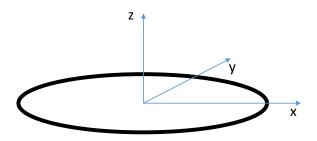
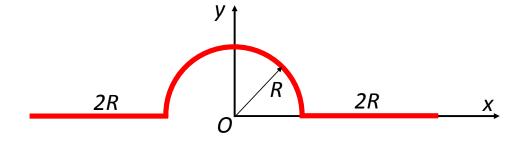
Série No. 5 2024

Exercice 5.1


Un fil de longueur L et de densité de charge linéique λ (en C/m) est aligné verticalement entre $z=-\frac{L}{2}$ et $z=\frac{L}{2}$.

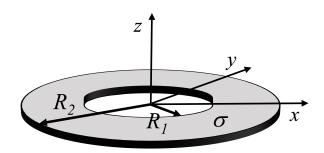
- a) Calculez le champ électrique \vec{E} au point P = (x, 0, 0).
- b) En faisant la limite pour $L \gg x$ et $L \ll x$ de la solution trouvée en a), les expressions que vous obtenez sont les solutions exactes de quelles configurations de charge?

Exercice 5.2

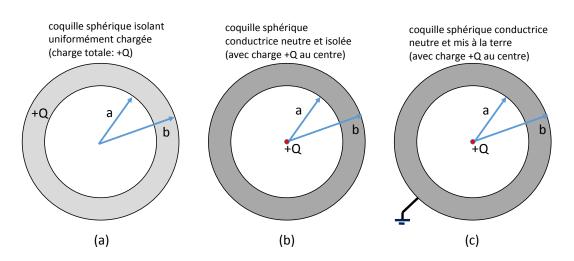

Une charge q est répartie uniformément le long d'une spire circulaire de rayon R situé dans le plan xy.

- a) Calculer le champ électrique crée par cette distribution de charge au point P(0,0,z) situé sur l'axe de la spire.
- b) Calculer le potentiel électrostatique au point P(0,0,z).
- c) Retrouver le champ électrique à partir du potentiel calculé en b).

Exercice 5.3


Un fil avec densité de charge linéique $\lambda > 0$ a été plié comme indiqué dans la figure. Calculer le potentiel électriques et le champ électrique au point O. Pour le calcul du potentiel électrique, on suppose que $V(\infty) = 0$.

Exercice 5.4


Un disque de rayon R_2 et épaisseur négligeable a un trou circulaire de rayon R_1 au milieu. Sur le disque il y a une densité de charge de surface uniforme négative σ (en C/m^2). Un électron de masse m et charge e, part du centre du trou (0,0,0) avec vitesse initiale $v = v_0 \hat{\mathbf{z}}$.

Si la gravité a un effet négligeable, quelle vitesse l'électron atteint à une distance très grande du disque ?

Exercice 5.5

- a) Une coquille sphérique isolante, centrée à l'origine O des axes cartésiens, est uniformément chargée (rayon interne a, rayon externe b, charge totale +Q). Calculez, en tout point de l'espace, le potentiel électrique $V(\mathbf{r})$ et le champ électrique $\mathbf{E}(\mathbf{r})$. Représentez graphiquement les fonctions $V(\mathbf{r})$ et la composante radiale de $\mathbf{E}(\mathbf{r})$.
- b) Une coquille sphérique conductrice, centrée à l'origine O des axes cartésiens, est électriquement neutre et isolée (rayon interne a, rayon externe b). Une charge $+\mathbf{Q}$ est placée au centre de la coquille, en O. Calculez, en tout point de l'espace, le potentiel électrique $V(\mathbf{r})$ et le champ électrique $\mathbf{E}(\mathbf{r})$. Représentez graphiquement les fonctions $V(\mathbf{r})$ et la composante radiale de $\mathbf{E}(\mathbf{r})$.
- c) Même système que en b) mais cette fois la coquille conductrice est mis à la terre, i.e., à un potentiel électrique V = 0. Calculez, en tout point de l'espace, le potentiel électrique $V(\mathbf{r})$ et le champ électrique $\mathbf{E}(\mathbf{r})$. Représentez graphiquement les fonctions $V(\mathbf{r})$ et la composante radiale de $\mathbf{E}(\mathbf{r})$. Quelle est la charge totale Q_{tot} sur la coquille?

