Let’s review the exam information

1 Basic Information

e Date and time: Thursday, January 16 at 9:15am
e Duration: 3 hours
e Location: SwissTech convention center

e You are allowed to bring one A4 cheat sheet (Writing both in the front and back is
allowed).



Let’s review the exam information

2 Exam format

e The exam will consist of 20-30 multiple choice questions and 3-4 open questions.

e (Questions will test both your conceptual understanding and you ability to to solve
problems.



Let’s review the exam information

3 Exam content

All material from Lectures 1 to 24 will be covered the exam. Similarly, you are expected
to be ale to solve all the types of problems covered in the exercise sheets. You will be
tested both on your conceptual understanding and your ability to solve problems carrying
out analytical calculations (i.e. you are expected to know how to apply different formulas
and do the math). The entire semester we have been careful to define the units of all
physical observables discussed (e.g. electric field, potential, magnetic field inductance,
capacitance...), you are expected to know them and understand the physical interpreta-
tion of these observables with the help of dimensional analysis.

To help you study here is a list of the knowledge of the topics covered in each lecture
you are expected to have, as well as the types of problems you are expected to know how
to solve. You will see this is a summary of the content of the lectures and the exercise
sheets.
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 Example of what you need to know from Lecture 13:

13. Magnetostatics I. Lorentz force.

e Understand the concept of magnetic force and magnetic field.

e Ability to use Lorentz force law to calculate the trajectory, velocity or mass
of a charged particle in a magnetic field.

e Understand why magnetic forces do no work.

e Ability to calculate forces and torques on current loops with diverse geometries
in external magnetic fields.

On moodle week 14 you willl find the document
“Electromagnetism_exam_information”

With this information for every lecture of the course



When do we use Coulomb or Gauss to calculate E?

* |f the problem has symmetries use Gauss, otherwise use Coulomb.
* (Gauss will always be quicker to do calculations.
* |f you use Gauss don’t forget to specify the direction of E.

* TIP: Check if your charge distribution is a superposition of two or more
distributions with symmetries. Then you can use Gauss and the principle of
superposition to calculate E.



Computing the electric field Coulomb
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depending on whether the charge is distributed over a length, an area, or a volume.

(3) Substitute dg into the expression for dE .

(4) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and
express the differential element ( d/, d4 or dV ) and r in terms of the coordinates (see
Table 2.1 below for summary.)
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(5) Rewrite dE in terms of the integration variable(s), and apply symmetry argument to

identify non-vanishing component(s) of the electric field.

(6) Complete the integration to obtain E .




omputing the electric field Gauss
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The following steps may be useful when applying Gauss’s law:
(1) Identify the symmetry associated with the charge distribution.

(2) Determine the direction of the electric field, and a “Gaussian surface” on which the
magnitude of the electric field 1s constant over portions of the surface.

(3) Divide the space into different regions associated with the charge distribution. For
each region, calculate g__, the charge enclosed by the Gaussian surface.

(4) Calculate the electric flux @, through the Gaussian surface for each region.

(5) Equate @, with q__/¢&,, and deduce the magnitude of the electric field.



When do we use Biot-Savart or Ampere to calculate B?

* |f the problem has symmetries use Ampere, otherwise use Biot-Savart.
 Ampere will always be a quicker to do calculations.
* |f you use Ampere don’t forget to specify the direction of B.

* TIP: Check if your current distribution is a superposition of two or more
distributions with symmetries. Then you can use Ampere and the principle of
superposition to calculate B.



Computing the magnetic field Biot-Savart
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The law states that the magnetic field at a point P due to a length element ds carrying a
steady current / located at ¥ away is given by

dﬁ:'uo] dsxr _ p,l dsx¥
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The calculation of the magnetic field may be carried out as follows:

(1) Source point: Choose an appropriate coordinate system and write down an expression
for the differential current element 7/ ds, and the vector r'describing the position of 7 ds .

The magnitude »'=|r'| is the distance between I/ ds and the origin. Variables with a
“prime” are used for the source point.

(2) Field point: The field point P is the point in space where the magnetic field due to the
current distribution is to be calculated. Using the same coordinate system, write down the

position vector I, for the field point P. The quantity 7, =|r, |is the distance between the

origin and P.

(3) Relative position vector: The relative position between the source point and the field
point is characterized by the relative position vector r=r, —r'. The corresponding unit
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wherer =|F|=|r, —I'| is the distance between the source and the field point P.

(4) Calculate the cross product ds xr or ds xr . The resultant vector gives the direction of
the magnetic field B, according to the Biot-Savart law.

(5) Substitute the expressions obtained to dB and simplify as much as possible.

(6) Complete the integration to obtain B if possible. The size or the geometry of the
system is reflected in the integration limits. Change of variables sometimes may help to
complete the integration.



Computing the magnetic Field Ampere
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How do you determine the direction of B?

* For a detailed explanation of the direction of the magnetic field of the most common
current geometries please read Purcell 6.4,6.5, 6.6 pages 296-300.

* Please read and understand these sections, it will greatly help you during the exam.



How do you determine the direction of the Lorentz force?
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How do you do calculations in different coordinate systems?

F.1 Vector operators
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F.1.2 Cylindrical coordinates
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F.3 Divergence

The divergence produces a scalar from a vector. The divergence of a
vector function was defined in Eq. (2.47) as the net flux out of a given
small volume, divided by the volume. In Section 2.10 we derived the
form of the divergence in Cartesian coordinates, and it turned out to be
the dot product of the V operator with a vector A, that is, V - A. We use
the same method here to derive the form in cylindrical coordinates. We
then give a second, more mechanical, derivation. A third derivation is
left for Exercise F.2.

F.3.1 Cylindrical divergence, first method

Consider the small volume that is generated by taking the region in the
r-0 plane shown in Fig. F.2 and sweeping it through a span of z values
from a particular z up to z + Az (the z axis points out of the page). Let’s
first look at the flux of a vector field A through the two faces perpendic-
ular to the z direction. As in Section 2.10, only the z component of A is
relevant to the flux through these faces. In the limit of a small volume, the
area of these faces is r Ar Af. The inward flux through the bottom face
equals A,(z) r Ar A6, and the outward flux through the top face equals
A,(z+ Az) r Ar AG. We have suppressed the r and 6 arguments of A, for
simplicity, and we have chosen points at the midpoints of the faces, as in
Fig. 2.22. The net outward flux is therefore
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Figure F.2.
A small region in the -6 plane.

 Check appendix F of Purcell. It has all the tormulas tor operations with the del operator in different coordinate

systems.

* This appendix also has some explanations so you get some intuition on what these operations are
geometrically and physically. An it includes the derivations of these equations if you want to understand them.



How do we use the method of images?

(a) (b) )

* This is explained in section 3.4 Purcell (page136)



What are bound charges?
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What are bound charges?
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What are bound charges?
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What are bound currents?

Let's cosder a slab oFunr)%‘rmlﬁ {fWﬁ(ﬂl\Bﬂd materal

lFue | e fiag pradenal Full 6ting Lo WP“’W
adtp::l“l(gwnen‘i'.‘ J e T

’l'\
o7 N B
. N
w

2 -

| N N cdnent af-adjacerd gps will cncel /
but Tre bouv\dof:j wot e f

?\ Thickress dFsab

50 v Wil Jet coe  effechve, gurfuce cumrent truf loks | (ke !

What S fre cunet
N TS o 14

Letlls agsuneThat each are of 1o
‘hh& Loofu has an area g
and fhiekness
Ja b bk -
oyt P_SL = xn This exprassion also Imelies
., That+there s np cunenton fie 5
Bp o bafond heslob becowe ek M /1A
L6 The uass podud vang Fed,




What are bound currents?

Now wirat hoppens 3R mogreﬂ'lad‘hﬂf\ S hOh-unlﬁ'ﬂ’Y\?

| bops will o ignops <o’ , S0
n s cwe e inkemol currents  gf-adjaent loops
f;\e;e, Wil b2 netunerit  befu-een ad (asUTt  chunks g mogefl 3=
matenal . - ety ki |

1 d

% | /

A
N
1

| A P ue hove a loger mgﬂfe:ﬂaemaq
, ' A ’,Id‘& adt 3 +C cg’necr@( .
——-/= ) f'% ur,wtngg—a nef-OAnent Stn He_

 direchion UJPQ(Q:HrQ,'L&\Q‘ﬁS Foim

L

=, gven by
T = [Melyeay) —Maty) [T
| Y mdcmfdinﬂt
P Lin ﬁg@axmamgqm donokotgj
. = aﬂg d%dj
°)
—-—'-') j:y > o MZ ;
.._X -.:c'? H -
Ldz-d:l a:j :E bsy Z'j
Veluna, =
cAMend
=T,



How do we solve circuits?

Direct current circuits

e Kirchhoff’s rules:

(1) The sum of the currents flowing into a junction 1s equal to the sum of the
currents flowing out of the junction:

Zlin = Zlout

(2) The algebraic sum of the changes 1n electric potential in a closed-circuit loop
1S Z€ro.

> AV=0

closed loop



How do we solve circuits?

Direct current circuits

(1) Draw a circuit diagram, and label all the quantities, both known and unknown. The

number of unknown quantities 1s equal to the number of linearly independent
equations we must look for.

(2) Assign a direction to the current in each branch of the circuit. (If the actual direction
1s opposite to what you have assumed, your result at the end will be a negative
number.)

(3) Apply the junction rule to all but one of the junctions. (Applying the junction rule to
the last junction will not yield any independent relationship among the currents.)

(4) Apply the loop rule to the loops until the number of independent equations obtained 1s
the same as the number of unknowns. For example, if there are three unknowns, then

we must write down three linearly independent equations in order to have a unique
solution.



How do we solve circuits?

Direct current circuits

Traverse the loops using the convention below for AV :

travel direction travel direction
: higher V lower V lower V P— higher V
resistor
. M A M :
a b a b
AV=Vp—=V4=~IR AV=Vy -V, =+IR
travel direction travel direction
q q
emf lower V - gl 4+ higher V higher V + |8 _ lower V
source a ] . . | I .
a | b a b
AV=Vy-V,=+E AV=Vy—-V,=-E
travel direction travel direction
q q
_ lower V —q +q higher V higher V +g —q lower V
capacitor o | . . | .
g | : ; | .
AV=Vy—V,=+q/C AV=Vp—Vy=—q/C

The same equation is obtained whether the closed loop is traversed clockwise or
counterclockwise. (The expressions actually differ by an overall negative sign.
However, using the loop rule, we are led to0=-0, and hence the same equation.)

(5) Solve the simultaneous equations to obtain the solutions for the unknowns.




How do we solve circuits?

Alternating current circuits/ Review on phasors

1. Keep 1n mind the phase relationships for simple circuits

(1) For a resistor, the voltage and the phase are always 1n phase.
(2) For an inductor, the current lags the voltage by 90°.
(3) For a capacitor, the current leads to voltage by 90°.

2. When circuit elements are connected 1n series, the instantaneous current 1s the same for
all elements, and the instantaneous voltages across the elements are out of phase. On
the other hand, when circuit elements are connected in parallel, the instantaneous
voltage 1s the same for all elements, and the instantaneous currents across the elements

are out of phase.

3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the
voltage drop across all the circuit elements involved should be represented with
phasors. In Figure 12.8.1 the phasor diagram for a series RLC circuit 1s shown for both

the inductive case X, > X . and the capacitive case X, < X ...



How do we solve circuits?

Alternating current circuits

K VL ot I_/bco

V1o
2
Patfd
[ 0 % RO
I—/:C 0

— J— J— R o—— JU— —_— ‘

Figure 12.8.1 Phasor diagram for the series RLC circuit for (a) X, > X, and (b)

X, <X,.

From Figure 12.8.1(a), we see that ¥, > V.., in the inductive case and ¥, leads I, by a
phase ¢ . On the other hand, in the capacitive case shown in Figure 12.8.1(b), V., >V,

and ] , leads 170 by a phase¢ .



How do we solve circuits?

Alternatina current circuits

5. For parallel connection, draw a phasor diagram for the currents. The amplitudes of the
currents across all the circuit elements involved should be represented with phasors. In
Figure 12.8.2 the phasor diagram for a parallel RLC circuit 1s shown for both the

inductive case X, > X . and the capacitive case X, < X ..

Figure 12.8.2 Phasor diagram for the parallel RLC circuit for (a) X, > X, and (b)
X, <X,.

From Figure 12.8.2(a), we see that I,, > I ., in the inductive case and ¥, leads I, by a

phase ¢ . On the other hand, in the capacitive case shown 1n Figure 12.8.2(b), 1., > I,,
and fo leads 170 by a phase¢ .



Can you also summarize when the electric and magnetic fields are zero or not,
depending on the material, geometry, etc.?

Summary Table

Material/Geometry Electric Field (E) Magnetic Field (B)

Static conductor E = 0 inside B # 0 if current flows
Dynamic conductor E # 0 inside B # 0 if current flows
Insulator (dielectric) E # 0 inside B depends on external fields
Superconductor E = 0 inside B = 0 inside (Meissner effect)
Cavity in conductor E = 0 if no charges inside B = 0 if no external fields

Far from charges/currents E « 1/7% (point) B o 1/r° (dipole)

Time-varying fields E # 0 induced B +# 0 induced

This framework should help clarify when E and B are zero or not!



Electromagnetic waves why use sine or cosine?

The choice between using sine or cosine for representing electromagnetic waves depends on the
Initial conditions, convention, and phase of the wave. Both are mathematically equivalent, as
one can always be expressed in terms of the other with a phase shift. Here's a breakdown of

when to use each:

1. Initial Conditions of the Wave

e |f the wave starts at a maximum or minimum amplitude (e.g., att{ = 0 or z = 0), the cosine

form is typically used:

Y(x,t) = Acos(kx — wt)

e If the wave starts at zero amplitude and is increasing or decreasing at £ = 0, the sine form

IS used:

Y(x,t) = Asin(kx — wt)

This choice aligns with the fact that cosine starts at 1 (maximum amplitude at 8 = 0), while sine

starts at O.




2. Phase of the Wave

e |f the wave has a phase shift, you can use either sine or cosine, but include the appropriate

phase factor ¢:

e Cosine form with phase:

Y(x,t) = Acos(kx — wt + ¢)

e Sine form with phase:

Y(x,t) = Asin(kx — wt + @)

The phase ¢ determines the starting point of the wave. For example: - ¢ = 0: A cosine wave

starts at maximum. - ¢ = 7 /2: A sine wave and a cosine wave are equivalent.




3. Physical or Practical Context

e Cosine is often the default in textbooks and analysis because it is mathematically convenient

to start at a maximum amplitude when describing standing waves or harmonic oscillators.

e Sine may be more convenient in contexts where initial conditions or symmetry suggest a

starting point of zero amplitude (e.g., Fourier series often uses sine terms for odd symmetry).




If you need help getting started with your formula sheet check out appendix

D.4 The formulas

D.4 of Purcell

Chapter 1
Coulomb’s law (1.4):

potential energy (1.9):

electric field (1.20):
force and field (1.21):

flux (1.26):

Gauss’s law (1.31):

field due to line (1.39):

field due to sheet (1.40):

AE across sheet (1.41):

field near shell (1.42):

F'/(area) on sheet (1.49):

energy in E field (1.53):

1 gigor
F— q14q2r
deg r?
1
U — q192
47‘(60 r
1 ot
E= L
47T€() r2
F =gE

A
E, =
27[6()}‘
E— o
—260
AE = Zi
€0
o
Er=_
€0
E——(E1+E2)0
A 2
U= — | E°d
2/ ’

q1got
F =
r2
U — 9192
r
gr
E=—
72
(same)
(same)
/ E-da=4nq
2\
E, = —
E=2no
AE = 4mon
E,=4no
(same)
1 2
U= — |E“dv
8

Chapter 11

dipole moment (11.9):

vector potential (11.10):

dipole (B,, Bg) (11.15):
force on dipole (11.23):

orbital m for e (11.29):

polarizability (11.41):

torque on dipole (11.47):

polarization density (11.51):

susceptibility x,, (11.52):

Xpm for weak B (11.53):

surface density 7 (11.55):
volume density J (11.56):

H field (11.68):

curl of H (11.69):

(integrated form) (11.70):

xm (accepted def.) (11.72):
permeability (11.74):
B and H (11.74):

m=Ja

m x r
A=K
47 r?
Hom
3

(2cos@,sinf)
Amr

F=V(@m-:B)

—e

L

m =
2m,
Am e2r?

B 4m,
N=mxB

J=M
J =curlM

B
H=— -M

M0

curl H = Jfree

/ H. dl = lee
M

— XmH

w = ol + xm)
B=uH

m .
—3(2 cos f,sinf)
’

(same)

—e

L

m=
2mec

Am e2r?
B 4m,c?

(same)

(same)

M = x,,B

N Nm?
Xpm ™ Tt
J = Mc
J=cculM

H=B—-47M

4
culH = = Jeoe

.l

C
4
/H dl = _nlfree
c

(same)

m=1+4m xn

(same)



Don’t forget to include your fundamental constants in your formula sheet

Fundamental constants

speed of light ¢ 2.998-10° m/s
elementary charge e 1.602-10~7 C
4.803-10 Y esu
electron mass me 9.109-1073! kg
proton mass mp  1.673- 10~%" kg
Avogadro’s number Npn 6.022-10"2 mole™!
Boltzmann constant k 1.381-107%° J/K
Planck constant h 6.626-107>*Js
gravitational constant G 6.674-107" m’/(kgs?)

electron magnetic moment . 9.285-107%*J/T

proton magnetic moment pup 1411 10~26 J/T
permittivity of free space €y  8.854-107'% C?s?/(kgm’)
permeability of free space  pug 1.257-107% kg m/C?

* Jo get started you can look at the list on Purcell page 825 appendix K.1
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Using Ampere to calculate B
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Using Ampere to calculate B
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Let’s solve a circuit
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12.9.1 RLC Series Circuit

A series RLC circuit with L=160 mH, C = 100 4F, and R=40.0€2 1s connected to a
sinusoidal voltage V' (f) =(40.0 V)sin @t , with & =200 rad/s.

(a) What 1s the impedance of the circuit?

(b) Let the current at any instant in the circuit be / (¢) = I, sin(wt — ¢) . Find L.

(c) What 1s the phase @ ?



Solution:

(a) The impedance of a series RLC circuit 1s given by

Z=\R*+(X,-X.) (12.9.1)
where
X, =olL (12.9.2)
and
1
X =— 12.9.3
c= - ( )

are the inductive reactance and the capacitive reactance, respectively. Since the general
expression of the voltage source 1s V' (¢) =V, sin(wt) , where Vp 1s the maximum output

voltage and o 1s the angular frequency, we have V, =40 V and @ =200 rad/s . Thus, the
impedance Z becomes

2
1
(200 rad/s)(100x10°° F)j (12.9.4)

Z = [(40.0 Q)’ +((200 rad/s)(0.160 H)

\

=43.9Q)



(b) WithV, =40.0 V , the amplitude of the current 1s given by

¥V, 40.0V

] =—=
" Z 4390

=0911A (12.9.5)

(c) The phase between the current and the voltage is determined by

/a)L—L\
¢= an—l(XL_XCjz an ! aoC
R R
\ Y,
[ 1 ) (12.9.6)
(200 rad/s)(0.160 H) - -
y (200 rad/s)(100x10°° F)
= tan =—-24.2°

40.0 Q
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Remember Purcell Chapter 12

This Chapter has the solutions to the exercises in the textbook!



