
G.R. Ramirez-San Juan General Physics III: Electromagnetism, Fall 2024

Exercise sheet #9

Problem 1. Particle A with charge q and mass mA and particle B with charge 2q and mass mB, are
accelerated from rest by a potential difference ∆V , and subsequently deflected by a uniform magnetic
field into semicircular paths. The radii of the trajectories by particle A and B are R and 2R, respectively.
The direction of the magnetic field is perpendicular to the velocity of the particles. What is their mass
ratio?

Solution: The kinetic energy gained by the charges is equal to

1

2
mv2 = q∆V

which yields

v =

√
2q∆V

m

The charges move in semicircles, since the magnetic force points radially inward and provides the
source of the centripetal force:

mv2

r
= qvB

The radius of the circle can be readily obtained as:

r =
mv

qB
=

m

qB

√
2q∆V

m
=

1

B

√
2m∆V

q

which shows that r is proportional to (m/q)1/2. The mass ratio can then be obtained from

rA
rB

=
(mA/qA)

1/2

(mB/qB)
1/2

⇒ R

2R
=

(mA/q)
1/2

(mB/2q)
1/2

which gives:
mA

mB
=

1

8

Problem 2. A current I flows to the right through a rectangular bar of conducting material, in the
presence of a uniform magnetic field B pointing out of the page (See fig. below).

(a) If the moving charges are positive, in which direction are they deflected by the magnetic field?
This deflection results in an accumulation of charge on the upper and lower surfaces of the bar,
which in turn produces an electric force to counteract the magnetic one. Equilibrium occurs when
the two exactly cancel. (This phenomenon is known as the Hall effect.)

(b) Find the resulting potential difference (the Hall voltage) between the top and bottom of the bar,
in terms of B, v (the speed of the charges), and the relevant dimensions of the bar.

(c) How would your analysis change if the moving charges were negative? [The Hall effect is the
classic way of determining the sign of the mobile charge carriers in a material.]
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Solution: (a) If positive charges flow to the right, they are deflected down, and the bottom plate
acquires a positive charge.

(b) qvB = qE ⇒ E = vB ⇒ V = Et = vBt, with the bottom at higher potential.

(c) If negative charges flow to the left, they are also deflected down, and the bottom plate acquires
a negative charge. The potential difference is still the same, but this time the top plate is at the
higher potential.

Problem 3. Use the Biot-Savart law to find the field inside and outside an infinitely long solenoid of
radius R, with n turns per unit length, carrying a steady current I

Solution: Put the field point on the x axis, so r = (s, 0, 0). Then B = µ0

4π

∫ (K× )
2 da; da = Rdϕdz;K =

Kϕ̂ =K(− sinϕx̂+cosϕŷ); = (s−R cosϕ)x̂−R sinϕŷ−zẑ.K× = K

∣∣∣∣∣∣
x̂ ŷ ẑ

− sinϕ cosϕ 0
(s−R cosϕ) (−R sinϕ) (−z)

∣∣∣∣∣∣ =
K[(−z cosϕ)x̂+ (−z sinϕ)ŷ+ (R− s cosϕ)ẑ]; 2 = z2 +R2 + s2 − 2Rs cosϕ. The x and y components
integrate to zero ( z integrand is odd).

Bz =
µ0

4π
KR

∫
(R− s cosϕ)

(z2 +R2 + s2 − 2Rs cosϕ)3/2
dϕdz =

µ0KR

4π

∫ 2π

0
(R− s cosϕ)

{∫ ∞

−∞

dz

(z2 + d2)3/2

}
dϕ,

where d2 ≡ R2 + s2 − 2Rs cosϕ. Now

∫ ∞

−∞

dz

(z2 + d2)3/2
=

2z

d2
√
z2 + d2

∣∣∣∣∞
0

=
2

d2
.

=
µ0KR

2π

∫ 2π

0

(R− s cosϕ)

(R2 + s2 − 2Rs cosϕ)
dϕ; (R− s cosϕ) =

1

2R

[(
R2 − s2

)
+
(
R2 + s2 − 2Rs cosϕ

)]
.

=
µ0K

4π

[(
R2 − s2

) ∫ 2π

0

dϕ

(R2 + s2 − 2Rs cosϕ)
+

∫ 2π

0
dϕ

]
.∫ 2π

0

dϕ

a+ b cosϕ
= 2

∫ π

0

dϕ

a+ b cosϕ
=

4√
a2 − b2

tan−1

[√
a2 − b2 tan(ϕ/2)

a+ b

]∣∣∣∣∣
π

0

=
4√

a2 − b2
tan−1

[√
a2 − b2 tan(π/2)

a+ b

]
=

4√
a2 − b2

(π
2

)
=

2π√
a2 − b2

. Here a = R2 + s2,

b = −2Rs, so a2 − b2 = R4 + 2R2s2 + s4 − 4R2s2 = R4 − 2R2s2 + s4 =
(
R2 − s2

)2
;
√
a2 − b2 =

∣∣R2 − s2
∣∣ .

Bz =
µ0K

4π

[(
R2 − s2

)
|R2 − s2|

2π + 2π

]
=

µ0K

2

(
R2 − s2

|R2 − s2|
+ 1

)
.

Inside the solenoid, s < R, so Bz = µ0K
2 (1 + 1) = µ0K. Outside the solenoid, s > R, so Bz =

µ0K
2 (−1 + 1) = 0. Here K = nI, so B = µ0nI ẑ (inside), and 0 (outside).

2



G.R. Ramirez-San Juan General Physics III: Electromagnetism, Fall 2024

Problem 4. The magnetic field on the axis of a circular current loop is far from uniform (it falls off
sharply with increasing z). You can produce a more nearly uniform field by using two such loops a
distance d apart (Fig. below).

(a) Find the field (B) as a function of z, and show that ∂B/∂z is zero at the point midway between
them (z = 0).

(b) If you pick d just right, the second derivative of B will also vanish at the midpoint. This arrange-
ment is known as a Helmholtz coil; it’s a convenient way of producing relatively uniform fields
in the laboratory. Determine d such that ∂2B/∂z2 = 0 at the midpoint, and find the resulting
magnetic field at the center. [Answer: 8µ0I/5

√
5R ]

Solution: (a) In the lecture we derived the field of a single loop:

B(z) =
µ0I

2

R2

(R2 + z2)3/2

In this case:

B =
µ0IR

2

2

{
1

[R2 + (d/2 + z)2]3/2
+

1

[R2 + (d/2− z)2]3/2

}
.

∂B

∂z
=

µ0IR
2

2

{
(−3/2)2(d/2 + z)

[R2 + (d/2 + z)2]5/2
+

(−3/2)2(d/2− z)(−1)

[R2 + (d/2− z)2]5/2

}

=
3µ0IR

2

2

{
−(d/2 + z)

[R2 + (d/2 + z)2]5/2
+

(d/2− z)

[R2 + (d/2− z)2]5/2

}
∂B

∂z

∣∣∣∣
z=0

=
3µ0IR

2

2

{
−d/2

[R2 + (d/2)2]5/2
+

d/2

[R2 + (d/2)2]5/2

}
= 0.

(b) Differentiating again:

∂2B

∂z2
=
3µ0IR

2

2

{
−1

[R2 + (d/2 + z)2]5/2
+

−(d/2 + z)(−5/2)2(d/2 + z)

[R2 + (d/2 + z)2]7/2

+
−1

[R2 + (d/2− z)2]5/2
+

(d/2− z)(−5/2)2(d/2− z)(−1)

[R2 + (d/2− z)2]7/2

}
.

∂2B

∂z2

∣∣∣∣
z=0

=
3µ0IR

2

2

{
−2

[R2 + (d/2)2]5/2
+

2(5/2)2(d/2)2

[R2 + (d/2)2]7/2

}
=

3µ0IR
2

[R2 + (d/2)2]7/2

(
−R2 − d2

4
+

5d2

4

)
=

3µ0IR
2

[R2 + (d/2)2]7/2
(
d2 −R2

)
. Zero if d = R, in which case

B(0) =
µ0IR

2

2

{
1

[R2 + (R/2)2]3/2
+

1

[R2 + (R/2)2]3/2

}
= µ0IR

2 1

(5R2/4)3/2
=

8µ0I

53/2R
.
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Problem 5. A volume current density J = J ẑ exists in a slab between the infinite planes at x = −b
and x = b. (So the current is coming out of the page, see figure below) Additionally, a surface current
density J = 2bJ points in the −ẑ direction on the plane at x = b. (a) Find the magnetic field as a
function of x, both inside and outside the slab. (b) Verify that ∇ ×B = µ0J inside the slab. (Don’t
worry about the boundaries.)

Solution: (a) The total magnetic field equals the field due to the thin sheet plus the field due to the
thick slab. The field due to the thin sheet is simply µ0J /2 = µ0(2bJ)/2 = µ0Jb. (This can be found via
an Amperian loop with a side on either side of the sheet.) It points upward on the left, and downward
on the right; see the step function shown below. (The direction can be found by imagining the sheet
to be built up from a series of parallel wires.) To find the magnetic field due to the thick slab, consider
an Amperian loop centered in the slab, as shown here:

The slab is symmetric under translations in the y direction, so the field must be independent of y.
Also, the slab is symmetric under rotations by 180◦ around the z axis, so the y component of the field
must be an odd function of x, otherwise the field wouldn’t look the same after a rotation by 180◦.
(Additionally, you can rule out x and z components by considering the slab to be built up from wires.)
The current enclosed in the Amperian loop is I = h(2x)J . Since only the left and right sides contribute
to the line integral, we have∫

B · ds = µ0I =⇒ 2Bh = µ0(2xhJ) =⇒ B = µ0Jx.
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Outside the slab, the slab looks like a sheet (from the same Amperian argument that is used for an
actual sheet). So on either side, the field has a constant value equal to the value at the boundary,
namely ±µ0Jb. The slab’s field is shown above. The total field, which is the sum of the sheet’s field
and the slab’s field, is also shown. It equals zero outside the slab, and µ0J(b+ x)ŷ inside.

Alternatively, the interior field of the slab can be found by considering the two sub-slabs on either side
of a given position. At position x there is a slab with thickness b + x on the left which is equivalent
to a sheet with surface charge density Jleft = J(b + x). And likewise there is a slab with thickness
b − x on the right which is equivalent to a sheet with surface charge density Jright = J(b − x). The
left ”sheet” produces a field µ0J /2 = µ0J(b + x)/2 upward, and the right ”sheet” produces a field
µ0J /2 = µ0J(b − x)/2 downward. The net interior field of the slab is therefore µ0Jx upward (so if x
is negative, this points downward).

(b) Inside the slab, the curl of B is

∇×B =

 x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
0 µ0J(b+ x) 0

 = µ0J ẑ = µ0J,

as desired. Outside the slab, B and J are both zero, so ∇×B = µ0J is trivially true. At the boundary
at x = b, the By component is discontinuous, so the ∂By/∂x derivative in the curl is infinite. This is
consistent with the fact that a nonzero J implies an infinite J .
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