descente de gradient [4 points]
	(1 point) Écrivez l'équation pour une itération de l'algorithme de descente de gradient qui a pour but de minimis fonction $L(w)$ où $w \in \mathbb{R}^d$.
	(2 mainte) Canaidánag la taur d'apprentiagage (<i>legemine me</i> te) dans l'algorithme de descente de gradient. Dégri
	(2 points) Considérez le taux d'apprentissage (learning rate) dans l'algorithme de descente de gradient. Décri inconvénient à prendre un taux d'apprentissage très petit. Décrivez un inconvénient à prendre un taux d'apprentirès grand.
	(1 point) Pourquoi n'est-ce pas une bonne idée d'utiliser la fonction suivante comme fonction de perte (loss fu pour l'optimisation basée sur la descente de gradient? $f(x) \stackrel{\blacktriangle}{}$
	x
	0 1

Erreur d'entraînement, de validation et de test [6 points] 4

1. (2 points) Quand nous avons parlé de sur-apprentissage (overfitting), nous avons décrit l'utilisation des jeux de données de validation, d'entraînement et de test (validation, training and test sets). Il est important que les échantillons du jeu de données soient divisés de manière aléatoire pour créer les jeux de validation, d'entraînement et de test. Quels problèmes pourraient survenir si nous prenions le premier tiers du jeu de données pour l'entraînement, le second tiers pour la validation et le dernier tiers pour le test? 2. (1 point) Vous entraînez un modèle de classification pour classifier des chats et des chiens en utilisant la descente de gradient. Vous observez les courbes de perte (loss curves) suivantes pour le jeu de données d'entraînement et de validation au fil du temps: 10 20 30 40 epochs Le modèle fait-il du sur-apprentissage (overfitting) à l'époque (epoch) 45? Justifiez votre réponse. 3. (2 points) Suite à la question précédente, vous enregistrez les paramètres du modèle à chaque époque durant l'entraînement. De ces paramètres enregistrés, vous voulez choisir ceux qui sont le meilleur pour classer les chats et les chiens. Expliquez ce qu'est l'arrêt précoce (early stopping), et choisissez l'époque sur le graphique (à une précision de ~ 5 époques) que vous devriez choisir pour faire un bon arrêt précoce.

dans la par		ont respectiven	nent de 98% ϵ	et 95%. Devri	ez-vous utiliser		ur le modèle choi mbres pour décrii
Farmani	a da Darras	. [4					
1. (2 points) Ucents balle pourpres. [s : deux cents no Un cinquième d	ient cinq balles bires, cent blances balles de A s rne A avec prob	: une noire, de ches, 50 jaune sont noires; de cabilité p et l	es, 40 cyans, 3 eux cinquièm urne B avec	30 ocres, 25 ve les de celles de probabilité 1 –	rtes, 25 argenté B sont noires.] p , et une balle	rne B contient cin es, 20 dorées et 1 Une des urnes es est tirée de l'urn
l'île, nomm		it une déclarati	on. Vous dema	andez à un au	tre habitant de	e l'île, nommé B	ob, « Alice a-t-el

5

Propagation d'incertitude et probabilités [7 points] 6

1.	3 points) Prouvez l'inégalité de Chebyshev, qui s'énonce ainsi : soit $\rho(x)$ la fonction de densité de probabilité (p.	d.f
	'une variable aléatoire X qui a une movenne et une variance finie. Alors	

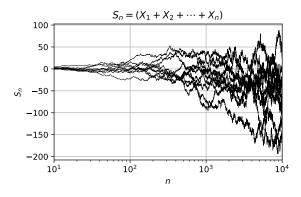
Proba
$$(|X - \mathbb{E}(X)| \ge l\sigma_X) \le \frac{1}{l^2}$$
 avec $l \in \mathbb{R}, l > 0$ (4)

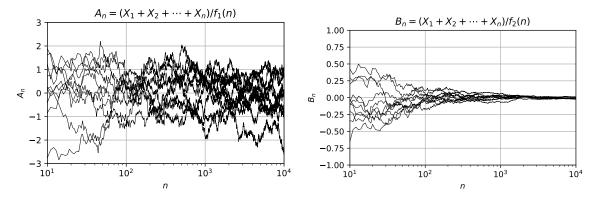
Nous avons discuté de d	leux formules de	propagation d'en	reur qui sont sou	vent utilisées en physi	que expérimentale :
	σ_G	$= \sum_{k=1}^{k} \left \frac{\partial G(X_1,)}{\partial X_k} \right $	(X_k)	σ_{X_i}	(7

$$\sigma_G = \sum_{i=1}^k \left| \frac{\partial G(X_1, ..., X_k)}{\partial X_i} \right|_{X_j = \mathbb{E}(X_j) \,\forall j} \left| \sigma_{X_i} \right|$$
 (7)

 et

$$\sigma_G^2 = \sum_{i=1}^k \left[\frac{\partial G(X_1, \dots, X_k)}{\partial X_i} \bigg|_{X_j = \mathbb{E}(X_j) \,\forall j} \right]^2 \sigma_{X_i}^2 \tag{8}$$


(i) (1	point)	Quelle es	st la	principale	hypothèse	qui	doit	être	vérifiée	pour	que	les	deux	formules	ci-dessus	soient
va	lides ?															


11)	(2 points) Quelle est la principale hypothèse qui permet de décider laquelle des deux formules utiliser?
•••	
111)	(1 point) Laquelle des deux formules donne un plus petit σ_G , en particulier quand k est grand?

7 Théorème central limite et loi des grands nombres [6 points]

Nous échantillonnons $X_i \sim \mathcal{N}(0,1)$ i.i.d d'une distribution normale. Nous définissons $S_n = X_1 + X_2 + \cdots + X_n$. Comme vous pouvez le voir ci-dessous, c'est une marche aléatoire.

Un ami vous montre deux autres graphiques, où sont représentées les convergences de la loi des grands nombres et du théorème central limite lorsque n croît vers l'infini. Il se souvient avoir tracé des version mises à l'échelle, à savoir $A_n = S_n/f_1(n)$ et $B_n = S_n/f_2(n)$ pour chaque loi. Cependant, il a oublié quelles étaient les fonctions $f_1(n) : \mathbb{R} \to \mathbb{R}$ et $f_2(n) : \mathbb{R} \to \mathbb{R}$.

1.	(4 points) Pour chaque figure de votre ami, expliquez si le comportement de convergence est lié à la loi des grands nombres ou au théorème central limite. Pour votre explication, définissez les fonctions $f_1(n)$ et $f_2(n)$ que votre ami a pu utiliser en fonction de n .
2.	(2 points) Le théorème central limite stipule que la somme de nombreuses variables aléatoires est distribuée selon une loi gaussienne. Quelles sont les deux hypothèses sur les variables aléatoires pour que cela soit vrai?

8 Maximum de vraisemblance pour la distribution de Laplace [6 points]

Soit \boldsymbol{x} une variable aléatoire distribuée d'après la distribution de Laplace

$$\rho(x) = \frac{1}{2b} e^{-\frac{|x-\mu|}{b}} \tag{9}$$

où $\mu, b \in \mathbb{R}, \ b > 0.$

éthode du m								
points) Con éthode du m	sidérez que c aximum de v	on observe n	échantillons (maximum i	indépendants	$x_i, i = 1, \dots$ nod) pour esti	, n de cette omer la consta	distribution. ante b .	Utilis
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (<i>maximum</i> i	indépendants likelihood metl	$x_i, i = 1, \dots$ and pour esti	, n de cette omer la consta	distribution. ante b .	Utilis
points) Con éthode du m	sidérez que c aximum de v	on observe <i>n</i> raisemblance	échantillons (<i>maximum i</i>	indépendants likelihood meth	$x_i, i = 1, \dots$ and pour estimate	$, n$ de cette α mer la consta	distribution. ante b .	Utilis
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (<i>maximum</i> i	indépendants likelihood metl	$x_i, i = 1, \dots$ $x_i, i = 1, \dots$	$,n$ de cette α mer la consta	distribution. ante b .	Utilise
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (maximum i	indépendants ikelihood metl	$x_i, i = 1, \dots$ $x_i, i = 1, \dots$	$, n$ de cette α	distribution. ante b .	Utilise
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (maximum i	indépendants likelihood meth	$x_i, i = 1, \dots$ $x_i, i = 1, \dots$, n de cette omer la consta	distribution. ante b .	Utilise
points) Con éthode du m	sidérez que c aximum de v	on observe <i>n</i> raisemblance	échantillons (<i>maximum</i> i	indépendants likelihood meth	$x_i, i = 1, \dots$ and) pour esti	, n de cette c	distribution. ante b .	Utilis
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (maximum i	indépendants likelihood meth	$x_i, i = 1, \dots$ $x_i, i = 1, \dots$	$, n$ de cette α	distribution. ante b .	Utilise
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (maximum i	indépendants ikelihood meth	$x_i, i = 1, \dots$ $x_i, i = 1, \dots$	$, n$ de cette α	${f distribution.}$	Utilise
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (maximum i	indépendants ikelihood meth	$x_i, i = 1, \dots$ $x_i, i = 1, \dots$, n de cette o	distribution. ante b .	Utilise
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (maximum i	indépendants likelihood meth	$x_i, i = 1, \dots$ $x_i, i = 1, \dots$, n de cette o	distribution. ante b .	Utilise
points) Con éthode du m	sidérez que c aximum de v	on observe n raisemblance	échantillons (maximum i	indépendants likelihood meth	$x_i, i = 1, \dots$ $x_i, i = 1, \dots$, n de cette o	distribution. ante b .	Utilise

9 Prédiction de succès ou d'échec [12 points]

Considérons le modèle suivant pour prédire si un étudiant μ réussira ou non un examen. Supposons que nous disposons d'une base de données de n étudiants précédents, et pour chacun d'eux nous avons collecté des informations : la durée de leur révision, le nombre de cours auxquels ils ont assisté en présentiel, leurs notes des années précédentes dans d'autres cours, le nombre d'heures de sommeil avant l'examen, etc. Nous avons rassemblé toutes ces informations dans un vecteur \vec{X}_{μ} à d dimensions. Une matrice $X \in \mathbb{R}^{n \times d}$ contient les informations de tous les étudiants passés.

Nous savons également quels étudiants ont réussi l'examen, que nous notons $y_{\mu} = +1$, et lesquels ont échoué, dénoté comme $y_{\mu} = -1$. Nous observons ainsi la matrice $X \in \mathbb{R}^{n \times d}$ et le vecteur $y \in \mathbb{R}^n$.

Nous supposons de plus qu'il existe un vecteur de paramètres $\vec{w}^* \in \mathbb{R}^d$ (qui ne nous est pas connu) tel que la probabilité qu'un étudiant donné μ réussisse l'examen $(y_{\mu} = 1)$ ou non $(y_{\mu} = -1)$ est donnée par

$$P_{\text{examen}}(y_{\mu}|\vec{w}^*, \vec{X}_{\mu}) = \frac{\exp\left(y_{\mu} \sum_{i=1}^{d} X_{\mu i} w_{i}^*\right)}{\exp\left(\sum_{i=1}^{d} X_{\mu i} w_{i}^*\right) + \exp\left(-\sum_{i=1}^{d} X_{\mu i} w_{i}^*\right)}.$$
 (16)

La réussite ou non des étudiants sont considérées comme des variables aléatoire indépendantes, toutes conditionnelles au même vecteur \vec{w}^* .

1.	(2 points) Tracez la probabilité que l'étudiant μ réussisse l'examen en fonction du paramètre $z_{\mu} = y_{\mu} \sum_{i=1}^{d} X_{\mu i} w_{i}^{*}$.
	(2 points) Écrivez la quantité qui doit être maximisée pour l'estimation du maximum de vraisemblance ($maximum$ $likelihood\ estimation$) des paramètres w .

	ce qui a été fait en cours lorsque nous avons décrit les dérivations probabilistes de la perte des moindres carrés (leas square loss). Écrivez la fonction de perte obtenue dans le cas présent. Indice : la fonction de perte devrait être une somme sur les étudiants μ .
4.	(2 points) Écrivez la fonction de perte utilisée dans la régression logistique que nous avons vue en cours.
5.	(2 points) Montrez que la fonction de perte du problème de réussite à l'examen ci-dessus est un cas particulier de la régression logistique.
6.	(1 point) Quel algorithme utiliseriez-vous pour minimiser cette fonction de perte? Donnez uniquement le nom d'algorithme.
7.	(1 point) Une fois que le minimiseur $\hat{\vec{w}}$ de la fonction de perte est obtenu, nous pouvons prédire si un nouvel étudian pour lequel nous avons les données $\vec{X}_{\text{new}} \in \mathbb{R}^d$ réussira ou non l'examen. Écrivez le prédicteur correspondant, c'est-à-dire une fonction de $\vec{X}_{\text{new}} \to \pm 1$.

10 Échantillonnage par chaînes de Markov Monte-Carlo - triangles [8 points]

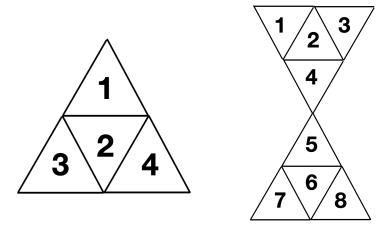


FIGURE 1 – Grilles triangulaires.

1. (2 points) Considérez la grille triangulaire figure 1 à gauche. On souhaite échantillonner les cellules 1, 2, 3 et 4 uniformément en utilisant une chaîne de Markov, où toutes les transitions entre paires des cellules sont permises. On donne les probabilités de transition suivantes : $p(2 \to 1) = p(2 \to 4) = p(2 \to 3) = 1/3$. Écrivez un exemple de chaîne de Markov qui satisfasse la condition de bilan détaillé (detailed balance) et qui échantillonne uniformément les cellules. Si une telle chaîne n'existe pas expliquez pourquoi.

2.	(2 points) Considérez la grille triangulaire figure 1 à gauche. On souhaite échantillonner les cellules 1, 2, 3 et 4 uniformément en utilisant une chaîne de Markov. On donne les probabilités de transition suivantes : $p(2 \to 1) = p(2 \to 4) = p(2 \to 3) = 1/3$ et $p(1 \to 4) = p(4 \to 3) = p(1 \to 3) = 1/2$. Écrivez un exemple de chaîne de Markov qui satisfasse la condition de bilan détaillé (detailed balance) et qui échantillonne uniformément les cellules. Si une telle chaîne n'existe pas expliquez pourquoi.
3.	(2 points) Considérez la grille figure 1 à droite. On souhaite échantillonner les cellules 1, 2, 3, 4, 5, 6, 7 et 8 uniformément en utilisant une chaîne de Markov. On donne que les probabilités de transition sont nulles entre les cellules qui ne sont pas voisines (c'est-à-dire nulles entre toutes sauf (1,2), (3,2), (2,4), (5,6), (6, 7) et (6, 8)). Écrivez un exemple de chaîne de Markov qui satisfasse la condition de bilan détaillé (detailed balance) et qui échantillonne uniformément les cellules
	Si une telle chaîne n'existe pas expliquez pourquoi.

et qui échantillonne uniformément le	de chaîne de Markov qui satisfasse la condition de bilan es cellules. Si une telle chaîne n'existe pas expliquez pou	détaillé (detailed arquoi. Dans ce ca
les transitions sont permises, non seu	ulement celles entre voisins (e.g. $p(6 \rightarrow 3)$ peut être pos	sitive).
(3 points) Soit une chaîne de Markov	arlo par chaînes de Markov [6 poir	ransition $p(a \to b)$
(3 points) Soit une chaîne de Markov	v sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de probabilité de probabilité de probabilité de training de probabilité de pr	eransition $p(a \to b)$
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	v sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a\to b)=\pi(b)p(b\to a)\forall a,b\in X.$	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	v sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de probabilité de probabilité de probabilité de training de probabilité de pr	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	v sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a\to b)=\pi(b)p(b\to a)\forall a,b\in X.$	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ pabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ cabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ cabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ cabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ cabilité sur X qui
(3 points) Soit une chaîne de Markov d'un état $a \in X$ à un état $b \in X$ à ch	π sur un espace d'états X définie par la probabilité de thaque pas de temps. Soit $\pi(a)$ une distribution de prob $\pi(a)p(a \to b) = \pi(b)p(b \to a) \forall a,b \in X$. -elle? Prouvez que π est la distribution stationnaire de	ransition $p(a \to b)$ cabilité sur X qui

2. (3 points) Lequel des algorithmes suivants utiliseriez-vous pour échantillonner uniformément l'intérieur du disque de dimension d défini par $D_d = \{x \in \mathbb{R}^d \text{ tel que } x \le 1\}$?				
(a) Échantillonnage direct : génère uniformément des points dans $[-1,1]^d$ et rejette ceux hors de D_d .				
(b) MCMC : suit une marche aléatoire dans D_d et à chaque pas de temps rejette le mouvement s'il amène hors de gardant la position actuelle comme échantillon.				
Justifiez brièvement en distinguant le cas de basse dimension $d \lesssim 10$ de celui de haute dimension $d \gtrsim 10$.				