Physique Avancée IV

Semestre de printemps 2024

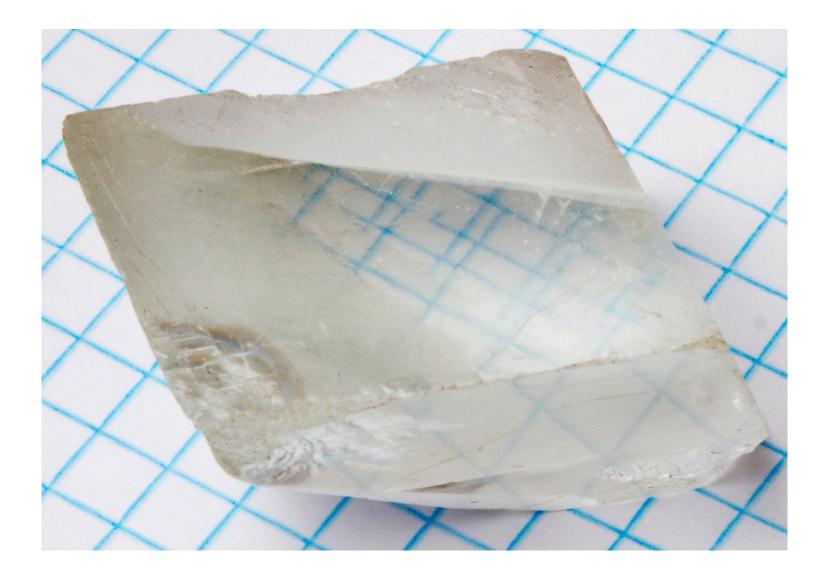
Semaines 10 et 11 2, 3 et 10 mai 2024

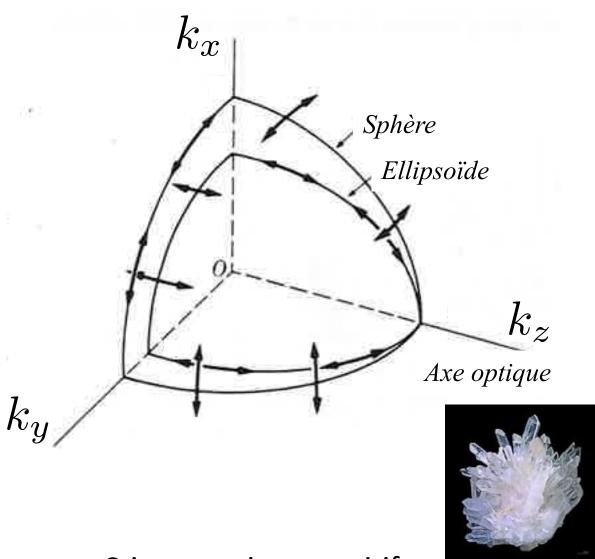
- 2.2.2 Milieux diélectriques anisotropes
- 2.2.3 Milieux conducteurs
- 2.3 Réflexion et réfraction des ondes électromagnétiques
 - 2.3.1 Champ E.M. au passage d'une interface
 - 2.3.2 La biréfringence
 - 2.3.3 Propagation guidée des ondes électromagnétiques

Sir David Brewster (1781 – 1868)

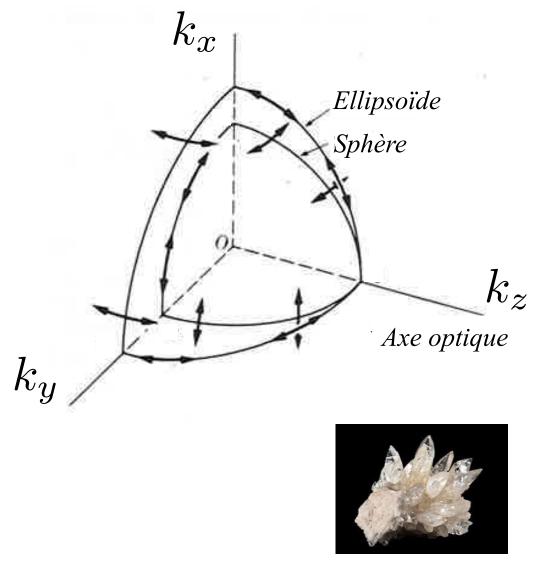
Série 9 et test à blanc

2.2.2 Milieux diélectriques anisotropes

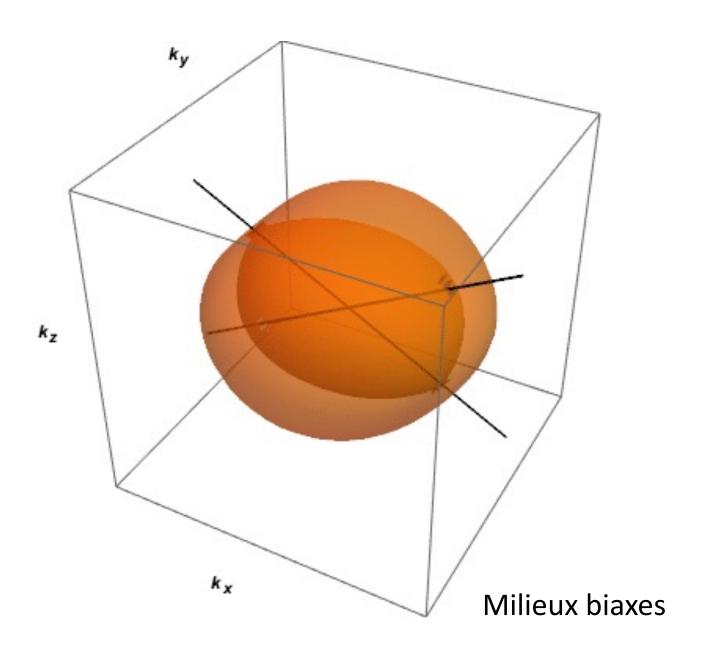




Cristaux uniaxes positifs (p.ex. quartz, SiO₂)



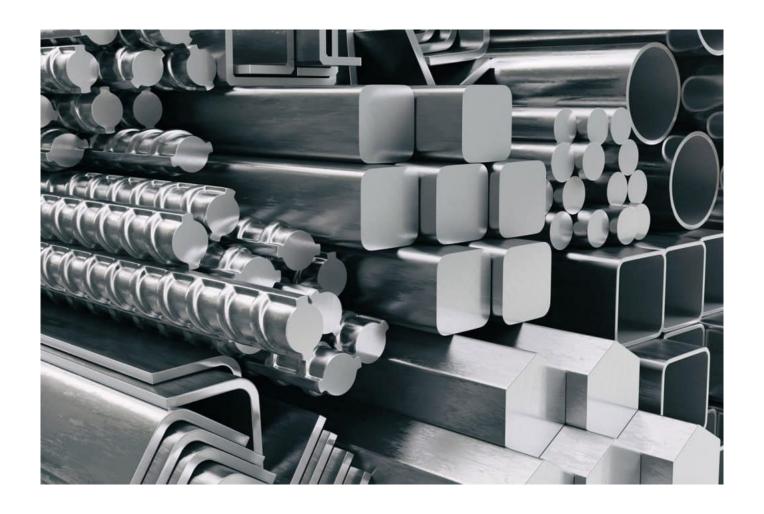
Cristaux uniaxes négatifs (p.ex. Calcite, CaCO₃)

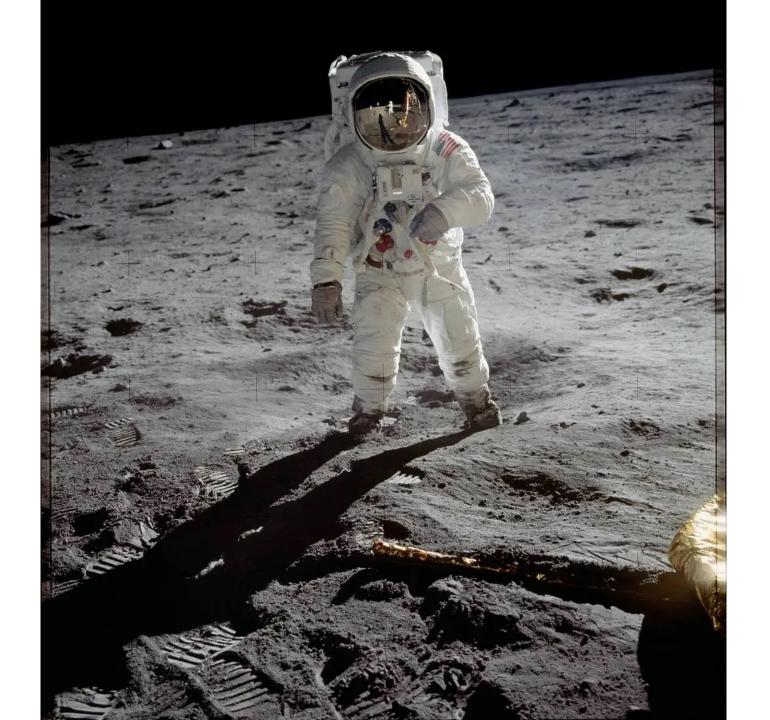


Topaze, $Al_2SiO_4(F, OH)_2$

Bénitoïte, $Al_2O_3 \bullet 2SiO_2 \bullet H_2O$

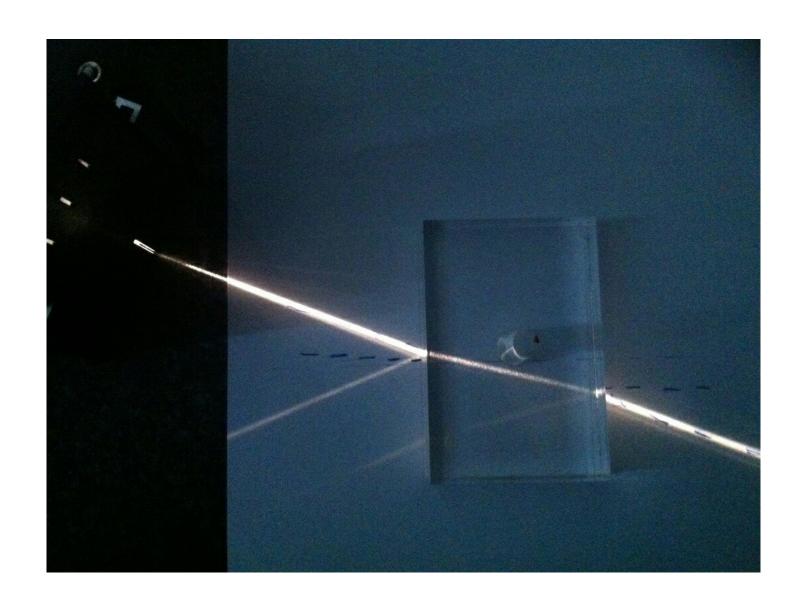
2.2.3 Milieux conducteurs





Edwin Aldrin sur la Lune – Visière dorée

2.3 Réflexion et réfraction des ondes E.M.



2.3.1 Champ E.M. au passage d'une interface (milieux diélectriques isotropes)

Incidence parallèle:

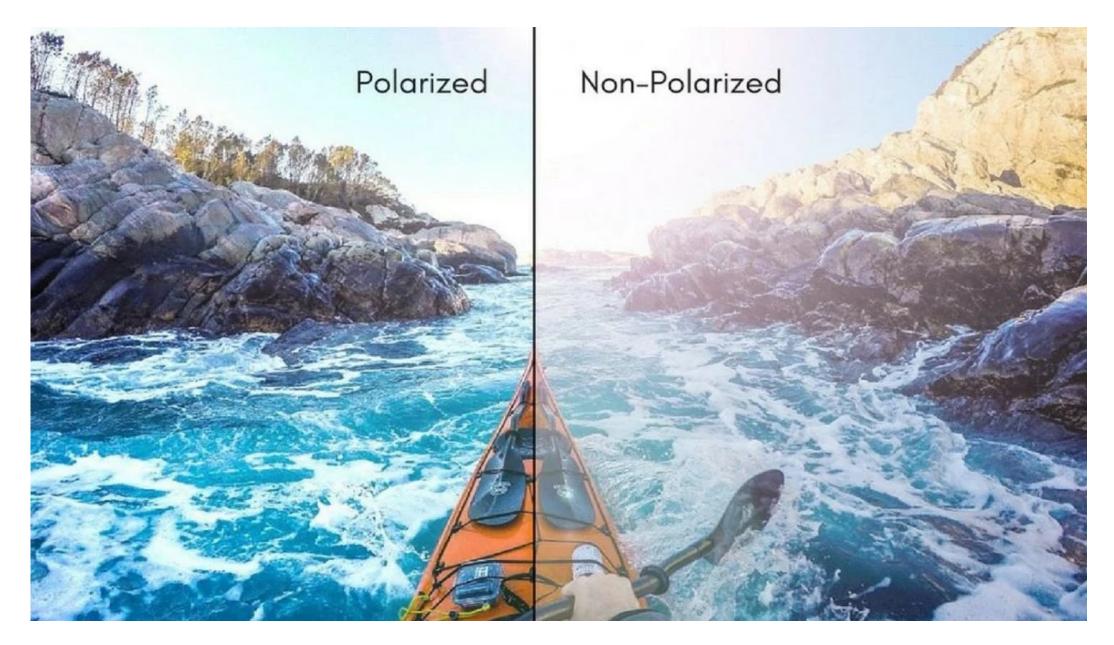
$$T_{\parallel} = \left(\frac{E_{0,T}}{E_{0,I}}\right)_{\parallel} = \frac{2\cos\theta_I\sin\theta_T}{\sin(\theta_I + \theta_T)\cos(\theta_I - \theta_T)}$$

$$R_{\parallel} = \left(\frac{E_{0,R}}{E_{0,I}}\right)_{\parallel} = \frac{\tan(\theta_T - \theta_I)}{\tan(\theta_I + \theta_T)}$$

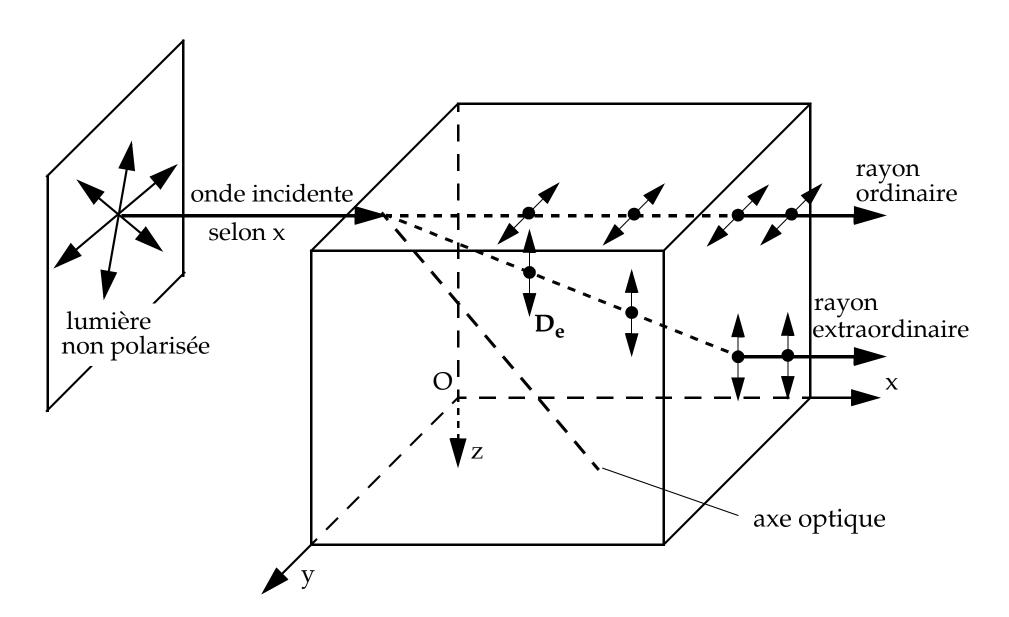
Incidence perpendiculaire:
$$T_{\perp} = \left(\frac{E_{0,T}}{E_{0,I}}\right)_{\perp} = 2\frac{\cos\theta_{I}\sin\theta_{T}}{\sin(\theta_{I}+\theta_{T})}$$

$$R_{\perp} = \left(\frac{E_{0,R}}{E_{0,I}}\right)_{\perp} = \frac{\sin(\theta_T - \theta_I)}{\sin(\theta_I + \theta_T)}$$

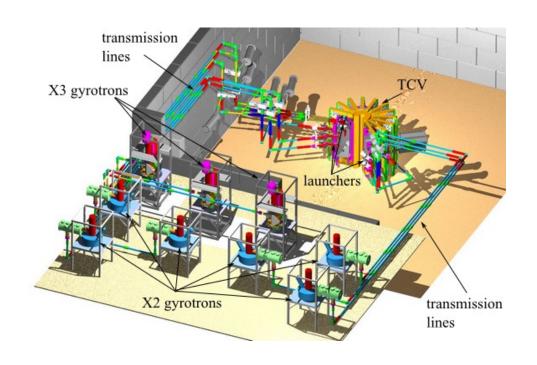
$$\theta_I \simeq \pi/2$$

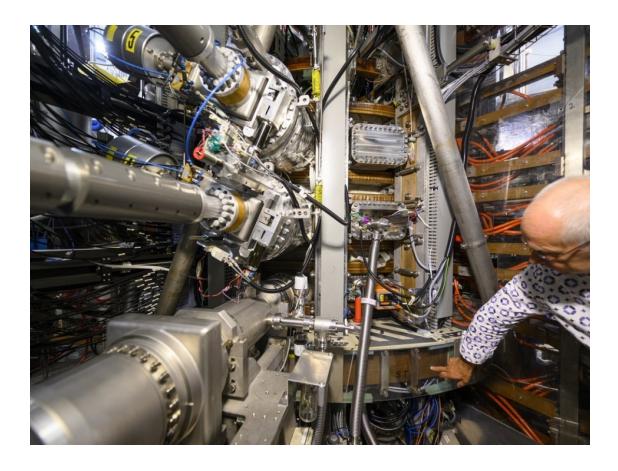


2.3.2 La biréfringence



2.3.3 Propagation guidée des ondes E.M.







Série 9

Cours de physique IV - Prof. Paolo Ricci - SPC

3 Mai 2024

Série 9 : Polaristion, réflexion et réfraction

1 Action d'une lame de quartz sur une onde polarisée rectiligne

On considère une lame de quartz d'épaisseur d et parallèle au plan Oxy et une onde EM polarisée rectiligne incidente se propageant dans la direction \hat{z} et dont l'axe de polarisation fait un angle α_p avec l'axe \hat{x} . La lame de quartz est un matériel biréfringent dont le tenseur diélectrique peut s'écrire comme :

$$\bar{\epsilon} = \left(\begin{array}{ccc} \epsilon_x & 0 & 0 \\ 0 & \epsilon_y & 0 \\ 0 & 0 & \epsilon_0 \end{array} \right)$$

On supposera que le quartz n'est pas aimanté, i.e $\mathbf{H} = \mathbf{B}/\mu_0$ aussi dans le quartz.

- (a) Donner les 2 équations que doit satisfaire le vecteur d'onde \vec{k} dans la lame de quartz pour qu'il y ait propagation. On nommera respectivement $n_0 = \sqrt{\epsilon_x/\epsilon_0}$ et $n_E = \sqrt{\epsilon_y/\epsilon_0}$, les indices de réfraction selon les axes ordinaires et extraordinaires de la lame de quartz.
- (b) Montrer que le champ électrique ${\bf E}$ à la sortie de la lame satisfait l'équation d'une ellipse en fonction de $\phi=(2\pi/\lambda_0)(n_0-n_E)d$ et α_p , des composantes E_x , E_y et de la norme E du champ électrique :

$$\frac{E_x^2}{E^2 \cos(\alpha_p)^2} + \frac{E_y^2}{E^2 \sin(\alpha_p)^2} - \frac{2E_x E_y \cos(\phi)}{E^2 \cos(\alpha_p) \sin(\alpha_p)} = \sin^2(\phi)$$

(c) Discuter les cas où i) $\phi=0$ ou π , ii) $\phi=\pm\pi/2$. Comparer ces résultats avec ceux trouvés en série 8, exercice 1, point d).

2 Filtre de Lyot

Un filtre de Lyot est un système composé d'une lame de quartz placée entre deux polariseurs rectilignes dont l'axe optique est selon \hat{z} . La lame de quartz, comme celle vue à l'exercice 1, est taillée parallèlement à l'axe optique, c'est-à-dire que son axe ordinaire est parallèle à $\vec{e_x}$ et son axe extraordinaire à $\vec{e_y}$. Les deux polarisateurs rectilignes ont le même axe de polarisation faisant un angle de 45° par rapport à l'axe $\vec{e_x}$. On considère une onde EM plane de longueur d'onde λ_0 , polarisée rectiligne selon $\vec{e_x}$ et se propageant dans la direction \hat{z} incidente sur le filtre de Lyot.

- (a) Quelles sont les expressions de l'amplitude et de l'intensité du champ électrique de l'onde transmise par le système décrit ci-dessus en fonction de la différence de phase $\phi=(2\pi/\lambda_0)(n_o-n_E)d$, avec d l'épaisseur de la lame de quartz, n_o l'indice de réfraction ordinaire et n_E l'indice de réfraction extraordinaire? En déduire un facteur de transmission t pour l'amplitude du champ électrique.
- (b) On empile N filtres de Lyot avec des lames de quartz d'épaisseur variables, i.e $d_n=2^{n-1}\cdot d, n=1,...,N$. En négligeant l'absorption des lames, démontrer que la valeur absolue du facteur de transmission total du système est donnée par :

$$|t| = \frac{\sin(2^N(\phi/2))}{2^N \sin(\phi/2)}$$

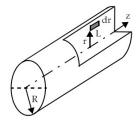
Indication:

$$\sum_{n=0}^{N-1} \exp[in\phi] = \frac{\exp[iN\phi] - 1}{\exp[i\phi] - 1}$$

3 Effet de Peau

La répartition d'un courant alternatif dans un conducteur est modifiée par les courants induits générés par le champ magnétique né du courant lui-même. En conséquence, on observe une densité de courant plus importante dans la périphérie d'un conducteur massique qu'en son centre. Cet effet est appelé $\it Effet de Peau.$ On cherche à décrire ce phénomène dans le cas d'un conducteur cylindrique de rayon $\it R$ et d'axe $\it \hat{z}.$ On considère le conducteur non-aimanté et de conductivité $\it \sigma.$

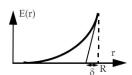
- (a) Déterminer le champ magnétique traversant la petite surface S=Ldr (voir figure ci-contre) située en r dans une section longitudinale passant par l'axe du conducteur
- (b) Montrer qu'un courant induit circule sur le périmètre de cette petite surface Ldr et que sa direction implique que E(r+dr)>E(r), ce qui explique que le courant soit plus important en périphérie.



(c) En supposant un courant alternatif de pulsation ω , montrer que la distribution radiale du champ électrique E(r), identique à la distribution du courant, est décrite par :

$$\frac{\partial^2 E}{\partial r^2} + \frac{1}{r} \frac{\partial E}{\partial r} + i \mu_0 \sigma \omega E = 0, \text{ où } : \frac{\partial}{\partial t} \to -i \omega$$

La résolution fait appel aux fonctions de Bessel. L'expérience montrant que le courant diminue lorsque l'on pénètre dans le conducteur, il est possible de déterminer une solution approchée en montrant que : (voir figure ci-contre) $\frac{\partial E}{\partial n} \ll r \frac{\partial^2 E}{\partial n^2}$



(d) Vérifier que la solution approchée à l'équation trouvée au point c) s'écrit :

$$E(r) = E_0 e^{-\alpha(R-r) + i\alpha(R-r)}, \text{ avec } \alpha = \sqrt{\frac{\mu_0 \sigma \omega}{2}}$$

Que peut-on dire de α ?

Test à blanc

