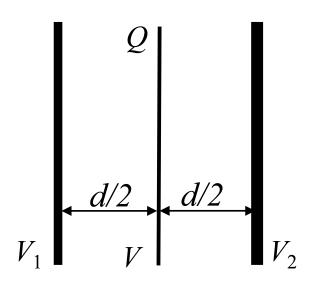
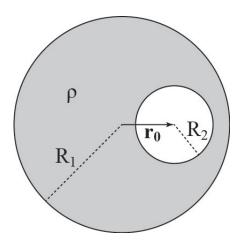
Série No. 6 2024

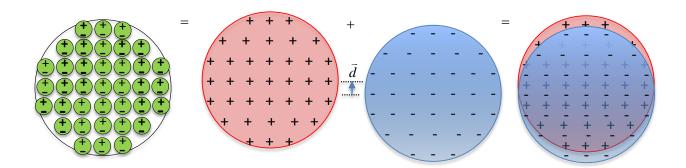

Exercice 6.1

Considérons une sphère isolante uniformément chargée de rayon R et de charge totale Q. Supposons que la constante diélectrique de la sphère soit très faible ($\varepsilon_r \cong 1$).

- a) Calculez le champ électrique $\vec{E}(r)$ pour r < R et pour $r \ge R$.
- b) Calculez le potentiel électrique V(r) pour r < R et pour $r \ge R$.
- c) Calculez l'énergie électrostatique totale du système.


Exercice 6.2

Deux plaques conductrices parallèles de surface A sont séparées d'une distance d et maintenues respectivement à un potentiel $V_1 = 0$ V et à un potentiel V_2 . Une troisième plaque conductrice très mince de même surface, portant une charge totale Q, est placée entre les plaques, à la même distance de chacune d'elles. En supposant que les effets de bords soient négligeables, déterminer le potentiel V de cette troisième plaque (en fonction de V_2 , Q, d, et A).


Exercice 6.3

Considérez une sphère de rayon R_1 uniformément chargée, de densité de charge ρ , ayant une cavité sphérique de rayon $R_2 < R_1/2$. Le centre de la cavité est déplacé par rapport au centre de la sphère d'un vecteur $\vec{r_0}$ (voir figure). Calculez le champ électrique en un point quelconque à l'intérieur de la cavité.

Exercice 6.4

Une sphère diélectrique de rayon R, soumise à un champ électrique uniforme $\vec{E} = E_0 \vec{e_z}$, est uniformément polarisé ($\vec{P} = const$). Déterminez le champ électrique à l'intérieur de la sphère et exprimez-le en terme du vecteur polarisation \vec{P} .

Suggestion : Considérez la superposition des deux sphères uniformément chargées, déplacées l'une par rapport à l'autre d'une petite distance d selon l'axe z, comme dans la figure.