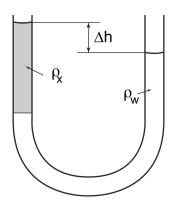
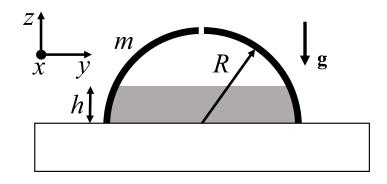

Série No. 1 2024


Exercice 1.1

Un aquarium de longueur w_1 =0.80 m, de largeur w_2 =0.4 m et de hauteur h=0.6 m est entièrement rempli d'eau (densité ρ_0 =1000 kg/m³). On suppose que l'eau est un fluide incompressible et on néglige la variation de la pression atmosphérique P_{atm} sur la hauteur de l'aquarium. Calculez la force qui agit sur chacune des quatre parois latérales de l'aquarium.

Exercice 1.2

On introduit de l'eau dans un tube en U, ouvert à ses extrémités, de section S=1 cm². La densité de l'eau est ρ_w =1000 kg/m³. Après, d'un côté du tube, on introduit 100 ml d'huile ayant une densité $\rho_x = 0.8 \rho_w$. Trouver la différence de niveau Δh entre les deux surface libres.

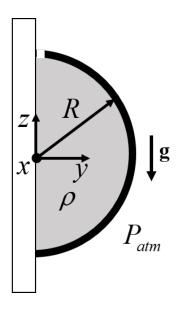


Exercice 1.3

Une cloche hémisphérique, de rayon R et masse m, est posée sur une surface lisse horizontale. Grâce à une ouverture au sommet de la cloche, on verse gentiment un liquide de densité ρ jusqu'à un niveau h.

En supposant que la pression atmosphérique P_{atm} est uniforme autour de la coque hémisphérique, déterminer:

- a) La force de pression totale $\mathbf{F}_P = (F_{Px}, F_{Py}, F_{Pz})$ agissant sur la cloche (en fonction de $h, g, \text{ et } \rho$).
- b) Le niveau h auquel la cloche se soulève (en fonction de m et ρ).



Note:

$$\int \cos\theta \sin\theta d\theta = -\frac{1}{2}(1-\sin^2\theta); \int \sin^2\theta \cos\theta d\theta = \frac{\sin^3\theta}{3}$$

Exercice 1.4

Une coque hémisphérique de rayon R, d'épaisseur et de masse négligeables, est appuyée contre une paroi verticale lisse. La coque hémisphérique est entièrement remplie d'eau à travers un très petit trou à son sommet (c'est-à-dire en (0,0,R)). La densité de l'eau est ρ . Déterminez la force minimale $\mathbf{F} = (F_x, F_y, F_z)$ qui doit être appliquée à la coquille pour la maintenir en place, en supposant que la pression atmosphérique P_{atm} est uniforme autour de la coque hémisphérique.

