
5.15.1

Week 5: 

Electric Capacitance



5.25.2

Consider two closely-spaced  conductive objects, 

charged to +Q and –Q. Each has its own potential ±V

Experiments show that QµDV

The proportionality constant, C, is called the 

capacitance of this system of two charges:

C =
Q

DV
• Capacitance is a measure of how much charge 

can be stored in a capacitor at a given DV

• Capacitance (capacity) is a positive scalar value

Such a system is called a CAPACITOR

Q =C·DV

The unit of capacitance is farad (F):  1 F= 1 C/V

• In practical electronics smaller derivatives of F are in use:

1 pF = 10-12 F

1 nF = 10-9 F

1 mF = 10-6 F

Definition of Capacitance



5.35.3

Capacitance of a two-conductor capacitor
(mutual capacitance)

The capacitance of a two−conductor capacitor is also a purely
geometric quantity defined as :

𝐶 ≡
𝑄

𝑉
𝑄: total charge on one of the two conductors

𝑉: potential difference between the two conductors

Generic two conductor capacitor Two conductor parallel plate capacitor



5.45.4

When the switch is closed, the battery establishes 

an electric field in the wires and charges flow 

between the wires and the capacitor. 

As this occurs, there is a transformation of 

energy within the system. Before the switch is 

closed, energy is stored as chemical energy in the 

battery. When the switch is closed, some of the 

chemical energy in the battery is converted to 

electric potential energy related to the separation 

of positive and negative charges on the plates.

As a result, we can describe a capacitor as a 

device that stores energy as well as charge. 

Capacitor: device that stores electric potential energy and electric charge. 

- Two conductors separated by an insulator form a capacitor.

- The net charge on a capacitor is zero. 

Figure shows a battery connected to a single parallel-plate 

capacitor with a switch in the circuit. 

Capacitor and Capacitance



5.55.5

• The electric potential of each plate is as of the battery terminals

• The battery moves electrons to keep V fixed:

• Charges the plate of the capacitor.

• uniform electric field between the plates,

• uniformly distributed charge over opposite surfaces

• Conventionally, the charge on one of the plates

is the charge of a capacitor Q

For each of the two plates:

E1 =
s

2·e0

C =
Q

DV
=
Q·e0A

Qd
=

e0A

d

Potential difference:

Capacitance:

Parallel plate capacitor

𝐸0 =
𝜎

𝜀0
(Gauss)

(between 

the plates)

Δ𝑉 ≡ 𝑉 = 𝐸0𝑑 =
𝑄𝑑

𝜀0𝐴

Δ𝑉



5.65.6

(a) The electric field between the plates of a parallel-plate capacitor is uniform near the center but nonuniform near 

the edges. (b) Electric field pattern of two oppositely charged conducting parallel plates. Small pieces of thread on 

an oil surface align with the electric field.

A careful inspection of the electric field lines for a parallel-plate capacitor reveals that the field is uniform in the 

central region between the plates, as shown in Figure. However, the field is nonuniform at the edges of the 

plates. Such end effects can be neglected if the plate separation is small compared with the length of the plates.

Edges effect in real capacitors
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𝑟0 = 10 𝜇m ⇒ 𝐶 ≅ 10−15 F=1 fF
𝑟0 = 1 mm ⇒ 𝐶 ≅ 10−13 F=0.1 pF
𝑟0 = 1 m ⇒ 𝐶 ≅ 10−10 F
𝑟0 = 6.3 × 106 m ⇒ 𝐶
≅ 10−3 F (capacitance of the Earth)

Exemple 1. Capacitance of a capacitor with one conductor: conductive sphere

Exemple 2. Capacitance of a capacitor with one conductor: conductive disk with radius r0

The potential 𝑉 is constant on the disk but the charge density is not uniform.
Without demonstration:

𝑉 =
𝑄

8𝜀0𝑟0
=

𝐶𝑉

8𝜀0𝑟0
⇒ 𝐶 = 8𝜀0𝑟0

0 r

Q

Capacitance of a single conductor capacitor
(self-capacitance)

Occasionally you will

hear someone speaking

about the capacitance of a

single conductor.

In this case the second

conductor (with the

opposite charge) is an

imaginary sperical shell

of infinite radius

surronding the conductor.
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Exemple 3. Capacitance of a capacitor with two parallel plate conductors
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Exemple 4. Capacitance of a “spherical” two-conductor capacitor



5.95.9

Capacitor in series

The same charge on each capacitor

Total charge is also Q

The total potential is the sum of potentials across each capacitor

“equivalent” 
capacitor

“equivalent” means “stores 
the same total charge if the 
voltage is the same.”

Generalization to 
N capacitors 

in series

1

𝐶𝑡𝑜𝑡
=෍

𝑖=1

𝑁
1

𝐶𝑖



5.105.10

Capacitor in parallel

Same potential difference across all 2 capacitors

The total charge is the sum of the individual charges

“equivalent” 
capacitor

“equivalent” 
means “stores the 
same total charge 
if the voltage is 
the same.”

Generalization to 
N capacitors 

in series



5.115.11

The total work required to charge the capacitor 

from q=0 to some final charge q=Q is

The electric potential energy stored in a charged capacitor 

is equal to the amount of work required to charge it

Energy Stored in a Charged Capacitor

The battery moves electrons to 

keep V fixed: it charges the 

plates of the capacitor

Consider a capacitor with charge +/-q 

How much work is needed to bring a positive charge dq from the 

negative plate to the positive plate?

NB: we are charging the capacitor

This work has to be done against the electric force.



5.125.12

Energy Stored in a Charged Capacitor: Electric-Field Energy

• We can consider the energy in a capacitor to be stored in the electric field created between 

the plates as the capacitor is charged. This description is reasonable because the electric 

field is proportional to the charge on the capacitor. 

• For a parallel-plate capacitor, the potential difference is related to the electric field through 

the relationship Δ𝑉 = 𝑬𝑑. Furthermore, its capacitance is 𝐶 = 𝜀0𝐴/𝑑. 

• Substituting these expressions into 𝑈𝐸 =
1

2
𝐶(Δ𝑉)2(see previous slide)

Although this Equation was derived for a parallel-plate capacitor, the expression is generally 

valid regardless of the source of the electric field. That is, the energy density in any electric 

field is proportional to the square of the magnitude of the electric field at a given point.

Electric Energy Density (vacuum)

Because the volume occupied by the electric field is 𝐴𝑑, the energy 

per unit volume 𝒖𝑬 = 𝑼𝑬/𝑨𝒅, known as energy density, is:



5.135.13

12 V, 100 Ah car battery 
• charge: 3.6x105 C, energy: 4.3x106 J 

If batteries store so much more energy, why use capacitors?

100 mF capacitor at 12 V 
• charge: Q=CV= 1.2x10-3 C, energy: U=CV2/2=7.2x10-3 J

• capacitor stores charge physically, battery stores charge chemically

• capacitor can release stored charge and energy much faster

Energy stored in capacitor vs. energy stored in battery

DEMO https://auditoires-physique.epfl.ch/experiment/422



5.145.14

Q =C·V

dQ =C·dV

DEMO capa

Energy stored in a capacitor

106 joules of energy 

are stored at high voltage in 

capacitor banks and released 

during a period of 

a few milliseconds. 

The enormous current 

produces incredibly 

high magnetic fields.

𝑈𝑝𝑜𝑡 = 𝑊𝑒𝑥𝑡 = 0׬
𝑄
𝑉 𝑑𝑄 = 0׬

𝑉
𝐶𝑉 𝑑𝑉 =

𝐶𝑉2

2
initial state

final state

http://www.lanl.gov/mst/nhmfl/


5.155.15

Capacitors with Dielectrics

The potential difference is measured by a device called a voltmeter. If a dielectric is now inserted between 

the plates as in Figure (b), the voltmeter indicates that the voltage between the plates decreases to a value ΔV

That is, the capacitance increases by the factor κ when the 

dielectric completely fills the region between the plates

(a) (b)The dimensionless factor κ (or K) is called the dielectric 

constant of the material. The dielectric constant varies from 

one material to another. In this section, we analyze this 

change in capacitance in terms of electrical parameters such 

as electric charge, electric field, and potential difference;

𝑄𝑜 = Δ𝑉𝑜𝐶𝑜 = 𝑄 = 𝐶Δ𝑉

𝐶/𝐶𝑜 = Δ𝑉0/Δ𝑉 = 𝜅

𝑖𝑓 𝑄𝑜 = 𝑄 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑛𝑜 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑):

Notice that no 

battery is shown in the 

figure; we must assume 

no charge can flow 

through an ideal 

voltmeter. 

Hence, there is no path by which charge can 

flow and alter the charge on the capacitor.

2V 1.3VΔ𝑉0



5.165.16

• E is smaller when the dielectric is present

because the total surface charge density smaller. 

• The surface charge on conducting plates does 

not change, but an induced charge of opposite 

sign appears on each surface of the dielectric.

• The dielectric remains electrically neutral 

(only charge redistribution).

𝐸 = field with the dielectric between plates

𝐸0 = field with vacuum between the plates

Polarization: 

redistribution of charge within a dielectric. 
Field lines change 

in the presence of dielectrics.

Induced Charge and Polarization



5.175.17

• Opposite to conductors, has NO free electrons

• Model: collection of dipoles (fixed but can rotate):

• Normally randomly oriented (E=0)

• External electric field forces them to be oriented:  

Polarization

• Surface becomes charged with ±𝜎𝑖 =>

• give rise to an induced electric field 𝑬𝑖𝑛𝑑
directed against the external field 𝑬0

• the field in the presence of a dielectric is

The electric field in dielectric 𝑬 (i.e. the total electric field in the 

parallel plate capacitor, if the dielectric is filling the entire space 

between the plates) becomes weaker than external field

Capacitors with Dielectrics

𝑬 = 𝑬0 − 𝑬𝑖𝑛𝑑 𝑬𝑖𝑛𝑑

𝑬0



5.185.18

Polarization of a dielectric in electric field gives rise to 

bound charges on the surfaces, creating +𝜎𝑖𝑛𝑑 and −𝜎𝑖𝑛𝑑 . 

Electric field is weaker in dielectric:

𝐸 =
1

𝐾
𝐸0 =

𝜀0
𝜀
𝐸0

𝜀 = 𝐾𝜀0 permittivity of the dielectric

𝐸0 is the electric field in 

the capacitor without dielectric

𝐸0 =
𝑄

𝜀0𝐴

𝐸 =
𝜀0

𝜀
𝐸0 =

𝜀0

𝜀

𝑄

𝜀0𝐴
=

𝑄

𝜀𝐴
=

𝑄

𝜀𝐴
=

𝑄

𝐾𝜀0𝐴
=

𝜎

𝐾𝜀0

𝐶 =
𝑄

Δ𝑉
=

𝑄

𝐸 𝑑
=

𝑄

𝑑

𝜀𝐴

𝑄
=

𝑄

𝑑

𝐾𝜀0𝐴

𝑄

𝐶 =
𝜀𝐴

𝑑
=
𝐾𝜀0𝐴

𝑑

Δ𝑉 = 𝐸 𝑑 is voltage dropp across

the capacitor with the dielectric

K = dielectric constant

𝜀0 = Vacuum permittivity

The induced surface charges on the dielectric 

give rise to an induced electric field 𝐸𝑖𝑛𝑑, so: 𝐸 = 𝐸0 − 𝐸𝑖𝑛𝑑

𝜎

𝐾𝜀0
=

𝜎

𝜀0
−
𝜎𝑖𝑛𝑑
𝜀0

𝜎𝑖𝑛𝑑 =
(𝐾 − 1)

𝐾
𝜎

Capacitors with Dielectrics



5.195.19

The dielectric layer 

increases the maximum 

potential difference 

between the plates of a 

capacitor and allows to 

store more Q.

Dielectric breakdown: partial ionization of an 

insulating material subjected to a large electric field.

A very strong electrical field can exceed the 

strength of the dielectric to contain it.



5.205.20

C = capacitance with the 

dielectric inside the plates of 

the capacitor 

C 0 = capacitance with 

vacuum between the plates 

E = field with the dielectric 

between plates 

E 0 = field with vacuum 

between the plates

K is the dielectric constant of the material

Summary



5.21

5. Electrostatic energy (and force) in a capacitor partially filled with a dielectric.
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Dielectric materials are attracted to electric fields due to the orientation of the electric dipoles (polarization of the 

molecules).

(Conductive materials are attracted to electric fields due to charge redistribution)



5.22

𝐅𝑚𝑒: Force I have to apply to the dielectric plate
𝐅 = −𝐅𝑚𝑒: Force on the Dielectric Plate

𝑄 constant:
𝑑𝑈𝐸 = 𝐹𝑚𝑒𝑑𝑥 𝐹𝑚𝑒𝑑𝑥:Work I have to do to move the dielectric from 𝑑𝑥,

⇒ 𝐹 = −
𝑑𝑈𝐸
𝑑𝑥

⇒

𝐹 = −
𝑑

𝑑𝑥

1

2

𝑄2

𝐶(𝑥)
=
1

2

𝑄2

𝐶(𝑥)2
𝑑𝐶(𝑥)

𝑑𝑥
=
1

2
𝑉2

𝑑𝐶(𝑥)

𝑑𝑥
= −

𝜀0𝜒𝑒𝑤

2𝑑
𝑉2

𝑉 constant (a battery is always connected to the capacitor):
𝑑𝑈𝐸 = 𝐹𝑚𝑒𝑑𝑥 + 𝑉𝑑𝑄 𝐹𝑚𝑒𝑑𝑥:Work I have to do to move the dielectric from 𝑑𝑥,

𝑉𝑑𝑄:Work done by voltage source.

𝐹 = −
𝑑𝑈𝐸
𝑑𝑥

+ 𝑉
𝑑𝑄

𝑑𝑥
= −

1

2
𝑉2

𝑑𝐶(𝑥)

𝑑𝑥
+ 𝑉2

𝑑𝐶(𝑥)

𝑑𝑥
=
1

2
𝑉2

𝑑𝐶(𝑥)

𝑑𝑥
= −

𝜀0𝜒𝑒𝑤

2𝑑
𝑉2

Therefore:
1) The force exerted on the dielectric does not depend on whether "𝑄" or "𝑉" is
held constant.
2) The force on the dielectric plate is towards the inside of the capacitor
(towards the negative "𝑥" direction.

 meF F

If the electric field were perfectly homogeneous, there 

would be no force on the dielectric plate.The force on the 

dielectric plate is due to the electric fieldnon-homogeneous 

located in the ‘fringe region’.



5.23

Gauss’s Law in Dielectrics

In the presence of 

dielectrics, Gauss’s 

Law must be modified 

to account for the 

bound charges. 
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