
Today’s agenda (part I):

Electric potential energy.
You must be able to use electric potential energy in work-energy calculations.

Electric potential.
You must be able to calculate the electric potential for a point charge, and use the electric 
potential in work-energy calculations.

Electric potential and electric potential energy of a system of 
charges.
You must be able to calculate both electric potential and electric potential energy for a 
system of charged particles (point charges today, charge distributions next lecture).

The electron volt.
You must be able to use the electron volt as an alternative unit of energy.



Potential energy vs. electric potential

Two new quantities:

• (electric) potential energy U

• electric potential V

Do not mix them up! 

(electric) potential energy  electric potential 
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(Electric) potential energy

Work done by electric (Coulomb) force:

• independent of path -> force is conservative

Define potential energy U: (unit J or Nm)

equivalently:

• potential energy defined w.r.t. (initial) reference state
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Potential energy of two point charges

• two point charges q1 and q2, initially at infinite distance
• moved to distance r12

potential energy of two point charges

potential energy is zero in reference state when particles 
are infinitely far apart

works for positive and 
negative charges

You must use this convention if you want to use the equation for potential energy of point 
charges! If you use the above equation, you are “automatically” using this convention.
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Potential energy of point charge in electric field

f f

i i

r r

f i
r r

U U F d q E d− = −  = −  

• force on point (test) charge:  F qE=

potential energy of point charge in electric field:



Example: calculate the electric potential energy of two protons 
separated by a typical proton-proton intranuclear distance of 
2x10-15 m.



Example: calculate the electric potential energy of two protons 
separated by a typical proton-proton intranuclear distance of 
2x10-15 m.

What is the meaning of the + sign in the result?           
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Example: calculate the electric potential energy of a hydrogen 
atom (electron-proton distance is 5.29x10-11 m).



Example: calculate the electric potential energy of a hydrogen 
atom (electron-proton distance is 5.29x10-11 m).

What is the meaning of the - sign in the result? 
Is that a small energy? 
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Today’s agenda:

Electric potential energy (continued).
You must be able to use electric potential energy in work-energy calculations.

Electric potential.
You must be able to calculate the electric potential for a point charge, and use the electric 
potential in work-energy calculations.

Electric potential and electric potential energy of a system of 
charges.
You must be able to calculate both electric potential and electric potential energy for a 
system of charged particles (point charges today, charge distributions next lecture).

The electron volt.
You must be able to use the electron volt as an alternative unit of energy.



• system of  charged particle has electric potential energy

• if charges move, kinetic and potential energies change

Energy conservation law:

Work-energy problems 
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Mechanics.



 f i conservative i f
U U U W

→
 = − = −

change in potential energy is defined as the negative of the 
work done by the conservative force which is associated with 
the potential energy (today, the electric force).

If an external force moves an object “against” the conservative 
force,* and the object’s kinetic energy remains constant, then

   external conservativei f i f
W W

→ →
= −

*for example, if you “slowly” lift a book, or “slowly” push two negatively charged balloons together

Important: Distinguish conservative work and external work

Always ask yourself which work you are calculating!



Example: two isolated protons are constrained to be a distance
D = 2x10-10 meters apart (a typical atom-atom distance in a 
solid). If the protons are released from rest, what maximum 
speed do they achieve, and how far apart are they when they 
reach this maximum speed?

2.63x104 m/s



Example: two isolated protons are constrained to be a distance
D = 2x10-10 meters apart (a typical atom-atom distance in a 
solid). If the protons are released from rest, what maximum 
speed do they achieve, and how far apart are they when they 
reach this maximum speed?

We need to do some thinking first.

What is the proton’s potential energy when they reach their 
maximum speed?

How far apart are the protons when they reach their maximum 
speed?



Example: two isolated protons are constrained to be a distance
D = 2x10-10 meters apart (a typical atom-atom distance in a 
solid). If the protons are released from rest, what maximum 
speed do they achieve, and how far apart are they when they 
reach this maximum speed?
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Final

Why are the two speeds the same? There is a conservation of 
momentum problem buried in here!
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How many objects are moving in the final state?
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if UK =

Two.

How many Kf terms are there? Two.

How many pairs of charged particles in the initial state? One.

How many Ui terms are there? One.
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Today’s agenda:

Electric potential energy.
You must be able to use electric potential energy in work-energy calculations.

Electric potential.
You must be able to calculate the electric potential for a point charge, and use the electric 
potential in work-energy calculations.

Electric potential and electric potential energy of a system of 
charges.
You must be able to calculate both electric potential and electric potential energy for a 
system of charged particles (point charges today, charge distributions next lecture).

The electron volt.
You must be able to use the electron volt as an alternative unit of energy.



Electric Potential

We have defined electric field by force it exerts on test charge

F qE  =

Now: define electric potential V via potential energy of test 
charge

U qV=

source charges create electric potential V, 
test charge q feels the potential, 
this produces potential energy U

unit of electric potential: Nm/C = V   (Volt)

f i f iU U q (V V )− = −



Electric Potential of a point charge:

so that the electric potential of a point charge q is
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q1 is the test charge, q2

is the source charge

Only valid for a 
point charge!
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Relation between electric potential and electric 
field



Two conceptual examples.

Example: a proton is released in a region in space where there 
is an electric potential. Describe the subsequent motion of the 
proton.

The proton will move towards the region of lower potential. As it moves, its 
potential energy will decrease, and its kinetic energy and speed will increase.

The electron will move towards the region of higher potential. As it moves, 
its potential energy will decrease, and its kinetic energy and speed will 
increase.

Protons fall down, electrons fall up.

Example: a electron is released in a region in space where there 
is an electric potential. Describe the subsequent motion of the 
electron.



What is the potential due to the proton in the hydrogen atom at 
the electron’s position (5.29x10-11 m away from the proton)?  
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Today’s agenda:

Electric potential energy.
You must be able to use electric potential energy in work-energy calculations.

Electric potential.
You must be able to calculate the electric potential for a point charge, and use the electric 
potential in work-energy calculations.

Electric potential and electric potential energy of a 
system of charges.
You must be able to calculate both electric potential and electric potential energy for a 
system of charged particles (point charges today, charge distributions next lecture).

The electron volt.
You must be able to use the electron volt as an alternative unit of energy.



Electric Potential Energy of a System of Charges

Electric Potential of a System of Charges

Electric potential energy comes from the interaction between 
pairs of charged particles, so you have to add the potential 
energies of each pair of charged particles in the system. 

(Could be a pain to calculate!)

The potential due to a particle depends only on the charge of 
that particle and where it is relative to some reference point. 

The electric potential of a system of charges is simply the sum 
of the potential of each charge. (Much easier to calculate!)



A single charged particle has no electrical potential energy. To 
find the electric potential energy for a system of two charges, 
we bring a second charge in from an infinite distance away:

before after
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Example: electric potential energy of three charged particles



To find the electric potential energy for a system of three 
charges, we bring a third charge in from an infinite distance 
away:
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We have to add the potential energies of 
each pair of charged particles.



Electric Potential of a Charge Distribution

Collection of charges: i
P
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Charge distribution:

P is the point at which V is to be calculated, and ri is the distance of the ith

charge from P.
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Potential at point P.



Example: a 1 C point charge is located at the origin and a -4 
C point charge 4 meters along the +x axis. Calculate the 
electric potential at a point P, 3 meters along the +y axis.
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Example: how much work is required to bring a +3 C point 
charge from  infinity to point P?            (And what assumption must we make?)
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3
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The work done by the external force was negative, so the work done by the electric field was 
positive. The electric field “pulled” q3 in (keep in mind q2 is 4 times q1).

Positive work would have to be done by an external force to remove q3 from P.



Example: find the total potential energy of the system of three 
charges.
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Today’s agenda:

Electric potential energy.
You must be able to use electric potential energy in work-energy calculations.

Electric potential.
You must be able to calculate the electric potential for a point charge, and use the electric 
potential in work-energy calculations.

Electric potential and electric potential energy of a system of 
charges.
You must be able to calculate both electric potential and electric potential energy for a 
system of charged particles (point charges today, charge distributions next lecture).

The electron volt.
You must be able to use the electron volt as an alternative unit of energy.



The Electron Volt

An electron volt (eV) is the energy acquired by a particle of 
charge e when it moves through a potential difference of 1 volt.

U= q V 

( )( )-191 eV= 1.6 10 C 1 V

-191 eV= 1.6 10 J

This is a very small amount of energy on a macroscopic scale, 
but electrons in atoms typically have a few eV (10’s to 1000’s) 
of energy.



Example: on slide 9 we found that the potential energy of the 
hydrogen atom is about -4.36x10-18 joules. How many electron 
volts is that?
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1 eV
U = -4.36 10 J = -4.36 10 J   -27.2 eV 

1.6 10 J
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“Hold it! I learned in Chemistry (or high school physics) that the 
ground-state energy of the hydrogen atom is -13.6 eV. Did we
make here a physics mistake?”

The ground-state energy of the hydrogen atom includes the 
positive kinetic energy of the electron, which happens to have a 
magnitude of half the potential energy. 

Add KE+PE to get ground state energy.



Today’s agenda (part II):

Electric potential of a charge distribution.
You must be able to calculate the electric potential for a charge distribution.

Equipotentials.
You must be able to sketch and interpret equipotential plots.

Potential gradient.
You must be able to calculate the electric field if you are given the electric potential.

Potentials and fields near conductors.
You must be able to use what you have learned about electric fields, Gauss’ law, and 
electric potential to understand and apply several useful facts about conductors in 
electrostatic equilibrium.



Electric potential V of charge distributions

• last lecture: potentials of point charges
• now: potentials of extended charged objects

(line charges, sheet charges, spheres, cylinders, etc)

Two strategies:

• decompose distribution into charge elements, integrate their 
contributions to V

• first find the electric field of the distribution (for example via 
Gauss’ law), then integrate     
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V V E d  − = − 



Example 1: electric potential between two parallel charged 
plates.

• plates carry surface charge density 
• plates separated by distance d
• plates are large compared to d 

, perpendicular to plates 
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holds for constant field only

V is higher at the positive plate



Example 2: A thin rod of length L located along the x-axis has a 
total charge Q uniformly distributed along the rod.  Find the 
electric potential at a point P along the y-axis a distance d from 
the origin. 
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*What are we assuming when we use this equation?

*dq
dV k

r
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Q

Follow line charge recipe

1. Decompose line charge 2. Potential due to charge 
element
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Include the sign of Q to get the correct sign for V.

What is the direction of V?

Q

note:
ln(a) – ln(b) = ln(a/b)

rod

V dV= 

3. Integrate over all charge elements



Example 3: Find the electric potential due to a uniformly 
charged ring of radius R and total charge Q at a point P on the 
axis of the ring.
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x
x

Every dq of charge on the 
ring is the same distance 
from the point P.
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Could you use this expression for V to calculate E? 

Q



Example 4: Find the electric potential at the center of a 
uniformly charged ring of radius R and total charge Q.

Every dq of charge on the 
ring is the same distance 
from the point P.

dq
dV k
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ring ring ring

kdq k kQ
V dV dq

R R R
= = = =  
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Example 4: A disc of radius R has a uniform charge per unit 
area  and total charge Q.  Calculate V at a point P along the 
central axis of the disc at a distance x from its center.

P

r′

dq

x

xR

Q

2 2r x r= +

each ring is a distance                     from point P
2 2r x r= +

we already know V for a ring
→decompose disk into rings

• area of ring of radius r′ and 
thickness dr’ is  dA=2r′dr’

• charge of ring is dq= dA = 
(2r′dr′) with =Q/R2
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This is the (infinitesimal) potential 
for an (infinitesimal) ring of radius r′.
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Could you use this expression for V to calculate E?
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dq

x
xR

Q

2 2r x r= +



Example 5: calculate the potential at a point outside a very long
insulating cylinder of radius R and positive uniform linear charge 
density .

Which strategy to use?

E

dq
dV k

r
=• decomposition into charge elements and 

leads to complicated triple (volume) integral
NO!

• calculate     first, then use 

we already derived     using Gauss’ law  
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V V E d  − = −  YES!

E
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( )a R

0 0 0

a R
 V V ln a ln R  ln ln

2πε 2πε R 2πε a

  
− = − − = − =

If we let a be an arbitrary distance r, then r R

0

R
 V V ln .

2πε r


− =

If we take V=0 at r=R, then ( )
0

R
 V r ln .

2πε r


=



r R

0

R
 V V ln

2πε r


− =

If we tried to use V=0 at r= then

r

0

 V V ln
2πε r



 
− = =  (V is infinite at any finite r).

That’s another reason why we can’t start with
dq

dV k .
r

=

Things to note:

V is zero at the surface of the cylinder 
and decreases as you go further out. This 
makes sense! V decreases as you move 
away from positive charges.

( )
0

R
 V r ln .

2πε r


=



Things to note:

r R

0

R
 V V ln

2πε r


− = For >0 and r>R, Vr – VR <0.

By convention is Vab = Va – Vb.
Thus VrR = Vr – VR is the potential difference between points r 
and R and for r>R, VrR < 0. 



Today’s agenda:

Electric potential of a charge distribution.
You must be able to calculate the electric potential for a charge distribution.

Equipotentials.
You must be able to sketch and interpret equipotential plots.

Potential gradient.
You must be able to calculate the electric field if you are given the electric potential.

Potentials and fields near conductors.
You must be able to use what you have learned about electric fields, Gauss’ law, and 
electric potential to understand and apply several useful facts about conductors in 
electrostatic equilibrium.



Equipotentials

Equipotentials are contour maps of the electric potential.



Electric field is perpendicular to equipotential lines.  Why?

Otherwise work would be required to move a charge along an 
equipotential surface, and it would not be equipotential. 

In static case (charges not moving), surface of conductor is 
an equipotential surface.  Why?

Otherwise charge would flow and it wouldn’t be a static case.

Equipotential lines:

• lines of constant electric potential V

• visualization tool complementing electric field lines



Here are electric field and equipotential lines for a dipole.

Equipotential lines are shown in red.



Today’s agenda:

Electric potential of a charge distribution.
You must be able to calculate the electric potential for a charge distribution.

Equipotentials.
You must be able to sketch and interpret equipotential plots.

Potential gradient.
You must be able to calculate the electric field if you are given the electric potential.

Potentials and fields near conductors.
You must be able to use what you have learned about electric fields, Gauss’ law, and 
electric potential to understand and apply several useful facts about conductors in 
electrostatic equilibrium.



Potential Gradient
(Determining Electric Field from Potential)

Electric field vector points from + to -, this means from higher to 
lower potentials.

Remember:
b

b a
a

V V E d  .− = − 

E
Inverse operation:

V
E

r


= −



E is perpendicular to 
the equipotentials



For spherically symmetric charge distribution:

r

dV
E

dr
= −

In one dimension:

x

dV
E

dx
= −

In three dimensions:

x y z

V V V
E  ,   E  ,   E .

x y z

  
= − = − = −

  

V V Vˆ ˆ ˆor   E  i j k  V
x y z

  
= − − − = −

  



Example: In a region of space, the electric potential is V(x,y,z) 
= Axy2 + Bx2 + Cx, where A = 50 V/m3, B = 100 V/m2, and C = 
-400 V/m  are constants. Find the electric field at the origin 

( )2

x
(0,0,0)

(0,0,0)

V
E (0,0,0) Ay 2Bx C C

x


= − = − + + = −



y (0,0,0)

(0,0,0)

V
E (0,0,0) (2Axy) 0

y


= − = − =



z

(0,0,0)

V
E (0,0,0) 0

z


= − =



V ˆE(0,0,0) 400 i
m

 
=  
 



Today’s agenda:

Electric potential of a charge distribution.
You must be able to calculate the electric potential for a charge distribution.

Equipotentials.
You must be able to sketch and interpret equipotential plots.

Potential gradient.
You must be able to calculate the electric field if you are given the electric potential.

Potentials and fields near conductors.
You must be able to use what you have learned about electric fields, Gauss’ law, and 
electric potential to understand and apply several useful facts about conductors in 
electrostatic equilibrium.



When there is a net flow of charge inside a conductor, the 
physics is generally complex.

Potentials and Fields Near Conductors

When there is no net flow of charge, or no flow at all (the  
electrostatic case), then a number of conclusions can be 
reached using Gauss’ Law and the concepts of electric fields 
and potentials…



Electric field inside a conductor is zero.

Eletrostatics of conductors

Any net charge on the conductor lies on the outer surface.

Potential on the surface of a conductor, and everywhere 
inside, is the same.

Electric field just outside a conductor must be perpendicular 
to the surface.

Equipotential surfaces just outside the conductor must be 
parallel to the conductor’s surface.
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