Fall 2024

General Physics: Electromagnetism, Correction 4

Exercise 1 :

Calculate the Electric Field within and outside a charged cylinder of radius R and length L

with a charge density obeying the law p(r) = po(a — br), where a and b are arbitrary parameters.
Consider the case where L > R, which means that the direction of the electric field lines are radial.

e Hint 1: remember that the electric field is radial, so try to take a proper Gaussian surface
to easily compute the electric field flux (left part of Gauss’s law);

e Hint 2: to compute the integral of the charge density, move to cylindrical coordinates

Solution 1 :

The Gauss law states that the flux of the electric field on a surface OV is given by the to-

tal charge () contained within the volume V' divided by &y. In formulas
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where dd is the surface element, dr is the volume element and p(7) is the charge density.

In the present case, the electric field is parallel to the surface element, and constant across the
area, so that the left integral simply reduces to the area of the cylinder times the electric field,
2nrLE(r).

Now we have to compute the total charge within the cylinder. The integral is not so simple as
the surface integral, because the charge density explicitly depends on the coordinates. We need to
distinguish two cases:

1. r < R:
The total charge within the gaussian surface is found the following way:
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Finally, we find the expression for the Electric Field :
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2. r> R:

In this case to find the total charge Q;., the charge density p needs to be integrated over the
whole cylinder:
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And the expression for the Electric Field is:
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We notice that the Electric Field outside the cylinder is proportional to 1/r. This is an ex-
pected result, as, sufficiently far away from the charge distribution, the electric field coincides
with the electric field generated by a narrow wire, that is oc 1/7.



Exercise 2 :

Consider a spherical cavity of radius a at the center of a non-conductive sphere of radius R.

The volume charge density in the rest of the sphere varies according to p = A/r, where A is a
positive constant. Determine the electric field for a < r < R.

e Hint: the charge inside a shell of thickness dr is dg = pdV = p(4mr?)dr.

Figure 1: Spherical cavity of radius a at the center of a non-conductive sphere of radius R.

Solution 2 :

To solve this exercise we use again the Gauss law in Eq. (1). In this case, the Gaussian surface

we have to consider is a sphere instead of a cylinder. As before, the electric field is radial and the
left part of Eq. (1) gives the surface of the sphere times the electric field, 47r?*FE(r). To compute
the right part of Eq. (1), it is convenient to use spherical coordinates:
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By imposing the Gauss law, we can easily find the electric field for a < r < R:
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Notice that for » = a the electric field is zero, because no charge is enclosed within the Gaussian
surface.



Exercise 3 :

Two non-conducting spheres of radii R; and R, are uniformly charged with charge densities

p1 and po, respectively. They are separated at center-to-center distance a (see below). Find the
electric field at point P located at a distance r from the center of sphere 1 and is in the direction
6 from the line joining the two spheres assuming their charge densities are not affected by the
presence of the other sphere.

e Hint: Work one sphere at a time and use the superposition principle.

Figure 2: Two non-conducting spheres of radii R; and R,, uniformly charged with charge densities
p1 and py, respectively.

Solution 3 :

To solve this exercise we proceed in the following way: we find the electric field generated

by a single sphere and then we use the superposition principle to compute the total electric field
(that is, the total electric field is give by the vectorial sum in the plane of the two electric fields).

To find the electric field outside the sphere Ry, ¢ = 1,2, we apply the Gauss law, given by
Eq. (1). Since the charge densities do not depend on the coordinates the total charge for the ¢-th
sphere is simply given by @, = p,V, = %ﬂ'RZ’pg As a Gaussian surface, we use a sphere of radius r.
We find
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To compute the total electric field in P, we must perform the vectorial sum of the two electric
fields, £ = E; + F>. First of all we know that the distance of P from the first sphere is given by
r. We call the distance of P from the second sphere, . We call the angle between 7’ and a, ¢.



We must compute 7’ in terms of § and . To do this we can use the Carnot theorem (or law of
cosines), obtaining

r' = V12 + a? — 2ar cos 0. (10)

We need also the angle ¢ as a function of r» and #. This can be determined by computing the
height of the triangle connecting the two spheres and P. This height is given by h = rsinf. Now
the angle ¢ can be expressed in terms of h and the adjacent edge, that is a — r cos @, as

¢ = atan (ﬂ) (11)
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Now, the total electric field can be written as E = El + Eg, where
E, = Fycosfé, + Eysinfe, = %(cos@éx+sin9éy), (12)
Ey, = —F, cospé, + Eysingé, = :—2(— cospé, +singé,).
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We finally obtain
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where ¢, = Rype/3eo and 7’ and ¢ are given by Eqgs. (10) and (11) respectively.



Exercise 4 :

A wire having a uniform linear charge density A is bent into the shape shown in Fig.1. Find the

electric potential and the electric field at point O.

e Hint 1: use the superposition principle and compute the total potential as the sum of three
separate contributions in the three different regions;

e Hint 2: express the infinitesimal charge dq in the curved region as a function of the infinites-
imal angle df;

e Hint 3: for the electric field computation, use the symmetry of the wire to cancel out some
contributions.
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Figure 3: A bent wire with uniform charge density .

Solution 4 :

The charge in a small element of the straight part of the wire is given by dgq = Adz and in

the semi-circular part of the wire is given by dq¢ = ARdfA. The potential in point O is found by
decomposing the contributions of the two straight parts and the semi-circle.
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To find the electric field E we cannot use E = —VV(7) because V(7) is unknown. Remem-

ber, we only found the expression of the potential at O. Therefore we need to calculate the electric
field E directly at the origin O. By symmetry, the contributions of the two straight parts of the wire
cancel each other. For every small element of the semi-circle, we can define d& = dE, ¢, + dE,é,,.
By symmetry, we observe that the x component cancels. Hence, we only need to determine the y
component:
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And then we integrate between 0 and 7:
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Exercise 5 :

Time of flight mass spectrometer (TOF MS) determines mass-to-charge ratio of ions by measuring

time of their flight in a field free region (see Fig.3). It consists of a metal plate A, two metal grids
B and C, which are transparent for ions, and a Detector. The grids B and C are grounded (i.e
potential V=0), the plate A can be put at the fixed positive potential V5 = +1000 V' by closing
the switch S. The ion Detector, which is very close to C, is at some high negative potential.
Positively singly charged ions are initially very close to the plate A (they do not interact with each
other). At a well-defined time ¢ = 0 the switch S is on and V} is being applied to A and ions begin
to move toward the detector.

(a) Show that ions of different masses (¢ = +1) will arrive to the detector at different time.
Derive an expression for time-of-flight.

(b) Estimate the time-resolution of the detector, required to distinguish masses of uranium iso-
topes: 238U (my = 3.95-107%° kg) and #3°U (my = 3.90 - 10~ kg).
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Figure 4: Time of flight-based mass spectrometer schematic.

Solution 5 :

The ions of different masses are accelerated between A and B and obtain the same kinetic
energy ¢qVy at B, which means that they will have different velocities. They then move each with
its fixed attained velocity through the much longer free-field region B—C. Because the attained
velocities are different the travel time through the field-free region B—C will differ for the ions



of different masses. After C, the ions are immediately attracted by the detector. The ions with
different masses therefore will appear at detector and be detected at different times (relative to the
time t0 of switching S to On).

(a) In the acceleration region A—B a positively charged ion attains kinetic energy equal to the
potential of the ion near the plate A:
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Thus the ions obtain the velocity v at B:

v= @ (20)

This velocity remains constant in the region B-C because there is no electric field in that
region.

The time of travel ¢ (or time of flight) is thus equal to:
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(b) To estimate the time-resolution of the detector the expression of time of flight is differentiated
considering ¢t and m as variables:
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The difference in time travel between the two isotopes is in the timescale of 100ns. Hence,
the resolution of the detector has to be better than 10~7 seconds in order to distinguish the
masses of the two isotopes.



