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Exercise sheet #13

Problem 1. Verify that, for ω = kc,

E(x, t) = E0 cos(kx− ωt)

B(x, t) = B0 cos(kx− ωt)

satisfy the one-dimensional wave equation:(
∂2

∂x2
− 1

c2
∂2

∂t2

){
E(x, t)
B(x, t)

}
= 0

Solution: Differentiating E = E0 cos(kx− ωt) with respect to x gives

∂E

∂x
= −kE0 sin(kx− ωt),

∂2E

∂x2
= −k2E0 cos(kx− ωt)

Similarly, differentiating E with respect to t yields

∂E

∂t
= ωE0 sin(kx− ωt),

∂2E

∂t2
= −ω2E0 cos(kx− ωt)

Thus,

∂2E

∂x2
− 1

c2
∂2E

∂t2
=

(
−k2 +

ω2

c2

)
E0 cos(kx− ωt) = 0

where we have made used of the relation ω = kc. One may follow a similar procedure to verify the
magnetic field.

Problem 2. If the electric field in free space is E = E0(x̂+ ŷ) sin[(2π/λ)(z+ ct)] with E0 = 20 volts
/m, then the magnetic field, not including any static magnetic field, must be what?

Solution: The wave is traveling in the −ẑ direction, as shown by the sign in (z+ ct); if t increases, then
z must decrease to keep the same value of (z + ct).B is perpendicular to both this direction and to E.
So B must point in the ±(x̂− ŷ) direction. But since we know that E×B points in the direction of the
wave’s velocity, which is −ẑ, we must pick the ” + ” sign, as you can quickly verify with the right-hand
rule. The magnitude of B is 1/c times the magnitude of E, so the desired B field is

B = (E0/c) (x̂− ŷ) sin[(2π/λ)(z + ct)]

With E0 = 20 V/m, we have B0 = E0/c = (20 V/m)
(
3 · 108 m/s

)
= 6.67 · 10−8 T. The amplitudes

of the E and B waves are actually
√
2 times E0 and B0/c, respectively, because the magnitude of the

(x̂± ŷ) vectors is
√
2.

Problem 3. Write out formulas for E and B that specify a plane electromagnetic sinusoidal wave with
the following characteristics. The wave is traveling in the direction −x̂; its frequency is 100 megahertz
(MHz), or 108 cycles per second; the electric field is perpendicular to the ẑ direction.

Solution: It is given that E ⊥ ẑ. And we know that E ⊥ v, where v ∝ −x̂ here. So E must point in
the ±ŷ direction. Let’s pick +ŷ. The other direction would simply change the sign of E0; the sign is
arbitrary, since the trig function switches signs anyway. So we have (a sine would work just as well)

E = ŷE0 cos(kx+ ωt),
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where ω = 2πν = 6.28 · 108 s−1 and k = ω/c = 2.09 m−1. The sign inside the cosine is a ” + ”
because the wave is traveling in the negative x direction. Since E × B points in the direction of v,
which is −x̂, and since B0 = E0/c, the B field must take the form,

B = −ẑ (E0/c) cos(kx+ ωt).

Problem 4. Consider the two oppositely traveling electric-field waves,

E1 = x̂E0 cos(kz − ωt) and E2 = x̂E0 cos(kz + ωt).

The sum of these two waves is the standing wave, 2x̂E0 cos kz cosωt.

(a) Find the magnetic field associated with this standing electric wave by finding the B fields associ-
ated with each of the above traveling E fields, and then adding them.

(b) Find the magnetic field by instead using Maxwell’s equations to find the B field associated with
the standing electric wave, 2x̂E0 cos kz cosωt.

Solution: (a) The traveling B fields must point in the ±ŷ directions because they must be perpendic-
ular to both the associated E field and the direction of propagation, which is ±ẑ. The magnitudes
of the B fields are E0/c. The signs are determined by the fact that E×B points in the direction
of propagation. The two magnetic waves are therefore

B1 = ŷ (E0/c) cos(kz − ωt)

B2 = −ŷ (E0/c) cos(kz + ωt)

The sum of these waves is B = ŷ (2E0/c) sin kz sinωt.

(b) We use the Maxwell equation ∇×E = −∂B/∂t to find B. The curl of E = 2x̂E0 cos kz cosωt is

∇×E =

∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
2E0 cos kz cosωt 0 0

∣∣∣∣∣∣
= −ŷ2kE0 sin kz cosωt.

Setting this equal to −∂B/∂t gives B = ŷ (2kE0/ω) sin kz sinωt. But we know that ω/k = c,
because the (kz−ωt) factor in the waves can be written as k(z− (ω/k)t), and the coefficient of t
is the speed of the wave. So the 2kE0/ω factor in B equals 2E0/c, in agreement with the result
in part (a). We have ignored the constant of integration in B because we are concerned only
with the varying part of the field. But a constant B field can certainly be superposed. (It must
be constant in time, but it can vary with position, as long as the rest of Maxwell’s equations are
satisfied.)

Alternatively, you can find B via the Maxwell equation ∇×B = µ0ϵ0∂E/∂t (with µ0ϵ0 = 1/c2 ).
You should check that this gives the same result.

Problem 5. A wave propagating through a string in the z directions with the vertical fv(z, t) =
A cos(kz−ωt+ δv)x̂ and horizontal components fh(z, t) = A cos (kz − ωt+ δh)ŷ is circularly polarized
if the two components are of equal amplitude but out of phase by 90 degrees.

(a) Show that at a fixed point z, the string moves in a circle about the z axis. Does it go clockwise
or counterclockwise, as you look down the axis toward the origin? How would you construct a
wave circling the other way? (In optics, the clockwise case is called right circular polarization,
and the counterclockwise, left circular polarization. Hint: set δv = 0, δh = 90◦ in the equations
for fv(z, t) and fh(z, t).
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(b) Sketch the string at time t = 0

(c) How would you shake the string in order to produce a circularly polarized wave?

Solution: (a) Setting the phase shift between the vertical and horizontal components as suggested
fv(z, t) = A cos(kz − ωt)x̂ and fh(z, t) = A cos (kz − ωt+ 90◦) ŷ = −A sin(kz − ωt)ŷ. Since
f2
v + f2

h = A2, the vector sum f = fv + fh lies on a circle of radius A. To determine its direction
we can look at the wave at different timepoints: At time t = 0, f = A cos(kz)x̂− A sin(kz)ŷ. At
time t = π/2ω, f = A cos (kz − 90◦) x̂ − A sin (kz − 90◦) ŷ = A sin(kz)x̂ + A cos(kz)ŷ. Evidently
it circles counterclockwise. To make a wave circling the other way, use δh = −90◦.

(b) This is what the string looks like at t = 0

(c) Shake the string around in a circle instead of up and down
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