General Physics: Electromagnetism, Problem Set 10

Exercise 1:

A conductive rod of length l, mass m and resistance R slides down on a vertical conductive frame from the height $H \gg l$ in the presence of homogeneous magnetic field B which is perpendicular to the frame (Figure 1). Estimate:

- a) Kinetic energy of the rod, when it hits the grass.
- b) How much heat energy W was delivered in the rod?

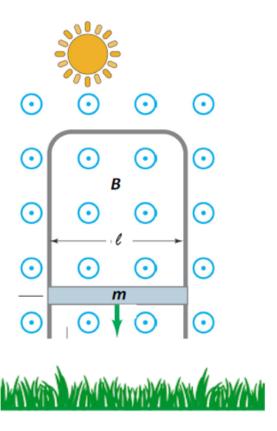


Figure 1: Conductive rod sliding down a conductive frame in a homogeneous magnetic field.

Exercise 2:

A square $b \times b = 5 \times 5$ cm conductive frame is moved by an external force with constant velocity v = 1 m/s through the area of width d = 20 cm of homogeneous magnetic field B = 1 T, which is orthogonal to v (see Figure 2). The external work required to pass the field was $W = 2.5 \cdot 10^{-3}$ J. What is the resistance R of the frame?

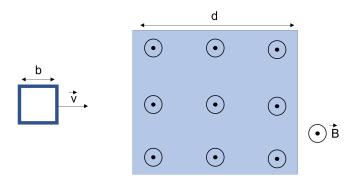


Figure 2: Conductive frame moved by an external force with constant velocity in a homogeneous magnetic field.

Exercise 3:

Consider a conductive rod of mass m and resistance R that can freely slide along a horizontal solid conductive frame of width w and length l, which is much longer than the width (Figure 3). The homogeneous magnetic field B is orthogonal to the frame. The field is changing with time t as $B = B_0 t$. In which direction and by what distance Δl will the rod be displaced from its initial position at t = 0 after a short time t = T, assuming that the displacement is small compared to l?

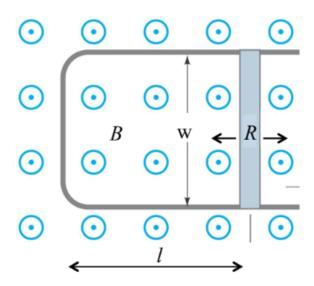


Figure 3: Conductive rod sliding along a conductive frame in a homogeneous magnetic field.

Exercise 4:

A solenoid S with a diameter D = 3.2 cm has 200 turns/cm and carries a sinusoidal current $I = I_0 \sin(2\pi f t)$ (See Figure 5). In the center, we put a coil C of 130 tight turns with a diameter d = 2.1 cm. The amplitude of the current is $I_0 = 1.5$ A and the frequency is f = 50 Hz. What is the amplitude of the emf induced in the coil C?

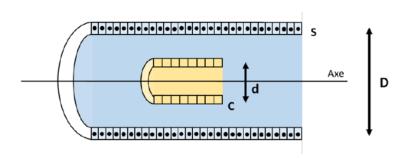


Figure 4: Solenoid S with sinusoidal current containing a coil C.

Exercise 5:

A circular loop of radius r_0 rotates with angular speed ω in a fixed magnetic field as shown in the Figure below.

- a) Find an expression for the emf induced in the loop.
- b) If the magnitude of the magnetic field is 25 μ T, the radius of the loop is 1 cm, the resistance of the loop is 25 Ω and the rotation rate ω is 3 rad/s, what is the maximum current in the loop?

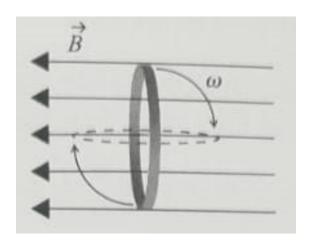


Figure 5: Circular loop rotating in a homogeneous magnetic field at an angular speed ω .