Exercise sheet 3: Fields and Potentials, Gauss's Law

25/09/2024

We indicate the challenges of the problems by categories I ("warming-up"), II ("exam-level"), III ("advanced"). For your orientation: problems attributed to category II have been or could have been considered for an exam (assuming a specific duration for finding the solution; see comments in the solutions). The exact problem setting cannot be repeated in an exam however.

For exercise 1 it is instructive to first watch the video (link) and slides containing the solution for an electric field of a charged half-sphere. There we outline how to first analyze symmetries in a 3D scenario and second perform an integration considering ring-like elements.

Exercise 1.

(Potential and Electric Field of a Charged Circle) (Category I)

- a) Find the expression for the potential ϕ at a height z over the center of a circle consisting of a uniformly charged line as shown in Fig. 1. The general formula for the potential is $\phi(\vec{r}) = \int \frac{\rho(\vec{r})dV}{4\pi\epsilon_0|\vec{r}-\vec{r'}|}$. Hint: Consider that the line is a 1D charge distribution.
- b) Find the electric field at the same point.

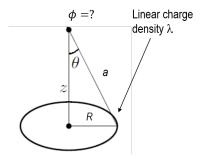


Figure 1: Only the line contains the charges. The black points indicate the center of the loop (bottom) and the position (top) at which the potential ϕ needs to be evaluated.

Exercise 2.

(Charge Density from Electric field) (Category I)

We consider an electric field given by $\vec{E}(\vec{r}) = kr^3\hat{r}$ in spherical coordinates. k is a positive constant and \hat{r} is the unit vector.

- a) Which units does the constant k have?
- b) Find the expression for the corresponding charge density ρ . How does it depend on the radial distance r?
- c) Sketch $\rho(r)$ as a function of radial distance along a line passing through the origin and in a plane intersecting the origin.
- d) How large is ρ at r=1 cm if the electric field amounts to E=5 kV/m at the same position?

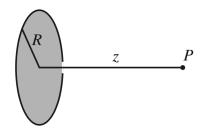


Figure 2: Sketch of a charged disk.

Exercise 3.

(Charged Disk) (Category II)

We consider a disk of radius R, carrying a total charge Q, uniformly spread over the disk (Fig. 2).

- a) Calculate the electric field at a distance z along the disk's axis.
- b) By considering the $R \to \infty$ limit, find the electric field generated by a charged infinite plane. Hint: For a charged infinite plane, the surface charge density σ can be assumed finite.
- c) When R is finite, discuss the $z \gg R$ and $z \ll R$ limits. Hint: consider the electric field in the given limiting cases up to leading order.

Exercise 4.

(Non-uniformly charged sphere/Category II)

An insulating solid sphere with radius R is unevenly charged. The positive charge density is described by $\rho = Kr$ where K is a positive constant (with units of C/m^4) and r is the distance (in units of m) from center of the sphere.

- a) Assume the sphere to be surrounded by vacuum (Fig. 3). Find the equation describing the magnitude of the electric field E at a distance r from the center of the sphere in terms of constant K and radius R. Consider both cases of r < R and r > R. (Hint: the spherical symmetry allows for Gauss's law with appropriately chosen Gaussian surfaces.)
- b) Sketch the result E(r) as a function of r from r = 0 to r > R.
- c) Determine the equation for the electric potential function $\phi(r)$ as a function of r in terms of constant K and radius R. Sketch the result and provide the solutions for $\phi(r)$ at r=0 and r=R.
- d) A point-like negative test charge q with mass m is positioned at a distance r = 4R and first held at rest. Then it is released. Find the equation for the velocity v at r = 2R in terms of K, R, q, and m.

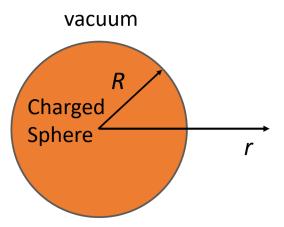


Figure 3: Sketch of the charged sphere with vacuum surrounding.