
Série No. 3 2024

Exercice 3.1

Le jet d'eau de Genève mesure 140 m de haut. Calculez la vitesse de l'eau à la base du jet. On supposera que la buse a un profil adapté, de sorte que le vecteur vitesse est vertical et constant sur toute la section du jet.

Exercice 3.2

On utilise un siphon pour vider un récipient contenant de l'eau à 16 °C. Quelle est la hauteur maximale H du siphon si on veut éviter la formation de bulles (cavitation) au sommet du siphon? L'extrémité du siphon se trouve 2 m sous le fond du récipient. L'écoulement est suffisamment faible pour que l'on puisse considérer la hauteur de fluide constante. Supposons que la pression atmosphérique soit $P_{atm}=101400$ Pa, la densité de l'eau soit $\rho=1000$ kg/m³, et la pression de vapeur de l'eau à 16 °C soit $P_{sat}=1765$ Pa. On supposera que les hypothèses de la loi de Bernoulli sont vérifiées.

Exercice 3.3

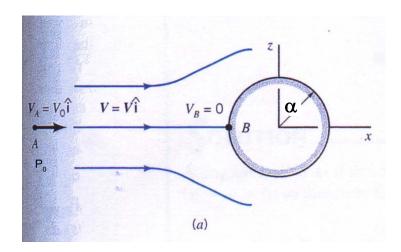
a) Dessiner et déterminez les lignes de courant y=y(x) pour un écoulement stationnaire bidimensionnel décrit par le champ de vitesse:

$$\vec{v} = (\frac{v_0}{l})(x\vec{e}_x - y\vec{e}_y)$$

b) Déterminez le champ d'accélération de cet écoulement stationnaire.

Exercice 3.4

Dans le plan horizontal xz, un fluide parfait et incompressible s'écoule autour d'une sphère de rayon α . La pression en A loin de la sphère (i.e., pour $x=-\infty$) est P_0 . La vitesse le long de la ligne de courant A-B (i.e., de $x=-\infty$ à $x=-\alpha$) est donnée par:


$$\vec{v} = (v_x, 0, 0)$$

avec

$$v_x = v_0 \left(1 + \frac{\alpha^3}{x^3} \right)$$

Calculez:

- a) l'accélération des particules fluides le long de la ligne de courant A-B.
- b) la pression P le long de la ligne de courant A-B à partir de l'équation de Bernoulli.
- c) la pression P le long de la ligne de courant A-B à partir de l'équation d'Euler.

