# General Physics: Electromagnetism, Problem Set 2

### Exercise 1:

In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is  $a_0 = 5.29 \times 10^{-11}$  m. The proton has charge  $e = 1.60 \times 10^{-19}$  C and the electron has charge -e and mass  $m_e = 9.11 \times 10^{-31}$  kg.

- 1. Find the magnitude of the electric force exerted on each particle.
- 2. If this force causes the centripetal acceleration of the electron, what is the speed of the electron?

#### Exercise 2:

Charges  $q_1$  and  $q_2$  are located on the x axis at distances a and b respectively from the origin, as shown in the next figure.

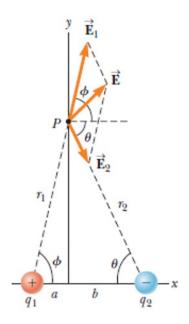



Figure 1: Positions of the charges  $q_1$  and  $q_2$  and of a field point P. The total electric field  $\mathbf{E}$  at P equals the vector sum  $\mathbf{E}_1 + \mathbf{E}_2$ , where  $\mathbf{E}_1$  is the field due to the positive charge  $q_1$  and  $\mathbf{E}_2$  is the field due to the negative charge  $q_2$ .

1. Find the components of the net electric field at the point P, which is at position (0, y).

- 2. Evaluate the electric field at point P in the special case that  $|q_1| = |q_2|$  and a = b.
- 3. Still for the special case of problem 2., find the electric field due to the electric dipole when point P is at distance  $y \gg a$  from the origin.

#### Exercise 3:

A ring of radius a carries a uniformly distributed positive total charge Q.

- 1. Calculate the electric field due to the ring at a point P lying at a distance x from its center along the central axis perpendicular to the plane of the ring (see next figure).
- 2. Suppose a negative charge is placed at the center of the ring and displaced slightly by a distance  $x \ll a$  along the axis. When the charge is released, what type of motion does it exhibit?

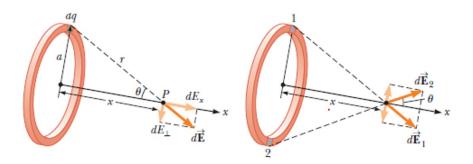



Figure 2: Ring with uniform positive charge Q and field point P at a distance x on the central axis of the ring. The infinitesimal electric field  $d\mathbf{E}$  produced by an elementary charge dq on the ring in the point P can be divided in a component along the central axis  $dE_x$  and in a component lying on the ring's plane  $dE_{\perp}$ . The total electric field in the point P is given by the sum of the infinitesimal electric fields produced by all the elementary charges on the ring.

### Exercise 4:

A disk of radius R has a uniform surface charge density  $\sigma$ .

- 1. Calculate the electric field at a point P that lies at a distance x from the disk's center along the central axis perpendicular to the plane of the disk (see next figure).
- 2. What happens if we let the radius of the disk grow so that the disk becomes an infinite plane of charge?
- 3. Show that the electric field at distances x that are large compared with R approaches that of a particle with charge  $Q = \sigma \pi R^2$ .

<u>Hint:</u> Use the fact that  $x/(x^2+R^2)^{1/2}=(1+R^2/x^2)^{-1/2}$  and the approximation for the binomial expansion  $(1+\delta)^n\approx 1+n\delta$  when  $\delta\ll 1$ .

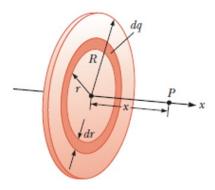



Figure 3: Disk of radius R with uniform surface density  $\sigma$ . The elementary charge dq is given by a circular crown of width dr located at distance r from the center. The field point is at distance x on the central axis of the ring.

## Exercise 5:

A proton of mass  $m_{\rm p}=1.67\times 10^{-27}$  kg moves at  $4.50\times 10^5$  m/s in horizontal direction. It enters a uniform vertical electric field with a magnitude of  $9.60\times 10^3$  N/C. Ignoring any gravitational effects, find:

- 1. the time interval required for the proton to travel 5.00 cm horizontally,
- 2. its vertical displacement during the time interval in which it travels 5.00 cm horizontally,
- 3. the horizontal and vertical components of its velocity after it has traveled 5.00 cm horizontally.