
G.R. Ramirez-San Juan General Physics III: Electromagnetism, Fall 2024

Quiz #1

Problem 1. A half-infinite line has linear charge density λ. Find the electric field at a point that is
“even” with the end, a distance ℓ from it, as shown in the figure below. You should find that the field
always points up at a 45◦ angle, independent of ℓ.

Solution: Let’s parameterize the line by the angle θ shown in the figure below. A little piece of
the line that subtends an angle dθ is a distance ℓ/ cos θ from the given point P , and its length is
dx = d(ℓ tan θ) = ℓdθ/ cos2 θ. The magnitude of the field contribution at point P is therefore

dE =
1

4πϵ0

(
ℓdθ/ cos2 θ

)
λ

(ℓ/ cos θ)2
=

1

4πϵ0

λdθ

ℓ

The horizontal component of this is obtained by multiplying by sin θ. The total horizontal component
of the field at P is then:

Ex =

∫ π/2

0

1

4πϵ0

λdθ

ℓ
sin θ =

λ

4πϵ0ℓ

∫ π/2

0
sin θdθ =

λ

4πϵ0ℓ

Similarly, the vertical component of the field contribution in the equation for dE is obtained by multi-

plying by cos θ. And since
∫ π/2
0 cos θdθ equals 1 just like the sin θ integral, we see that Ex and Ey at

point P both equal λ/4πϵ0ℓ. The field therefore points up at a 45◦ angle, as specified.

The Ey = λ/4πϵ0ℓ result is consistent with the fact that the field from a full infinite line is λ/2πϵ0ℓ,
which follows from a direct integration or a quick application of Gauss’s law. By superposition, two
half-infinite lines placed end-to-end yield a full infinite line, so the Ey from the latter must be twice the
Ey from the former. Note that since ℓ is the only length scale in the problem, both components must
be proportional to λ/ϵ0ℓ (assuming that they are finite). Their ratio, and hence the angle of the field,
is therefore independent of ℓ. But it takes a calculation to show that the angle is 45◦.

Problem 2. A solid insulating sphere of radius a carries a net positive charge 3Q, uniformly distributed
throughout its volume. Concentric with this sphere is a conducting spherical shell with inner radius b
and outer radius c, and having a net charge −Q, as shown in the figure below. (i) Construct a spherical
gaussian surface of radius r > c and find the net charge enclosed by this surface. (ii) What is the
direction of the electric field at r > c ? (iii) Find the electric field at r ≥ c. (iv) Find the electric field
in the region with radius r where b < r < c (v) Construct a spherical gaussian surface of radius r,
where b < r < c, and find the net charge enclosed by this surface. (vi) Construct a spherical gaussian
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surface of radius r, where a < r < b, and find the net charge enclosed by this surface. (vii) Find the
electric field in the region a < r < b. (viii) Construct a spherical gaussian surface of radius r < a, and
find an expression for the net charge enclosed by this surface, as a function of r. Note that the charge
inside this surface is less than 3Q. (ix) Find the electric field in the region r < a. ( x ) Determine the
charge on the inner surface of the conducting shell. (xi) Determine the charge on the outer surface of
the conducting shell. (xii) Make a plot of the magnitude of the electric field versus r.

Solution: (i) qin = 3Q − Q = 2Q. (ii) The charge distribution is spherically symmetric and qin > 0.
Thus, the field is directed radially outward. (iii) For r ≥ c, E = 1

4πϵ0
qin
r2

= Q
2πϵ0r2

. (iv) Since all points

within this region are located inside conducting material, E = 0, for b < r < c. (v) ΦE =
∫
E⃗ · dA⃗ =

0 ⇒ qin = ϵ0ΦE = 0. (vi) qin = 3Q. (vii) For a ≤ r < b,E = 1
4πϵ0

qin
r2

= 3Q
4πϵ0r2

(radially outward).

(viii) qin = ρV = 3Q
4
3
πa3

4
3πr

3 = 3Q r3

a3
. (ix) For 0 ≤ r ≤ a,E = qin

4πϵ0r2
= 3Qr

4πϵ0a3
(radially outward). (

x ) From part (iv), for b < r < c,E = 0.Thus, for a spherical gaussian surface with b < r < c, qin =
3Q + qinner = 0 where qinner is the charge on the inner surface of the conducting shell. This yields
qinner = −3Q. (xi) Since the total charge on the conducting shell is qnet = qouter + qinner = −Q, we
have qouter = −Q− qinner = −Q− (−3Q) = 2Q. (xii) This is shown in the figure below:

Problem 3. Imagine the xy plane, the xz plane, and the yz plane all made of metal and soldered
together at the intersections. A single point charge Q is located a distance d from each of the planes.
Sketch the configuration of image charges you need to satisfy the boundary conditions. What is the
direction and magnitude of the force that acts on the charge Q?

Solution: The required image charges are at the other seven corners of a cube of side 2d, as shown in
the figure below. This configuration satisfies the condition of equipotential surfaces where the planes
are; the potential is zero at every point on these planes, because at any such point,

∑
(±Q/r) = 0 by

symmetry. Equivalently, the total electric field is perpendicular to all of the planes at every point. This
can be seen by grouping the eight charges into four dipoles (with charges on opposite sides of a given
plane); the field from each dipole is perpendicular to the plane at every point on the plane. By su-
perposition, the field from all four dipoles is also perpendicular to the plane at every point on the plane.

From the symmetry of the setup, the net force on Q is directed toward (or away) from the origin
(the center of the cube of side 2d ). So we need compute only the force components in that direction.
There are three classes of charges:

• Three charges −Q at a distance 2d make an angle cos−1(1/
√
3) with the direction toward the

origin. This follows from the fact that the diagonal of the cube has length
√
3(2d). Alternatively,

you can find the cosine by using the two standard expressions for the dot product. We therefore
have (ignoring the 4πϵ0 ),
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F1 = 3
Q2

(2d)2
· 1√

3
=

√
3

4

Q2

d2
(toward origin).

• Three charges Q at a distance 2
√
2d make an angle cos−1(

√
2/
√
3) with the direction toward the

origin. So

F2 = 3
Q2

(2
√
2d)2

·
√
2√
3
=

√
3

4
√
2

Q2

d2
(away from origin).

• One charge −Q at a distance 2
√
3d is located in line with the origin. So

F3 =
Q2

(2
√
3d)2

=
Q2

12d2
. (toward origin)

The total force on Q is therefore (bringing back in the 4πϵ0 )

F =
1

4πϵ0

(√
3

4
−

√
3

4
√
2
+

1

12

)
Q2

d2
≈ (0.210)

4πϵ0

Q2

d2
(toward origin).

Problem 4. If a point charge is located outside a hollow conducting shell, there is an electric field
outside, but no electric field inside. On the other hand, if a point charge is located inside a hollow
conducting shell, there is an electric field both inside and outside (although the external field would
be zero in the special case where the shell happened to have charge exactly equal and opposite to the
point charge). The situation is therefore not symmetric with respect to inside and outside. Explain
why this is the case, by considering where electric field lines can begin and end.

Solution: Electrostatic field lines can begin and end only at charges or at infinity. Also, there can be
no closed loops since curl E = 0.

If the point charge is located outside the shell, the field lines can have their ends at the point charge,
the shell, or infinity. There can’t be any field lines inside the shell because they would have to start at
one point on the shell and end at another. This would imply a nonzero potential difference between
these two points, contradicting the fact that all points on the shell have the same potential.

If the point charge is located inside the shell, the field lines starting at the point charge must end
up on the shell. And there can be field lines outside the shell because they can have one end on the
shell and the other end at infinity.

We see that the basic difference between inside and outside is that the inside region has only one
boundary (the shell), while the outside region has two (the shell and infinity). The former case there-
fore requires the existence of an additional termination point (a charge) if field lines are to exist.
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