3 Mai 2024

Série 9 : Polarisation, réflexion et réfraction

1 Action d'une lame de quartz sur une onde polarisée rectiligne

On considère une lame de quartz d'épaisseur d et parallèle au plan Oxy et une onde EM polarisée rectiligne incidente se propageant dans la direction \hat{z} et dont l'axe de polarisation fait un angle α_p avec l'axe \hat{x} . La lame de quartz est un matériel biréfringent dont le tenseur diélectrique peut s'écrire comme :

$$\bar{\epsilon} = \left(\begin{array}{ccc} \epsilon_x & 0 & 0 \\ 0 & \epsilon_y & 0 \\ 0 & 0 & \epsilon_0 \end{array} \right)$$

On supposera que le quartz n'est pas aimanté, i.e $\mathbf{H} = \mathbf{B}/\mu_0$ aussi dans le quartz.

- (a) Donner les 2 équations que doit satisfaire le vecteur d'onde \vec{k} dans la lame de quartz pour qu'il y ait propagation. On nommera respectivement $n_0 = \sqrt{\epsilon_x/\epsilon_0}$ et $n_E = \sqrt{\epsilon_y/\epsilon_0}$, les indices de réfraction selon les axes ordinaires et extraordinaires de la lame de quartz.
- (b) Montrer que le champ électrique ${\bf E}$ à la sortie de la lame satisfait l'équation d'une ellipse en fonction de $\phi=(2\pi/\lambda_0)(n_0-n_E)d$ et α_p , des composantes E_x , E_y et de la norme E du champ électrique :

$$\frac{E_x^2}{E^2 \cos(\alpha_p)^2} + \frac{E_y^2}{E^2 \sin(\alpha_p)^2} - \frac{2E_x E_y \cos(\phi)}{E^2 \cos(\alpha_p) \sin(\alpha_p)} = \sin^2(\phi)$$

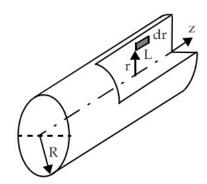
(c) Discuter les cas où i) $\phi=0$ ou π , ii) $\phi=\pm\pi/2$. Comparer ces résultats avec ceux trouvés en série 8, exercice 1, point d).

2 Filtre de Lyot

Un filtre de Lyot est un système composé d'une lame de quartz placée entre deux polariseurs rectilignes dont l'axe optique est selon \hat{z} . La lame de quartz, comme celle vue à l'exercice 1, est taillée parallèlement à l'axe optique, c'est-à-dire que son axe ordinaire est parallèle à \vec{e}_x et son axe extraordinaire à \vec{e}_y . Les deux polarisateurs rectilignes ont le même axe de polarisation faisant un angle de 45° par rapport à l'axe \vec{e}_x . On considère une onde EM plane de longueur d'onde λ_0 , polarisée rectiligne selon \vec{e}_x et se propageant dans la direction z incidente sur le filtre de Lyot.

- (a) Quelles sont les expressions de l'amplitude et de l'intensité du champ électrique de l'onde transmise par le système décrit ci-dessus en fonction de la différence de phase $\phi=(2\pi/\lambda_0)(n_o-n_E)d$, avec d l'épaisseur de la lame de quartz, n_o l'indice de réfraction ordinaire et n_E l'indice de réfraction extraordinaire? En déduire un facteur de transmission t pour l'amplitude du champ électrique.
- (b) On empile N filtres de Lyot avec des lames de quartz d'épaisseur variables, i.e $d_n=2^{n-1}\cdot d, n=1,...,N$. En négligeant l'absorption des lames, démontrer que la valeur absolue du facteur de transmission total du système est donnée par :

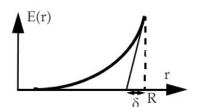
$$|t| = \frac{\sin(2^N(\phi/2))}{2^N \sin(\phi/2)}$$


Indication:

$$\sum_{n=0}^{N-1} \exp[in\phi] = \frac{\exp[iN\phi] - 1}{\exp[i\phi] - 1}$$

3 Effet de Peau

La répartition d'un courant alternatif dans un conducteur est modifiée par les courants induits générés par le champ magnétique né du courant lui-même. En conséquence, on observe une densité de courant plus importante dans la périphérie d'un conducteur massique qu'en son centre. Cet effet est appelé $\it Effet de Peau$. On cherche à décrire ce phénomène dans le cas d'un conducteur cylindrique de rayon $\it R$ et d'axe $\it \hat{z}$. On considère le conducteur non-aimanté et de conductivité $\it \sigma$.


- (a) Déterminer le champ magnétique induit par le courant traversant une surface Σ correspondant à une section de rayon r du cylindre.
- (b) Montrer qu'un courant induit circule sur le périmètre de la petite surface S=Ldr (voir figure ci-contre) située en r dans une section longitudinale passant par l'axe du conducteur. En déduire que sa direction implique que E(r+dr)>E(r), ce qui explique que le courant soit plus important en périphérie.

(c) En supposant un courant alternatif de pulsation ω , montrer que la distribution radiale du champ électrique E(r), identique à la distribution du courant, est décrite par :

$$\frac{\partial^2 E}{\partial r^2} + \frac{1}{r} \frac{\partial E}{\partial r} + i \mu_0 \sigma \omega E = 0, \ \ \text{où} \ : \frac{\partial}{\partial t} \to -i \omega$$

La résolution exacte fait appel aux fonctions de Bessel. Cependant comme l'expérience montre que le courant diminue lorsque l'on pénètre dans le conducteur, il est possible de déterminer une solution approchée avec l'approximation :

- $\frac{\partial E}{\partial r} \ll r \frac{\partial^2 E}{\partial r^2}$
- (d) Vérifier que la solution approchée à l'équation trouvée au point c) s'écrit :

$$E(r) = E_0 e^{-\alpha(R-r) + i\alpha(R-r)}, \text{ avec } \alpha = \sqrt{\frac{\mu_0 \sigma \omega}{2}}$$

Que peut-on dire de α ?