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Exercise sheet #2

Problem 1. We want to make a comparison between the gravitational force and the electrostatic
(Coulomb) force.

(a) From a mathematical point of view, which is the only qualitative difference between the two
forces? From the physical point of view, is there another important difference?

(b) Let us now consider two electrons in free space placed at distance r: they both feel gravitational
attraction because of their mass, and electrostatic repulsion because of their charge. What value
the electron mass should have had in order to create the situation where the attraction and the
repulsion are balanced and the two electrons do not move?

(c) A charged body with Q = −1 µC is dropped from a height h = 1 m above the Earth surface. A
plate charged with 1019 electrons is placed exactly below it on the surface. By using the concept
of potential energy, evaluate the mass M of the body in order to let it float at height h (remember
that the gravitational potential energy at distance z close to the Earth surface can be approximated
as U = Mgz, with g = 9.81 m/s2).

(d) Describe qualitatively what happens if the body with mass M as determined in c) placed at h has
an initial velocity v directed towards the Earth (tip: this is best solved using energy diagrams).

Solution. (a) Given the same definition of the distance vector r⃗, the expressions of the gravitational
force F⃗G and the Coulomb force F⃗C have the same structure, apart from their sign: same sign
for the mass means gravitational attraction, whereas same sign for the charge means electrostatic
repulsion. In Physics, we do observe only positive masses, but both positive and negative charges.
Thus F⃗G is only attractive, while F⃗C can be either attractive or repulsive.

(b) In order to balance the two forces |F⃗G| = Gm2
e

r2
and |F⃗C | = k q2e

r2
(where G is the gravitational

constant and k = 1
4πϵ0

is the Coulomb constant) we would need to set Gm2
e

r2
= k q2e

r2
and therefore

me = q
√

k
G = 1.86× 10−9 kg. Note that this value is 2× 1021 larger than the real value of me!

(c) The gravitational and Coulomb potential energies of the system are UG(z) = Mgz + c1 and
UC(z) = kQ1Q2

z + c2. The body placed at height h will not move when −∂U
∂z = |F⃗ | = 0, with

U = UG +UC . We thus obtain the equation Mg − kQ1Q2

z2
= 0. Therefore for z = h: M = kQ1Q2

gh2 .

By substituting the constants k and g and the values h = 1 m, Q1 = 1 × 10−6 C and Q2 =
1019 × 1.6× 10−19 C we obtain M ≈ 1468 kg.

(d) Assuming no lateral movements and no friction, the body will oscillate around h indefinitely.
At first it will fall from h to h1, where the Coulomb interaction is strong enough to reverse the
movement up to h2 where the gravitational interaction becomes stronger, and so on. The values
h1 and h2 are determined by K = 1

2mv2 as shown in Fig. 1.
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a) Given the same definition of the distance vector ~r , the expressions of the gravitational

force ~FG and the Coulomb force ~FC have the same structure, apart from their sign: same
sign for the mass means gravitational attraction, whereas same sign for the charge means
electrostatic repulsion. In Physics, we do observe only positive masses, but both positive
and negative charges. Thus ~FG is only attractive, while ~FC can be either attractive or
repulsive.

b) In order to balance the two forces |~FG | = G m2
e

r2 and |~FC | = k q2
e

r2 (where G is the gravita-

tional constant and k = 1
4⇡✏0

is the Coulomb constant) we would need to set G m2
e

r2 = k q2
e

r2

and therefore me = q
q

k
G

= 1.86 ⇥ 10�9 kg . Note that this value is 2 ⇥ 1021 larger than

the real value of me !

c) The gravitational and Coulomb potential energies of the system are UG(z ) = Mgz+c1 and

UC (z ) = k Q1Q2

z
+ c2. The body placed at height h will not move when �@U

@z
= |~F | = 0,

with U = UG + UC . We thus obtain the equation Mg � k Q1Q2

z2 = 0. Therefore for

z = h: M = k Q1Q2

gh2 . By substituting the constants k and g and the values h = 1 m,

Q1 = 1 ⇥ 10�6 C and Q2 = 1019 ⇥ 1.6 ⇥ 10�19 C we obtain M ⇡ 1468 kg .

d) Assuming no lateral movements and no friction, the body will oscillate around h indefi-
nitely. At first it will fall from h to h1, where the Coulomb interaction is strong enough
to reverse the movement up to h2 where the gravitational interaction becomes stronger,
and so on. The values h1 and h2 are determined by K = 1

2
mv 2 as shown in Fig. 1.
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Figure 1: For this plot the potential energy references are chosen so that c1 = c2 = 0.
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Problem 2. Suppose we loose 1 out of every 1012 electrons in our body.

(a) Estimate the charge of a typical human body after this event. Make sure to justify the assumptions
you need to make and try not to use a calculator.

(b) Estimate the force between two persons at distance of 1 m? How will this change for 1.5 m?

(c) Estimate the acceleration that each person will experience.

Solution:

(a) Let us assume that the average human body mostly made of 70 kg of water. There are 10 electrons

in a water molecule, and approximately 70×103

MH2O
NA = 70×103

18 × 6, 022 × 1023 ≈ 2.3 × 1027 water

molecules in a human body which adds up to around 2.3× 1028 electrons.
If one were to ”lose” one out of every 1012 electrons, their charge would go from neutral up to
Q = 2.3×1028×e

1012
≈ 4× 10−3C

(b) The two bodies, each of charge Q, repel each other (they are both charged positively) with a force
inversely proportional to the square of the distance d between them, such that

F =
Q2

4Πϵ0d2

≈ 9× 109 × (4× 10−3)2

1
≈ 1.4× 105N for d = 1m

≈ 9× 109 × (4× 10−3)2

2.25
≈ 6× 104N for d = 1.5m

(c) Newton’s second law gives a = F
m = 1.4×105

70 ≈ 2000m
s2

Problem 3. Consider a 45◦ − 90◦ triangle of side d and three point charges +q, +q and +2q fixed
at the three corners A, B, C respectively as shown in the figure below. Evaluate the Coulomb force
vector acting on a positive charge q0 fixed in the midpoint of the hypotenuse.

Solution. The Coulomb force acting on a charge q0 fixed in the midpoint of the hypotenuse will be
given by the contributions of the three charges in A, B and C considerated separately because of the
superposition principle. Therefore, we consider a coordinate system as shown in Fig. 2, and evaluate
the three forces:

F⃗A = k
qq0

(d
√
2/2)2

x̂+ ŷ√
2

=

√
2kqq0
d2

(x̂+ ŷ)

F⃗B = k
qq0

(d
√
2/2)2

x̂− ŷ√
2

=

√
2kqq0
d2

(x̂− ŷ)

F⃗C = k
2qq0

(d
√
2/2)2

−x̂+ ŷ√
2

=
2
√
2kqq0
d2

(−x̂+ ŷ)
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Therefore we can evaluate the total force F⃗ = F⃗A + F⃗B + F⃗C = 2
√
2kqq0
d2

ŷ. It has to be noted that the
calculation would be a bit easier by choosing a coordinate system rotated by 45◦.

Solution 2 - Point charges: triangle

The Coulomb force acting on a charge q0 fixed in the midpoint of the hypotenuse will be given
by the contributions of the three charges in A, B and C considerated separately because of
the superposition principle. Therefore, we consider a coordinate system as shown in Fig. 2,
and evaluate the three forces:

~FA = k
qq0

(d
p

2/2)2

x̂ + ŷp
2

=

p
2kqq0

d2
(x̂ + ŷ)

~FB = k
qq0

(d
p

2/2)2

x̂ � ŷp
2

=

p
2kqq0

d2
(x̂ � ŷ)

~FC = k
2qq0

(d
p

2/2)2

�x̂ + ŷp
2

=
2
p

2kqq0

d2
(�x̂ + ŷ)

Therefore we can evaluate the total force ~F = ~FA + ~FB + ~FC = 2
p

2kqq0

d2 ŷ . It has to be noted
that the calculation would be a bit easier by choosing a coordinate system rotated by 45�.

A

B

C
+q

d

d

+q

+2q

 𝑥

 𝑦
 𝐹𝐶

 𝐹𝐵

 𝐹𝐴

Figure 2

Solution 3 - Point charges: equilibrium

First of all we need to set a coordinate system. We choose the x axis pointing from the +q
charge towards the +2q charge, with the origin set in the +q charge, as shown in Fig. 3.

+q a +2q

0 x

Figure 3

a) The potential energy of the system in the region 0 < x < a is given by U = k qq0

x
+k 2qq0

a�x
+

k 2q2

a
. The third term, which takes into account the two fixed charges, does not depend

on x and will not influence the equilibrium position. In order to find the equilibrium,

we look for the point where 0 = |~F | = �dU
dx

= kqq0

⇣
1
x2 � 2

(a�x)2

⌘
, which leads to the

equation x 2 + 2ax � a2 = 0. The only solution within the considered region 0 < x < a is
x0 = (

p
2 � 1)a.

2

Figure 2

Problem 4. Consider two fixed point charges +q and +2q placed at distance a.

(a) Find the equilibrium position between the two charges for a positive charge q0.

(b) How does the result change if you consider a negative charge q0?Would they still be able to be in
equilibrium?

Solution. First of all we need to set a coordinate system. We choose the x axis pointing from the +q
charge towards the +2q charge, with the origin set in the +q charge, as shown in Fig. 3.

+q	 a	 +2q	

0	 x	

Figure 3

1. The potential energy of the system in the region 0 < x < a is given by U = k qq0
x + k 2qq0

a−x + k 2q2

a .
The third term, which takes into account the two fixed charges, does not depend on x and will
not influence the equilibrium position. In order to find the equilibrium, we look for the point

where 0 = |F⃗ | = −dU
dx = kqq0

(
1
x2 − 2

(a−x)2

)
, which leads to the equation x2 + 2ax− a2 = 0. The

only solution within the considered region 0 < x < a is x0 = (
√
2− 1)a.

2. In the case of q0 < 0, since the expression of |F⃗ | = −dU
dx will be the same but only with opposite

sign, the equilibrium position will be the same. However, since also U itself changes sign the type
of equilibrium will change from stable to unstable.

Problem 5. What is the total charge on a sheet with the size Lx=60 cm and Ly=50 cm, if the charge
distribution in C

m2 is given by σ(x, y) = x2y3 + ln(x)?
(assume that one of the corners of the sheet is located at (0/0), and it’s expanding in positive x- and
y-direction)

Solution. The total charge on the surface of the sheet is given by

Q =

∫ Ly

0

∫ Lx

0
(x2y3 + ln(x)) dx dy
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We first solve the inner integral,

∫ Lx

0
(x2y3 + ln(x)) dx = y3

∫ Lx

0
x2 dx +

∫ Lx

0
ln(x) dx

for the left side:

y3
∫ Lx

0
x2 dx = y3 · 1

3
x3
∣∣∣
Lx

0

for the right side we use integration by parts with u(x) = ln(x), dv = dx and we evaluate du =
1/x dx and v(x) = x:

∫
ln(x) dx =

∫
u dv = uv −

∫
v du

we substitute u = ln(x), v = x and du = 1/x dx:

∫
ln(x) dx = uv −

∫
v du

= ln(x) x−
∫

x · 1
x
dx

= ln(x) x−
∫

dx

= ln(x) x− x+ C

With boarders:

∫ Lx

0
ln(x) dx = ln(x) x

∣∣∣
Lx

0
− x
∣∣∣
Lx

0

So the inner integral writes as

∫ Lx

0
(x2y3 + ln(x)) dx = y3 · 1

3
x3
∣∣∣
Lx

0
+ ln(x) x

∣∣∣
Lx

0
− x
∣∣∣
Lx

0

Note: Since ln(0) = −∞ the solution for x · ln(x) is not defined for x = 0. However we can still
solve the integral in the given borders, since the limit limx→0 (x · ln(x)) = 0 is defined. To prove
limx→0 (x · ln(x)) = 0 we use the rule of l’Hopital:

if limx→a

(
f(x)

g(x)

)
=

0

0
or if limx→a

(
f(x)

g(x)

)
=

±∞
±∞ then

limx→a

(
f(x)

g(x)

)
= limx→a

(
f ′(x)
g′(x)

)

So we can apply this to our problem:

limx→0 (x · ln(x)) = limx→0

(
ln(x)

1
x

)

= limx→0

(
1
x

− 1
x2

)

= limx→0 (−x)

= 0
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Now, we continue with the outer integral

∫ Ly

0

(
y3 · 1

3
x3
∣∣∣
Lx

0
+ ln(x) x

∣∣∣
Lx

0
− x
∣∣∣
Lx

0

)
dy =

1

4
y4
∣∣∣
Ly

0
· 1
3
x3
∣∣∣
Lx

0
+ y
∣∣∣
Ly

0
· ln(x) x

∣∣∣
Lx

0
− y
∣∣∣
Ly

0
· x
∣∣∣
Lx

0

=
1

4
L4
y ·

1

3
L3
x + Ly · ln(Lx) Lx − Ly · Lx

= LxLy

(
1

12
L2
xL

3
y + ln(Lx)− 1

)

substituting the dimensions of the sheet, Lx = 0.6 m and Ly = 0.5 m, we have

a)

Q =

∫ Ly

0

∫ Lx

0
(x2y3 + ln(x)) dx dy

=

[
0.6 · 0.5

(
1

12
0.620.53 + ln(0.6)− 1

)]

= −0.4521 C

Problem 6. A disc shows a radial charge distribution given by σ(r) = er. What is the mean surface
charge density as a function of the disc radius R?

Solution. For a disk of radius R, the mean charge density on its surface can be computed by

σdisk =
Total charge on disk

Disk area
=

Q(R)

π ·R2

The total charge on the disk, in the polar coordinate system, is given by the expression

Q =

∫ 2π

0

∫ R

0
r · σ(r, θ) dr dθ

where σ is the charge distribution of the disk.

Then, Q needs to be computed in order to find σdisk(R). The double integral to solve is the following

Q(R) =

∫ 2π

0

∫ R

0
r · er dr dθ

The inner most integral can be solved by parts, using the following substitutions: u = r,
du = dr, v = er and dv = er dr. That is

∫
u dv = u v −

∫
v du

∫
r er dr = r er −

∫
er dr

= er (r − 1)

Now, the outer integral can be solved

5
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∫ 2π

0

[
er (r − 1)

]R
0
dθ =

∫ 2π

0
( eR (R− 1) + 1 ) dθ

= ( eR (R− 1) + 1 ) · θ
∣∣∣
2π

0

= 2π ( eR (R− 1) + 1 )

The mean charge density is:

σdisk(R) = 2π ( eR (R−1)+1 )
π R2 = 2

R2

(
eR (R− 1) + 1

)
C
m2

Problem 7. In atomic Physics, one of the first attempts to describe the atomic structure is the Bohr
model. According to this, an atom is depicted as a small positively charged nucleus surrounded by
electrons which travel around it in circular orbits. The Hydrogen atom has only one electron and a
nucleus made by only one proton (the charge of which has the same magnitude as the electron charge).
The radius of the orbit is known as Bohr radius and its value is a0 = 5.29× 10−11 m.

(a) Evaluate the potential energy stored in the Hydrogen atom.

(b) Evaluate the kinetic energy of the electron as a function of its charge (Remember the expression
for the centripetal force is F = mv2/r).

(c) Evaluate the ionization energy of the Hydrogen atom, that is the energy required to extract the
electron from it.

Solution.

(a) The potential energy is: U = −k q2e
a0

≈ −4.34× 10−18 J = −4.34 aJ .

(b) Since the magnitude of the Coulomb force |F⃗ | = k q2e
a20

corresponds to a centripetal force |F⃗ | = mv2

a0
,

the kinetic energy of the electron can be expressed as: K = 1
2mv2 = |F⃗ |r

2 = k q2e
2a0

≈ 2.17 aJ .

(c) The total energy is E = U + K = −k q2e
2a0

≈ −2.17 aJ . The fact that E is negative means that
the electron is bound to the nucleus. In order to extract the electron from the Hydrogen atom
therefore one has to supply an ionization energy I = −E = 2.17 aJ .
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