26 avril 2024

Pré-corrigé 8 : Propriétés de base des ondes électromagnétiques

1 Polarisation : représentation de Jones

La représentation de Jones est un formalisme vectoriel décrivant les ondes polarisées. Pour le cas d'une onde EM polarisée, $\vec{E} = E_x \cos\left(\vec{k}\cdot\vec{x} - \omega t + \phi_x\right)\vec{e}_x + E_y \sin\left(\vec{k}\cdot\vec{y} - \omega t + \phi_y\right)\vec{e}_y$ peut aussi s'écrire comme :

 $\mathbf{E} = \operatorname{Re} \left[\left(\begin{array}{c} E_x e^{i\phi_x} \\ E_y e^{i\phi_y} \end{array} \right) e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)} \right]$

L'intensité I d'une onde est donnée par $I \propto \mathbf{E}^* \cdot \mathbf{E}$. L'avantage de ce formalisme est de réprésenter simplement les ondes EM polarisées et également répresenter matriciellement les polariseurs :

- (a) Écrivez dans la représentation de Jones les ondes électromagnétiques polarisées suivantes :
 - Polarisée rectiligne parallèle à $ec{e}_x$
 - Polarisée rectiligne faisant un angle $\theta=\pi/4$ avec \vec{e}_x
 - Polarisée circulaire droite et gauche
 - Polarisée elliptiquement de demi-grand axe égale 2 fois plus grand que le demi-petit axe Solution:
 - Polarisée rectiligne parallèle à \vec{e}_x

$$\mathbf{E}_1 \propto \left(\begin{array}{c} 1 \\ 0 \end{array} \right).$$

— Polarisée rectiligne faisant un angle $\theta = \pi/4$ avec \vec{e}_x

$$\mathbf{E}_2 \propto \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 1 \end{array} \right).$$

— Polarisée circulaire droite et gauche

$$\mathbf{E}_3 \propto \left(\begin{array}{c} 1 \\ i \end{array} \right),$$

ou

$$\mathbf{E}_4 \propto \left(\begin{array}{c} 1 \\ -i \end{array} \right).$$

— Polarisée elliptiquement de demi-grand axe égale 2 fois plus grand que le demi-petit axe

$$\mathbf{E}_5 \propto \left(egin{array}{c} 2 \\ i \end{array}
ight).$$

(b) Un polariseur rectiligne est perméable à la composante parallèle à l'axe du polariseur. En supposant une onde EM incidente polarisée rectiligne de norme E et parallèle à \vec{e}_x , donner la forme matricielle du polariseur rectiligne idéale qui fait un angle θ avec l'axe \vec{e}_x . En déduire la loi de Malus, qui donne l'expression de l'intensité de l'onde sortante I en fonction de l'intensité I_0 de l'onde incidente sur le polariseur et de l'angle θ :

$$I = I_0 \cos^2(\theta). \tag{6}$$

Quelle est l'intensité moyenne d'une onde EM non polarisée?

Solution:

La valeur moyenne de l'intensitée est :

$$\langle I \rangle = \frac{I_0}{2} \tag{7}$$

- (c) Le Polaroïd est un filtre rectiligne non-idéale, c'est-à-dire que celui-ci a une transmittance T_1 le long de la direction privilégiée et T_2 le long de la direction perpendiculaire., où $T_2 < T_1 \le 1$. En considérant ces hypothèses, réécrire la forme matricielle de la matrice représentant le filtre Polaroïd quand la direction privilégiée est :
 - parallèle à l'axe \vec{e}_x
 - faisant un angle heta avec l'axe $ec{e}_x$

Dériver la loi de Malus dans le cas du filtre Polaroïd. Que constate-t-on?

Solution:

La loi de Malus pour le Polaroïd est donnée par :

$$I = ||P(\theta)E\vec{e_x}||^2 = (T_1\cos^2(\theta) + T_2\sin^2(\theta))I_0.$$
(14)

(d) Les lames à retard sont des polariseurs particuliers, introduisant une phase $\phi/2$ qui retarde la composante perpendiculaire à l'axe optique, un axe de symétrie de la lame à retard qui est choisi comme référence. Donner la forme générale d'une lame à retard si l'axe optique fait un angle θ avec \vec{e}_x . Que peut-on dire de ce polariseur si $\phi=\pi$? et quand $\phi=\pi/2$?

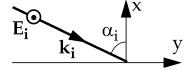
Solution:

la forme générale de la lame à retard pour un angle θ quelconque entre l'axe optique et \vec{e}_x .

$$Q_{\phi}(\theta) = R(\theta)Q_{\phi}(\theta = 0)R(\theta)^{T} = e^{-i\phi/2} \begin{pmatrix} \cos^{2}(\theta) + \sin^{2}(\theta)e^{i\phi} & \sin(\theta)\cos(\theta)(1 - e^{i\phi}) \\ \sin(\theta)\cos(\theta)(1 - e^{i\phi}) & \cos^{2}(\theta)e^{i\phi} + \sin^{2}(\theta) \end{pmatrix}$$

2 Réflexion d'une onde EM sur un miroir parfaitement réfléchissant

Une onde électromagnétique plane sinusoïdale se propage dans le vide. Elle arrive, sous un angle d'incidence α_i sur une surface plane Σ parfaitement réfléchissante. Le champ électrique $\mathbf{E_i}$ est normal au plan d'incidence O_{xy} , O_x étant normal à Σ .



(a) Montrer que le champ électrique \mathbf{E} , résultant de l'interférence de $\mathbf{E_i}$ avec le champ $\mathbf{E_r}$ de l'onde réfléchie, est une onde se propageant selon y, dont l'amplitude dépend de x.

Solution:

Le champ électrique totale est donnée par :

$$\mathbf{E}(\mathbf{x},t) = \mathbf{E}_{\mathbf{i}}(\mathbf{x},t) + \mathbf{E}_{\mathbf{r}}(\mathbf{x},t) = E_0(\sin(\mathbf{k}_{\mathbf{r}} \cdot \mathbf{x} - \omega t) - \sin(\mathbf{k}_{\mathbf{i}} \cdot \mathbf{x} - \omega t))\mathbf{e}_{\mathbf{z}}$$
$$= 2E_0\cos(k\sin(\alpha_i)y - \omega t)\sin(k\cos(\alpha_i)x)\mathbf{e}_{\mathbf{z}}$$

(b) Déterminer les plans nodaux et les plans ventraux de ${f E}$.

Salution

Les plans nodaux et ventraux, parallèles à O_{yz} , sont tels que **E** est nul, respectivement

maximal et minimal, en tenant compte que $k = 2\pi/\lambda$:

$$x_{no} = \frac{(n+\frac{1}{2})\lambda}{2\cos(\alpha_i)}$$
 et $x_v = \frac{n\lambda}{2\cos(\alpha_i)}$, où n est un entier positif ou nul.

(c) Exprimer la vitesse de phase u de ${\bf E}$ en fonction de la vitesse de la lumière c et α_i , puis discuter.

Solution:

La vitesse de phase vaut :

$$u = \frac{\omega}{k_y} = \frac{\omega}{k \sin(\alpha_i)} = \frac{c}{\sin(\alpha_i)} > c$$

(d) Exprimer, par un raisonnement mathématique puis par un raisonnement géométrique, la vitesse de groupe v de ${\bf E}$.

Solution:

$$v = \frac{d\omega}{dk_y} = \frac{d}{dk_y}(ck) = c\frac{d}{dk_y}\sqrt{k_x^2 + k_y^2} = \frac{ck_y}{k} = c\sin(\alpha_i).$$

On place un second miroir plan parfait Σ' parallèle à Σ , à une distance X de Σ égale à celle de l'un des plans nodaux de $\mathbf E$. L'onde incidente subit ainsi des réflexions multiples entre Σ et Σ' .

(e) Calculer la vitesse de phase u en fonction de X, λ et c. Montrer ensuite que pour tout X donné, il existe une longueur d'onde λ_c et donc une pulsation ω_c de coupure au-dessous de laquelle l'onde de ${\bf E}$ ne se propage pas.

Solution:

La vitesse de phase u est :

$$u = \frac{\omega}{k_y} = \frac{c}{\sqrt{1 - \frac{n^2 \lambda^2}{4X^2}}}$$

La fréquence de coupure est donnée par $f_c = \frac{c}{2X}$.

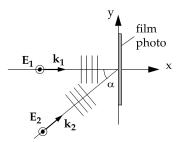
(f) Déterminer la relation de dispersion de cette onde

Solution:

$$\omega^2 = c^2 k_y^2 + \omega_c^2$$

3 Holographie : principe de base

Le principe de l'holographie repose sur l'interférence entre 2 ondes incidentes. Soit deux ondes lumineuses planes, cohérentes, de même longueur λ , de même intensité, polarisée linéairement et de vecteur ${\bf E}$ parallèle à l'axe z. Le vecteur d'onde ${\bf k_1}$ de la 1ère onde est parallèle à x et le vecteur d'onde ${\bf k_2}$ de la seconde forme un angle α par rapport à x.



(a) Montrer que l'intensité résultant de la superposition des 2 ondes dans le plan x=0 est donnée par :

$$I(y) = I_0 \cos^2\left(\frac{1}{2}ky\sin(\alpha)\right)$$

On place dans le plan x=0 un film photographique dont le noircissement est proportionnel à l'intensité I(y) incidente sur ce film.

(b) Montrer que si l'on envoie sur le film noirci une onde incidente de vecteur $\mathbf{k_1}$, seules les intensités diffractées dans les directions $\theta=0$ et $\theta=\pm a$ sont non nulles : principe de l'holographie.

