1 Basic Information

- Date and time: Thursday, January 16 at 9:15am
- Duration: 3 hours
- Location: SwissTech convention center
- You are allowed to bring one A4 cheat sheet (Writing both in the front and back is allowed).

2 Exam format

- The exam will consist of 20-30 multiple choice questions and 3-4 open questions.
- Questions will test both your conceptual understanding and you ability to to solve problems.

3 Exam content

All material from Lectures 1 to 24 will be covered the exam. Similarly, you are expected to be ale to solve all the types of problems covered in the exercise sheets. You will be tested both on your conceptual understanding and your ability to solve problems carrying out analytical calculations (i.e. you are expected to know how to apply different formulas and do the math). The entire semester we have been careful to define the units of all physical observables discussed (e.g. electric field, potential, magnetic field inductance, capacitance...), you are expected to know them and understand the physical interpretation of these observables with the help of dimensional analysis.

To help you study here is a list of the knowledge of the topics covered in each lecture you are expected to have, as well as the types of problems you are expected to know how to solve. You will see this is a summary of the content of the lectures and the exercise sheets.

- Example of what you need to know from Lecture 13:
 - 13. Magnetostatics I. Lorentz force.
 - Understand the concept of magnetic force and magnetic field.
 - Ability to use Lorentz force law to calculate the trajectory, velocity or mass of a charged particle in a magnetic field.
 - Understand why magnetic forces do no work.
 - Ability to calculate forces and torques on current loops with diverse geometries in external magnetic fields.

On moodle week 14 you will find the document "Electromagnetism_exam_information"
With this information for every lecture of the course

When do we use Coulomb or Gauss to calculate E?

- If the problem has symmetries use Gauss, otherwise use Coulomb.
- Gauss will always be quicker to do calculations.
- If you use Gauss don't forget to specify the direction of E.
- TIP: Check if your charge distribution is a superposition of two or more distributions with symmetries. Then you can use Gauss and the principle of superposition to calculate E.

Computing the electric field Coulomb

	Line charge	Ring of charge	Uniformly charged disk
Figure	$ \begin{array}{c c} y \\ P \\ y \\ P' \\ x' \end{array} $	$d\vec{\mathbf{E}} \qquad \vec{\mathbf{E}} \qquad \mathbf$	$dq \qquad \theta \qquad \qquad y \qquad \qquad x \qquad \qquad y \qquad \qquad$
(2) Express dq in terms of charge density	$dq = \lambda dx'$	$dq = \lambda d\ell$	$dq = \sigma dA$
(3) Write down dE	$dE = k_e \frac{\lambda dx'}{r'^2}$	$dE = k_e \frac{\lambda dl}{r^2}$	$dE = k_e \frac{\sigma dA}{r^2}$
(4) Rewrite <i>r</i> and the differential element in terms of the appropriate coordinates	dx' $\cos \theta = \frac{y}{r'}$ $r' = \sqrt{x'^2 + y^2}$	$d\ell = R d\phi'$ $\cos \theta = \frac{z}{r}$ $r = \sqrt{R^2 + z^2}$	$dA = 2\pi r' dr'$ $\cos \theta = \frac{z}{r}$ $r = \sqrt{r'^2 + z^2}$
(5) Apply symmetry argument to identify non-vanishing component(s) of dE	$dE_y = dE \cos \theta$ $= k_e \frac{\lambda y dx'}{(x'^2 + y^2)^{3/2}}$	$dE_z = dE \cos \theta$ $= k_e \frac{\lambda Rz d\phi'}{(R^2 + z^2)^{3/2}}$	$dE_z = dE \cos \theta$ $= k_e \frac{2\pi\sigma z r' dr'}{(r'^2 + z^2)^{3/2}}$
(6) Integrate to get E	$E_{y} = k_{e} \lambda y \int_{-\ell/2}^{+\ell/2} \frac{dx}{(x^{2} + y^{2})^{3/2}}$ $= \frac{2k_{e} \lambda}{y} \frac{\ell/2}{\sqrt{(\ell/2)^{2} + y^{2}}}$	$E_{z} = k_{e} \frac{R\lambda z}{(R^{2} + z^{2})^{3/2}} \oint d\phi'$ $= k_{e} \frac{(2\pi R\lambda)z}{(R^{2} + z^{2})^{3/2}}$ $= k_{e} \frac{Qz}{(R^{2} + z^{2})^{3/2}}$	$E_{z} = 2\pi\sigma k_{e}z \int_{0}^{R} \frac{r'dr'}{(r'^{2} + z^{2})^{3/2}}$ $= 2\pi\sigma k_{e}\left(\frac{z}{ z } - \frac{z}{\sqrt{z^{2} + R^{2}}}\right)$

In this table $k_e=1/(4\pi\epsilon_0)$

- (1) Start with $d\vec{\mathbf{E}} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \hat{\mathbf{r}}$
- (2) Rewrite the charge element dq as

$$dq = \begin{cases} \lambda \, d\ell & \text{(length)} \\ \sigma \, dA & \text{(area)} \\ \rho \, dV & \text{(volume)} \end{cases}$$

depending on whether the charge is distributed over a length, an area, or a volume.

- (3) Substitute dq into the expression for $d\vec{\mathbf{E}}$.
- (4) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and express the differential element ($d\ell$, dA or dV) and r in terms of the coordinates (see Table 2.1 below for summary.)

	Cartesian (x, y, z)	Cylindrical (ρ, ϕ, z)	Spherical (r, θ, ϕ)
dl	dx, dy , dz	$d\rho$, $\rho d\phi$, dz	$dr, r d\theta, r \sin \theta d\phi$
dA	dx dy, $dy dz$, $dz dx$	$d\rho dz$, $\rho d\phi dz$, $\rho d\phi d\rho$	$r dr d\theta$, $r \sin \theta dr d\phi$, $r^2 \sin \theta d\theta d\phi$
dV	dx dy dz	$\rho d \rho d \phi dz$	$r^2 \sin\theta dr d\theta d\phi$

- (5) Rewrite $d\vec{E}$ in terms of the integration variable(s), and apply symmetry argument to identify non-vanishing component(s) of the electric field.
- (6) Complete the integration to obtain $\vec{\mathbf{E}}$

Computing the electric field Gauss

System	Infinite line of charge	Infinite plane of charge	Uniformly charged solid sphere
Figure	+ + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	a
Identify the symmetry	Cylindrical	Planar	Spherical
Determine the direction of $\vec{\mathbf{E}}$	+ + + + + + + + + + + + + + + + + + +	E Z V V T T T T T T T T T T T	E a
Divide the space into different regions	r > 0	z > 0 and $z < 0$	$r \le a$ and $r \ge a$
Choose Gaussian surface	$\vec{E}_{3} d\vec{A}_{3} \vec{E}_{2}$ $d\vec{A}_{2}$ $+ + +$ $d\vec{A}_{1} s_{1} s_{2}$ $\vec{E}_{3} d\vec{A}_{3} \vec{E}_{2}$ $+ + +$ $d\vec{A}_{1} s_{1} s_{2}$ $\vec{E}_{3} d\vec{A}_{3} \vec{E}_{2}$ $+ + +$ $d\vec{A}_{1} s_{1} s_{2}$ $\vec{E}_{3} d\vec{A}_{3} \vec{E}_{2}$ $\vec{E}_{4} d\vec{A}_{1} \vec{E}_{2}$ $\vec{E}_{3} d\vec{A}_{3} \vec{E}_{2}$ $\vec{E}_{4} d\vec{A}_{1} \vec{E}_{2}$ $\vec{E}_{4} d\vec{A}_{2} \vec{E}_{3} \vec{E}_{4}$ $\vec{E}_{4} d\vec{A}_{3} \vec{E}_{2}$ $\vec{E}_{4} d\vec{A}_{3} \vec{E}_{4}$ $\vec{E}_{5} d\vec{A}_{5} \vec{E}_{5} $	Gaussian pillbox $\vec{E}_1 d\vec{A}_1 \vec{E}_3$ $\vec{A}_3 d\vec{A}_3$ $\vec{E}_4 d\vec{A}_2 d\vec{A}_2$ \vec{E}_2 Gaussian pillbox	Gaussian sphere Concentric sphere
Calculate electric flux	$\Phi_E = E(2\pi r l)$	$\Phi_E = EA + EA = 2EA$	$\Phi_E = E(4\pi r^2)$
Calculate enclosed charge q_{in}	$q_{ ext{enc}} = \lambda l$	$q_{ m enc}$ = σA	$q_{\text{enc}} = \begin{cases} Q(r/a)^3 & r \le a \\ Q & r \ge a \end{cases}$
Apply Gauss's law $\Phi_E = q_{\rm in} / \mathcal{E}_0$ to find E	$E = \frac{\lambda}{2\pi\varepsilon_0 r}$	$E = \frac{\sigma}{2\varepsilon_0}$	$E = \begin{cases} \frac{Qr}{4\pi\varepsilon_0 a^3}, & r \le a \\ \frac{Q}{4\pi\varepsilon_0 r^2}, & r \ge a \end{cases}$

The following steps may be useful when applying Gauss's law:

- (1) Identify the symmetry associated with the charge distribution.
- (2) Determine the direction of the electric field, and a "Gaussian surface" on which the magnitude of the electric field is constant over portions of the surface.
- (3) Divide the space into different regions associated with the charge distribution. For each region, calculate $q_{\rm enc}$, the charge enclosed by the Gaussian surface.
- (4) Calculate the electric flux Φ_E through the Gaussian surface for each region.
- (5) Equate Φ_E with $q_{\rm enc}/\varepsilon_0$, and deduce the magnitude of the electric field.

When do we use Biot-Savart or Ampere to calculate B?

- If the problem has symmetries use Ampere, otherwise use Biot-Savart.
- Ampere will always be a quicker to do calculations.
- If you use Ampere don't forget to specify the direction of B.
- TIP: Check if your current distribution is a superposition of two or more distributions with symmetries. Then you can use Ampere and the principle of superposition to calculate B.

Computing the magnetic field Biot-Savart

Current distribution	Finite wire of length L	Circular loop of radius R
Figure	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r r r r r r r r r r
(1) Source point	$\vec{\mathbf{r}}' = x'\hat{\mathbf{i}}$ $d\vec{\mathbf{s}} = (d\vec{\mathbf{r}}'/dx')dx' = dx'\hat{\mathbf{i}}$	$\vec{\mathbf{r}}' = R(\cos\phi'\hat{\mathbf{i}} + \sin\phi'\hat{\mathbf{j}})$ $d\vec{\mathbf{s}} = (d\vec{\mathbf{r}}'/d\phi')d\phi' = Rd\phi'(-\sin\phi'\hat{\mathbf{i}} + \cos\phi'\hat{\mathbf{j}})$
(2) Field point P	$\vec{\mathbf{r}}_P = y\hat{\mathbf{j}}$	$\vec{\mathbf{r}}_P = z\hat{\mathbf{k}}$
(3) Relative position vector $\vec{\mathbf{r}} = \vec{\mathbf{r}}_P - \vec{\mathbf{r}}'$	$\vec{\mathbf{r}} = y\hat{\mathbf{j}} - x'\hat{\mathbf{i}}$ $r = \vec{\mathbf{r}} = \sqrt{x'^2 + y^2}$ $\hat{\mathbf{r}} = \frac{y\hat{\mathbf{j}} - x'\hat{\mathbf{i}}}{\sqrt{x'^2 + y^2}}$	$\vec{\mathbf{r}} = -R\cos\phi'\hat{\mathbf{i}} - R\sin\phi'\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ $r = \vec{\mathbf{r}} = \sqrt{R^2 + z^2}$ $\hat{\mathbf{r}} = \frac{-R\cos\phi'\hat{\mathbf{i}} - R\sin\phi'\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{\sqrt{R^2 + z^2}}$
(4) The cross product $d\vec{s} \times \hat{r}$	$d\vec{\mathbf{s}} \times \hat{\mathbf{r}} = \frac{y dx' \hat{\mathbf{k}}}{\sqrt{y^2 + x'^2}}$	$d\vec{\mathbf{s}} \times \hat{\mathbf{r}} = \frac{R d\phi'(z\cos\phi'\hat{\mathbf{i}} + z\sin\phi'\hat{\mathbf{j}} + R\hat{\mathbf{k}})}{\sqrt{R^2 + z^2}}$
(5) Rewrite $d\vec{\mathbf{B}}$	$d\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \frac{y dx' \hat{\mathbf{k}}}{(y^2 + x'^2)^{3/2}}$	$d\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \frac{R d\phi'(z\cos\phi'\hat{\mathbf{i}} + z\sin\phi'\hat{\mathbf{j}} + R\hat{\mathbf{k}})}{(R^2 + z^2)^{3/2}}$
(6) Integrate to get $\vec{\mathbf{B}}$	$B_{x} = 0$ $B_{y} = 0$ $B_{z} = \frac{\mu_{0}Iy}{4\pi} \int_{-L/2}^{L/2} \frac{dx'}{(y^{2} + x'^{2})^{3/2}}$ $= \frac{\mu_{0}I}{4\pi} \frac{L}{y\sqrt{y^{2} + (L/2)^{2}}}$	$B_{x} = \frac{\mu_{0}IRz}{4\pi(R^{2} + z^{2})^{3/2}} \int_{0}^{2\pi} \cos\phi' d\phi' = 0$ $B_{y} = \frac{\mu_{0}IRz}{4\pi(R^{2} + z^{2})^{3/2}} \int_{0}^{2\pi} \sin\phi' d\phi' = 0$ $B_{z} = \frac{\mu_{0}IR^{2}}{4\pi(R^{2} + z^{2})^{3/2}} \int_{0}^{2\pi} d\phi' = \frac{\mu_{0}IR^{2}}{2(R^{2} + z^{2})^{3/2}}$

The law states that the magnetic field at a point P due to a length element $d\vec{s}$ carrying a steady current I located at \vec{r} away is given by

$$d\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \frac{d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2} = \frac{\mu_0 I}{4\pi} \frac{d\vec{\mathbf{s}} \times \vec{\mathbf{r}}}{r^3}$$

The calculation of the magnetic field may be carried out as follows:

- (1) Source point: Choose an appropriate coordinate system and write down an expression for the differential current element $I d\vec{s}$, and the vector \vec{r} ' describing the position of $I d\vec{s}$. The magnitude $r' = |\vec{r}'|$ is the distance between $I d\vec{s}$ and the origin. Variables with a "prime" are used for the source point.
- (2) <u>Field point</u>: The field point P is the point in space where the magnetic field due to the current distribution is to be calculated. Using the same coordinate system, write down the position vector $\vec{\mathbf{r}}_P$ for the field point P. The quantity $r_P = |\vec{\mathbf{r}}_P|$ is the distance between the origin and P.
- (3) <u>Relative position vector</u>: The relative position between the source point and the field point is characterized by the relative position vector $\vec{\mathbf{r}} = \vec{\mathbf{r}}_P \vec{\mathbf{r}}'$. The corresponding unit vector is

$$\hat{\mathbf{r}} = \frac{\vec{\mathbf{r}}}{r} = \frac{\vec{\mathbf{r}}_P - \vec{\mathbf{r}}'}{|\vec{\mathbf{r}}_P - \vec{\mathbf{r}}'|}$$

where $r = |\vec{\mathbf{r}}| = |\vec{\mathbf{r}}_P - \vec{\mathbf{r}}'|$ is the distance between the source and the field point P.

- (4) Calculate the cross product $d\vec{s} \times \hat{r}$ or $d\vec{s} \times \hat{r}$. The resultant vector gives the direction of the magnetic field \vec{B} , according to the Biot-Savart law.
- (5) Substitute the expressions obtained to $d\mathbf{B}$ and simplify as much as possible.
- (6) Complete the integration to obtain $\vec{\mathbf{B}}$ if possible. The size or the geometry of the system is reflected in the integration limits. Change of variables sometimes may help to complete the integration.

Computing the magnetic Field Ampere

System	Infinite wire	Ideal solenoid	Toroid
Figure		N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	
(1) Draw the Amperian loop		1 1 1 1 1 1 1 3 B	
(2) Find the current enclosed by the Amperian loop	$I_{ m enc}=I$	$I_{ m enc} = NI$	$I_{ m enc}=NI$
(3) Calculate $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$ along the loop	$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = B(2\pi r)$	$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = Bl$	$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = B(2\pi r)$
(4) Equate $\mu_0 I_{\text{enc}}$ with $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$ to obtain $\vec{\mathbf{B}}$	$B = \frac{\mu_0 I}{2\pi r}$	$B = \frac{\mu_0 NI}{l} = \mu_0 nI$	$B = \frac{\mu_0 NI}{2\pi r}$

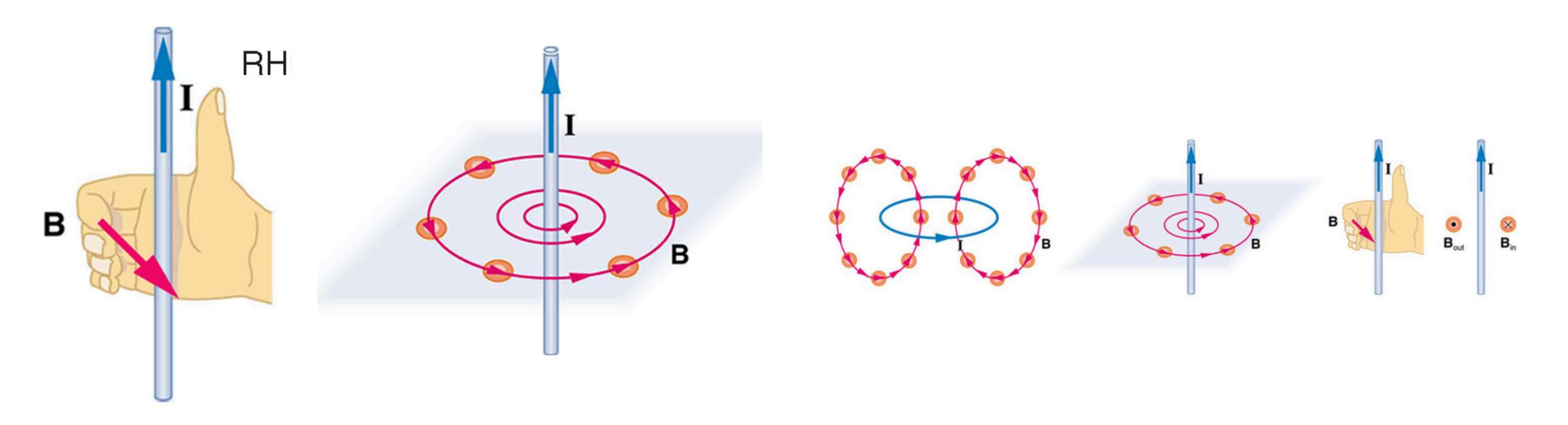
Ampere's law states that the line integral of $\vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$ around any closed loop is proportional to the total current passing through any surface that is bounded by the closed loop:

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{\text{enc}}$$

To apply Ampere's law to calculate the magnetic field, we use the following procedure:

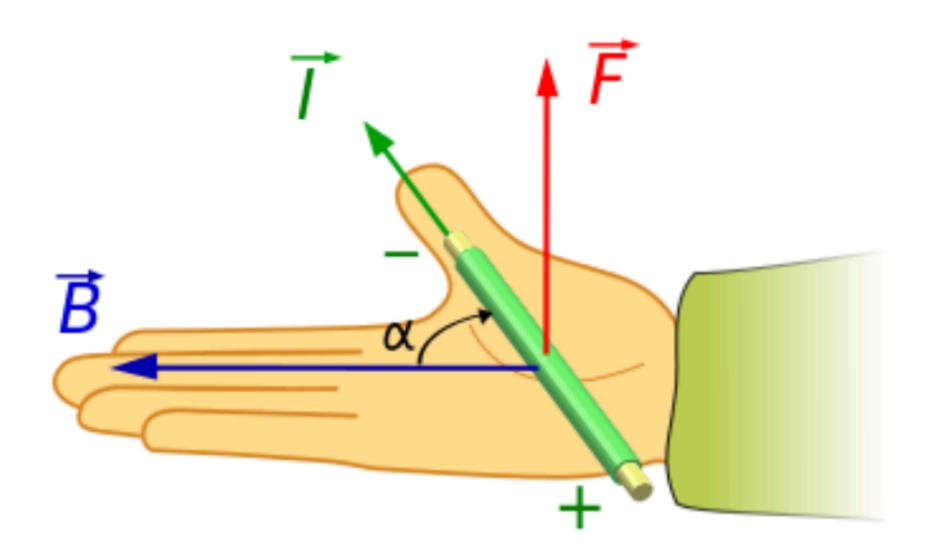
- (1) Draw an Amperian loop using symmetry arguments.
- (2) Find the current enclosed by the Amperian loop.
- (3) Calculate the line integral $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$ around the closed loop.
- (4) Equate $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$ with $\mu_0 I_{\text{enc}}$ and solve for $\vec{\mathbf{B}}$.

How do you determine the direction of B?



- For a detailed explanation of the direction of the magnetic field of the most common current geometries please read Purcell 6.4,6.5, 6.6 pages 296-306.
- Please read and understand these sections, it will greatly help you during the exam.

How do you determine the direction of the Lorentz force?



Force on a current carrying wire

How do you do calculations in different coordinate systems?

F.1 Vector operators F.1.1 Cartesian coordinates

$$d\mathbf{s} = dx\,\hat{\mathbf{x}} + dy\,\hat{\mathbf{y}} + dz\,\hat{\mathbf{z}},$$

$$\nabla = \hat{\mathbf{x}}\frac{\partial}{\partial x} + \hat{\mathbf{y}}\frac{\partial}{\partial y} + \hat{\mathbf{z}}\frac{\partial}{\partial z},$$

$$\nabla f = \frac{\partial f}{\partial x}\,\hat{\mathbf{x}} + \frac{\partial f}{\partial y}\,\hat{\mathbf{y}} + \frac{\partial f}{\partial z}\,\hat{\mathbf{z}},$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z},$$

$$\nabla \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right)\hat{\mathbf{x}} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\hat{\mathbf{y}} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\hat{\mathbf{z}},$$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$
(F.1)

F.1.2 Cylindrical coordinates

$$d\mathbf{s} = dr\,\hat{\mathbf{r}} + r\,d\theta\,\hat{\boldsymbol{\theta}} + dz\,\hat{\mathbf{z}},$$

$$\nabla = \hat{\mathbf{r}}\frac{\partial}{\partial r} + \hat{\boldsymbol{\theta}}\frac{1}{r}\frac{\partial}{\partial \theta} + \hat{\mathbf{z}}\frac{\partial}{\partial z},$$

$$\nabla f = \frac{\partial f}{\partial r}\,\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial f}{\partial \theta}\,\hat{\boldsymbol{\theta}} + \frac{\partial f}{\partial z}\,\hat{\mathbf{z}},$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r}\frac{\partial (rA_r)}{\partial r} + \frac{1}{r}\frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_z}{\partial z},$$

$$\nabla \times \mathbf{A} = \left(\frac{1}{r}\frac{\partial A_z}{\partial \theta} - \frac{\partial A_{\theta}}{\partial z}\right)\hat{\mathbf{r}} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right)\hat{\boldsymbol{\theta}}$$

$$+ \frac{1}{r}\left(\frac{\partial (rA_{\theta})}{\partial r} - \frac{\partial A_r}{\partial \theta}\right)\hat{\mathbf{z}},$$

$$\nabla^2 f = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial f}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}.$$
(F.2)

F.1.3 Spherical coordinates

$$d\mathbf{s} = dr\,\hat{\mathbf{r}} + r\,d\theta\,\hat{\boldsymbol{\theta}} + r\sin\theta\,d\phi\,\hat{\boldsymbol{\phi}},$$

$$\nabla = \hat{\mathbf{r}}\frac{\partial}{\partial r} + \hat{\boldsymbol{\theta}}\frac{1}{r}\frac{\partial}{\partial \theta} + \hat{\boldsymbol{\phi}}\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi},$$

$$\nabla f = \frac{\partial f}{\partial r}\,\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial f}{\partial \theta}\,\hat{\boldsymbol{\theta}} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\,\hat{\boldsymbol{\phi}},$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2}\frac{\partial (r^2A_r)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (A_\theta\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial A_\phi}{\partial \phi},$$

$$\nabla \times \mathbf{A} = \frac{1}{r\sin\theta}\left(\frac{\partial (A_\phi\sin\theta)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi}\right)\hat{\mathbf{r}} + \frac{1}{r}\left(\frac{1}{\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{\partial (rA_\phi)}{\partial r}\right)\hat{\boldsymbol{\theta}},$$

$$+ \frac{1}{r}\left(\frac{\partial (rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta}\right)\hat{\boldsymbol{\phi}},$$

$$\nabla^2 f = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial f}{\partial \theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \phi^2}.$$
(F.3)

F.3 Divergence

The divergence produces a scalar from a vector. The divergence of a vector function was defined in Eq. (2.47) as the net flux out of a given small volume, divided by the volume. In Section 2.10 we derived the form of the divergence in Cartesian coordinates, and it turned out to be the dot product of the ∇ operator with a vector \mathbf{A} , that is, $\nabla \cdot \mathbf{A}$. We use the same method here to derive the form in cylindrical coordinates. We then give a second, more mechanical, derivation. A third derivation is left for Exercise F.2.

F.3.1 Cylindrical divergence, first method

Consider the small volume that is generated by taking the region in the r- θ plane shown in Fig. F.2 and sweeping it through a span of z values from a particular z up to $z + \Delta z$ (the $\hat{\mathbf{z}}$ axis points out of the page). Let's first look at the flux of a vector field \mathbf{A} through the two faces perpendicular to the $\hat{\mathbf{z}}$ direction. As in Section 2.10, only the z component of \mathbf{A} is relevant to the flux through these faces. In the limit of a small volume, the area of these faces is $r \Delta r \Delta \theta$. The inward flux through the bottom face equals $A_z(z) r \Delta r \Delta \theta$, and the outward flux through the top face equals $A_z(z) r \Delta r \Delta \theta$. We have suppressed the r and θ arguments of A_z for simplicity, and we have chosen points at the midpoints of the faces, as in Fig. 2.22. The net outward flux is therefore

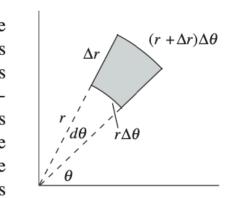


Figure F.2. A small region in the r- θ plane.

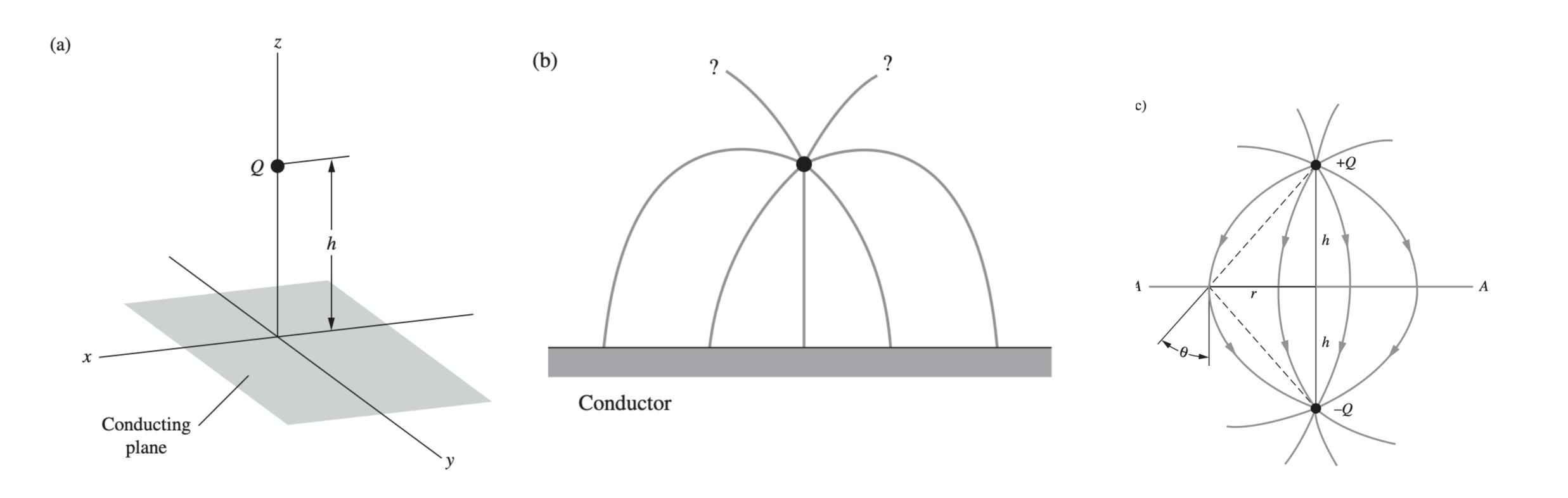
$$\Phi_{z \text{ faces}} = A_z(z + \Delta z) r \Delta r \Delta \theta - A_z(z) r \Delta r \Delta \theta$$

$$= \left(\frac{A_z(z + \Delta z) - A_z(z)}{\Delta z}\right) r \Delta r \Delta \theta \Delta z$$

$$= \frac{\partial A_z}{\partial z} r \Delta r \Delta \theta \Delta z. \tag{F.8}$$

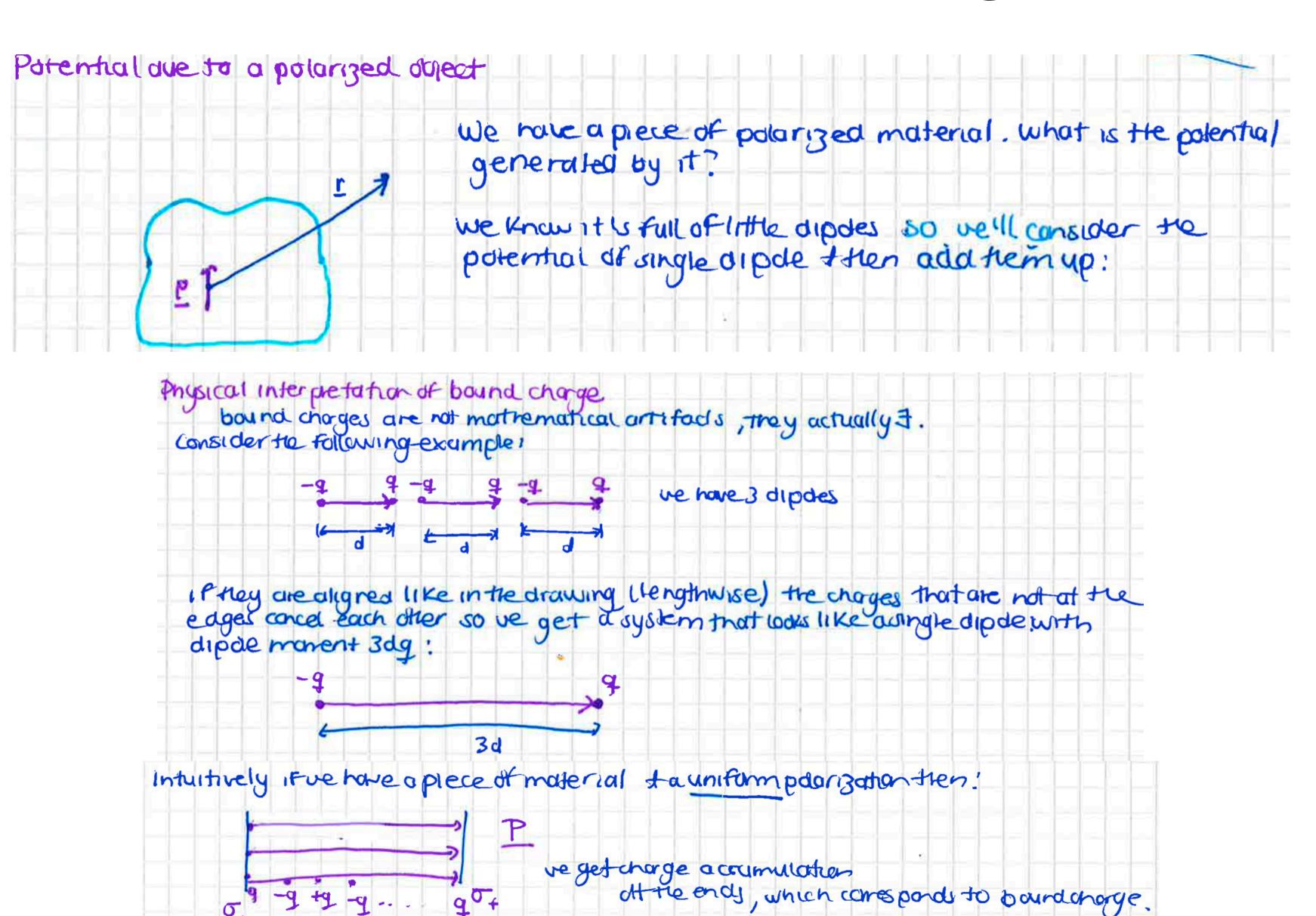
- Check appendix F of Purcell. It has all the formulas for operations with the del operator in different coordinate systems.
- This appendix also has some explanations so you get some intuition on what these operations are
 geometrically and physically. An it includes the derivations of these equations if you want to understand them.

How do we use the method of images?

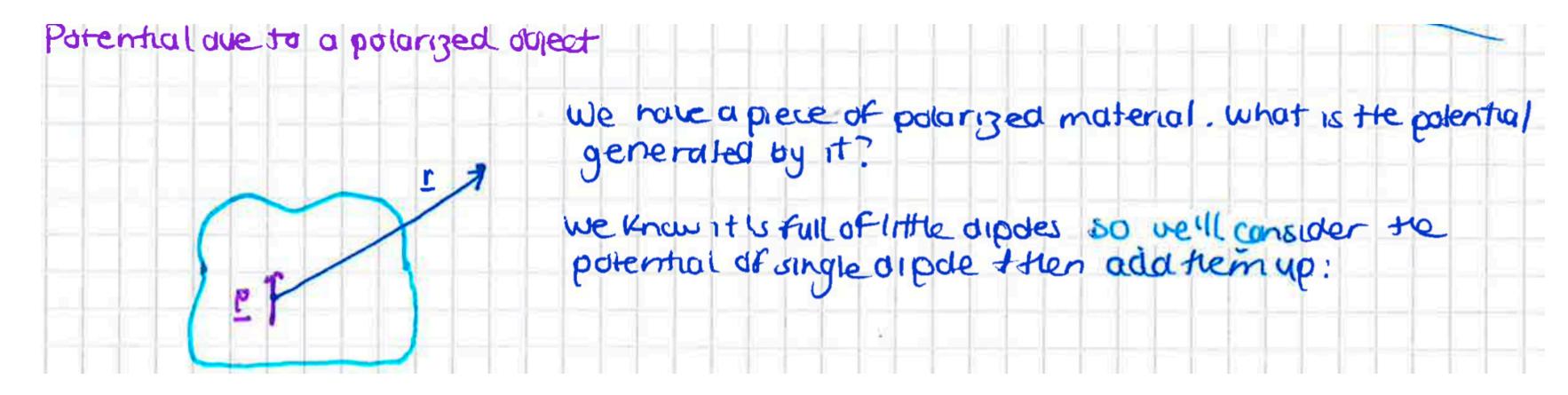


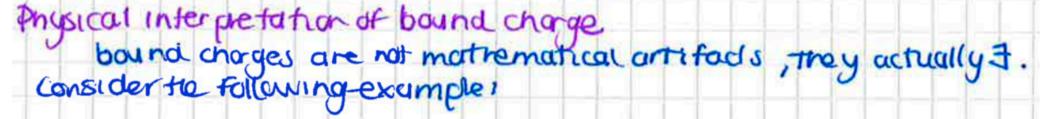
• This is explained in section 3.4 Purcell (page 136)

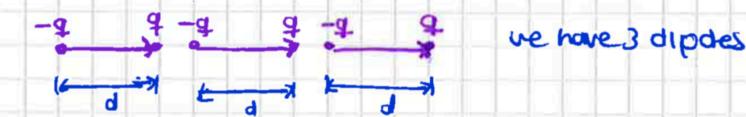
What are bound charges?



What are bound charges?



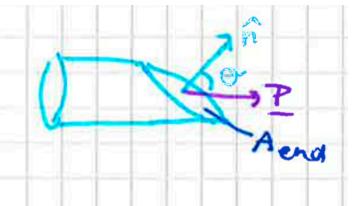




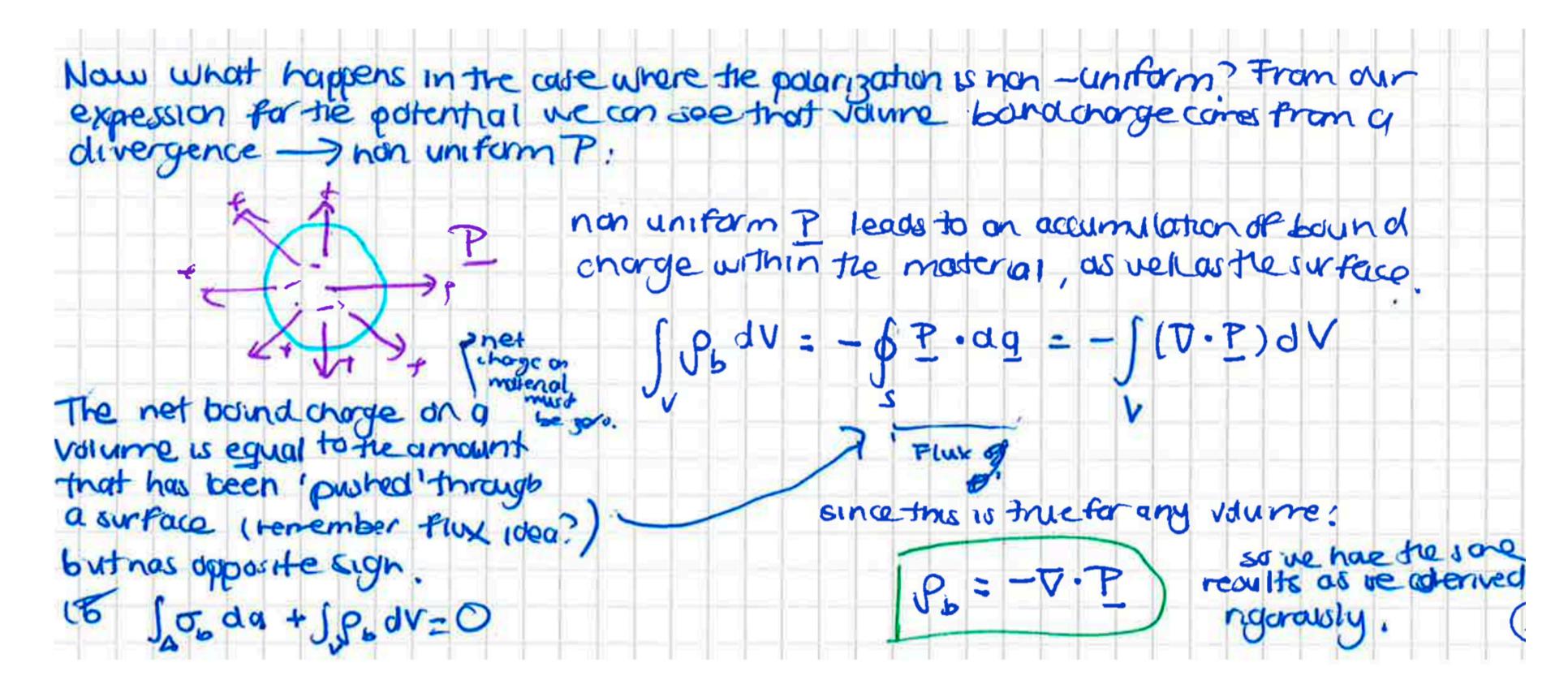
edges concel each other so we get a system that books like a single dipole with dipole moment 3dg:

P of det charge a consequent

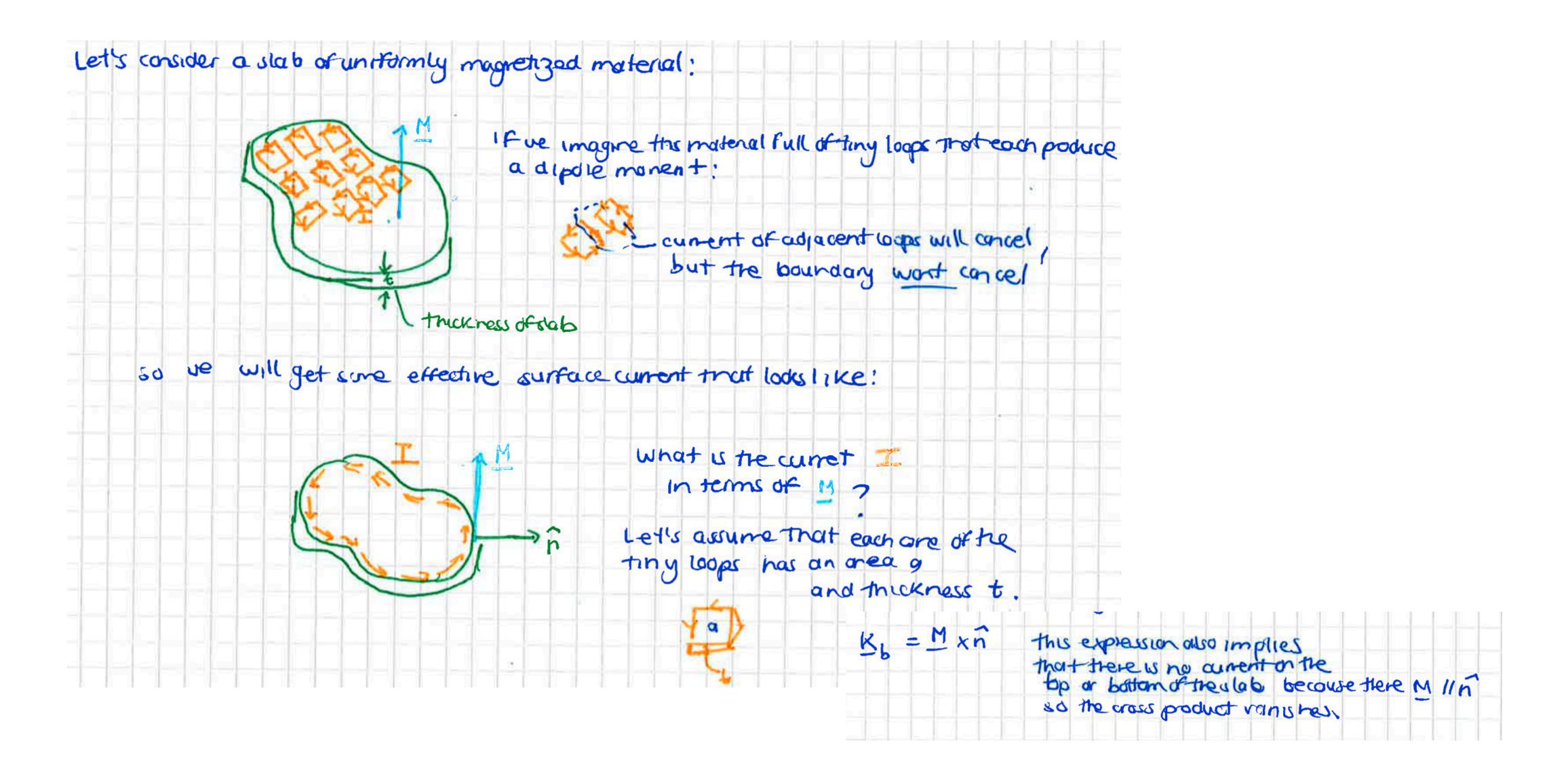
More generally if we have an oblique cut.



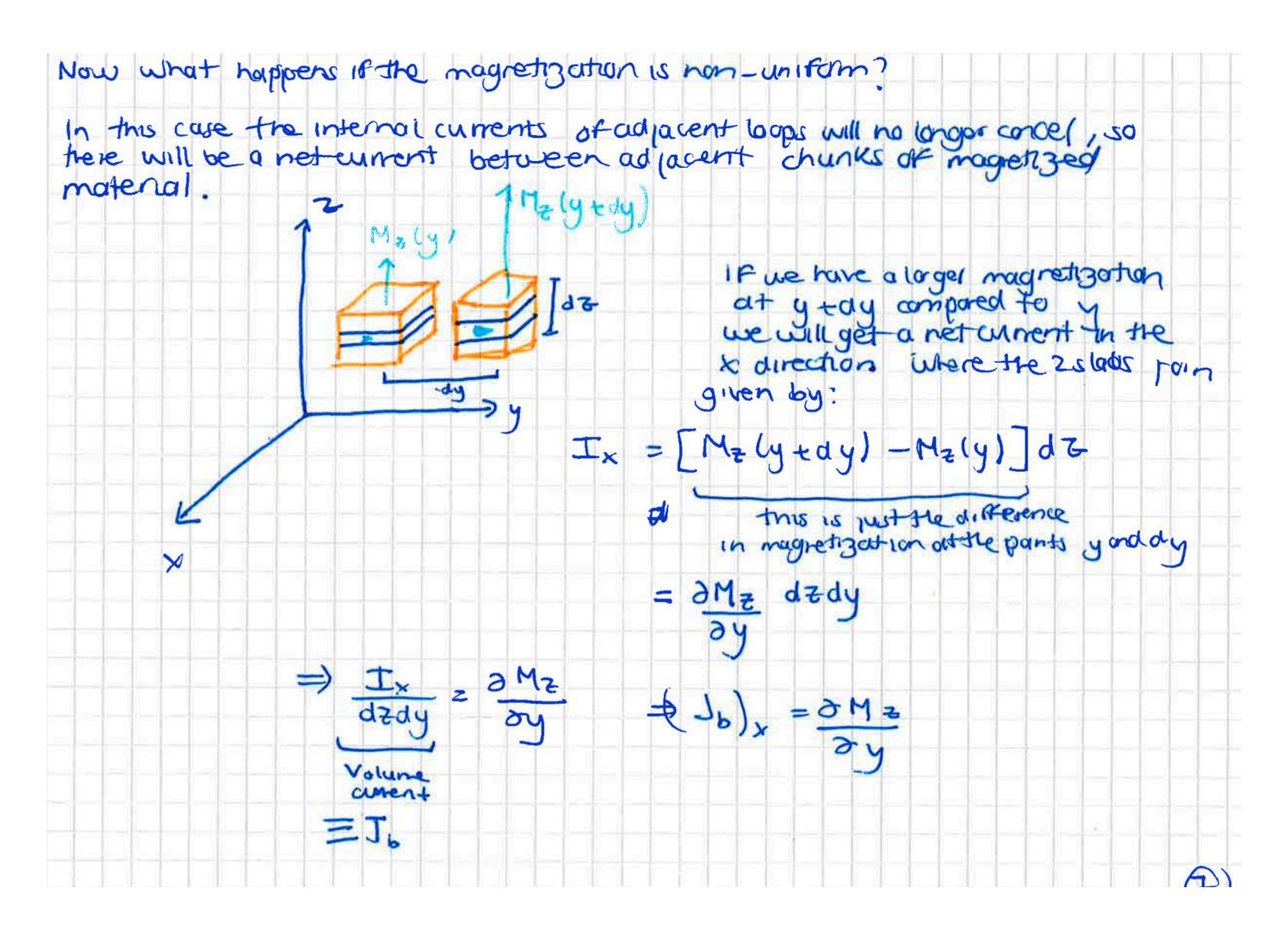
What are bound charges?



What are bound currents?



What are bound currents?



How do we solve circuits?

Direct current circuits

Kirchhoff's rules:

(1) The sum of the currents flowing into a junction is equal to the sum of the currents flowing out of the junction:

$$\sum I_{\rm in} = \sum I_{\rm out}$$

(2) The algebraic sum of the changes in electric potential in a closed-circuit loop is zero.

$$\sum_{\text{closed loop}} \Delta V = 0$$

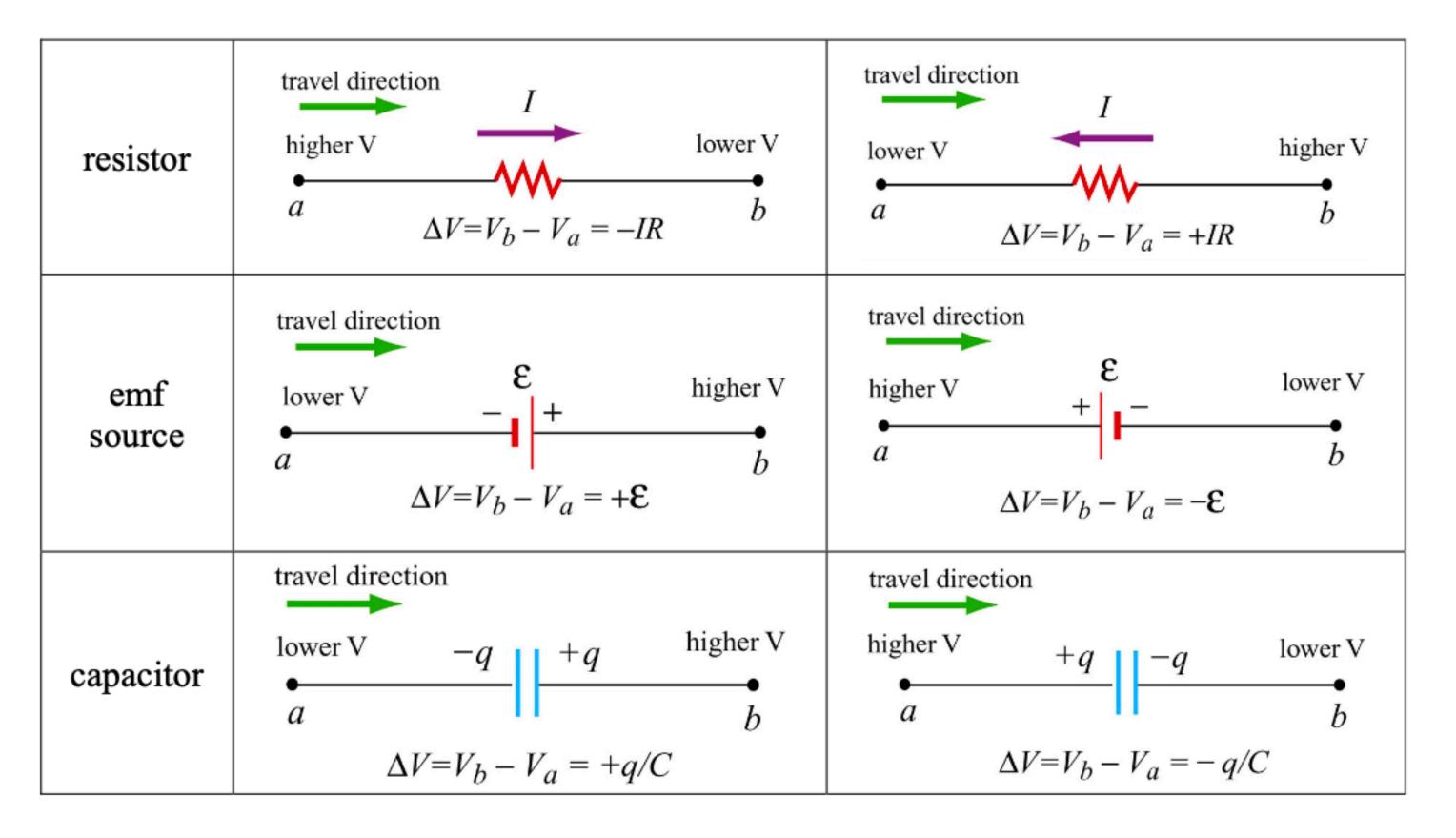
How do we solve circuits?

Direct current circuits

- (1) Draw a circuit diagram, and label all the quantities, both known and unknown. The number of unknown quantities is equal to the number of linearly independent equations we must look for.
- (2) Assign a direction to the current in each branch of the circuit. (If the actual direction is opposite to what you have assumed, your result at the end will be a negative number.)
- (3) Apply the junction rule to all but one of the junctions. (Applying the junction rule to the last junction will not yield any independent relationship among the currents.)
- (4) Apply the loop rule to the loops until the number of independent equations obtained is the same as the number of unknowns. For example, if there are three unknowns, then we must write down three linearly independent equations in order to have a unique solution.

How do we solve circuits? Direct current circuits

Traverse the loops using the convention below for ΔV :



The same equation is obtained whether the closed loop is traversed clockwise or counterclockwise. (The expressions actually differ by an overall negative sign. However, using the loop rule, we are led to 0 = -0, and hence the same equation.)

(5) Solve the simultaneous equations to obtain the solutions for the unknowns.

How do we solve circuits? Alternating current circuits/ Review on phasors

- 1. Keep in mind the phase relationships for simple circuits
 - (1) For a resistor, the voltage and the phase are always in phase.
 - (2) For an inductor, the current lags the voltage by 90°.
 - (3) For a capacitor, the current leads to voltage by 90°.
- 2. When circuit elements are connected in *series*, the instantaneous current is the same for all elements, and the instantaneous voltages across the elements are out of phase. On the other hand, when circuit elements are connected in *parallel*, the instantaneous voltage is the same for all elements, and the instantaneous currents across the elements are out of phase.
- 3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the voltage drop across all the circuit elements involved should be represented with phasors. In Figure 12.8.1 the phasor diagram for a series RLC circuit is shown for both the inductive case $X_L > X_C$ and the capacitive case $X_L < X_C$.

How do we solve circuits?

Alternating current circuits

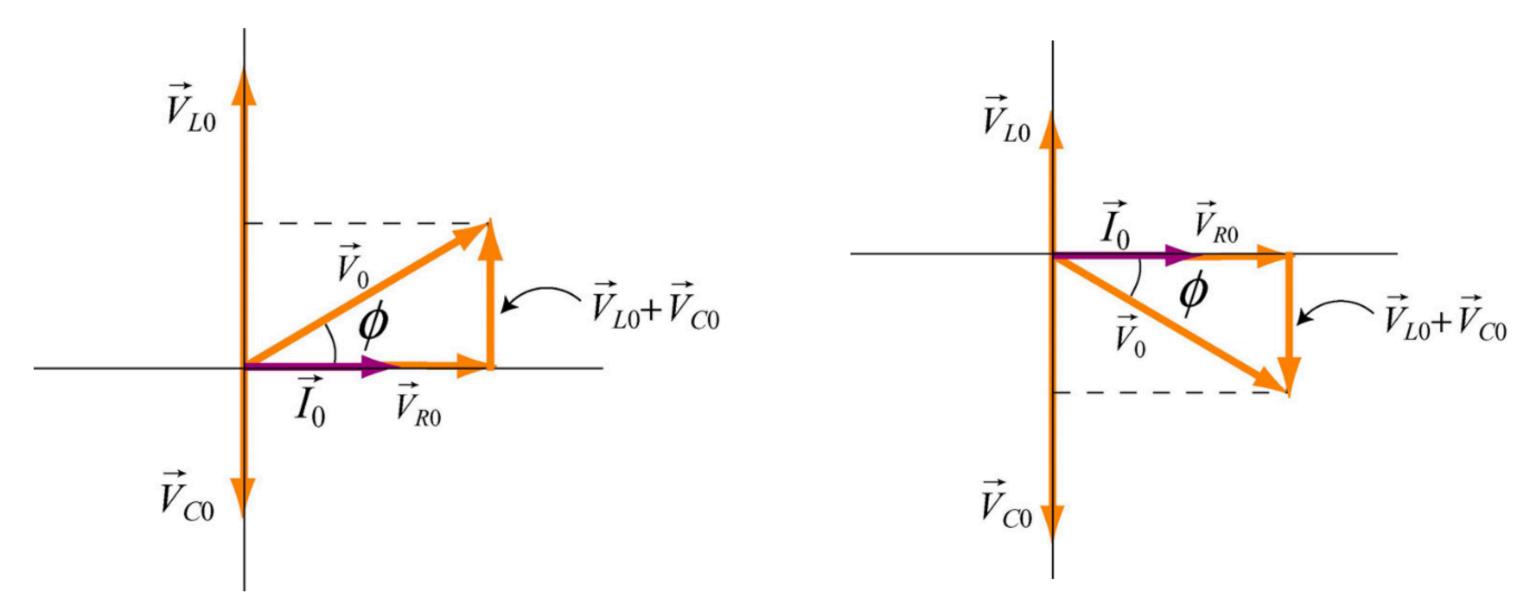


Figure 12.8.1 Phasor diagram for the series RLC circuit for (a) $X_L > X_C$ and (b) $X_L < X_C$.

From Figure 12.8.1(a), we see that $V_{L0} > V_{C0}$ in the inductive case and \vec{V}_0 leads \vec{I}_0 by a phase ϕ . On the other hand, in the capacitive case shown in Figure 12.8.1(b), $V_{C0} > V_{L0}$ and \vec{I}_0 leads \vec{V}_0 by a phase ϕ .

How do we solve circuits?

Alternating current circuits

5. For parallel connection, draw a phasor diagram for the currents. The amplitudes of the currents across all the circuit elements involved should be represented with phasors. In Figure 12.8.2 the phasor diagram for a parallel RLC circuit is shown for both the inductive case $X_L > X_C$ and the capacitive case $X_L < X_C$.

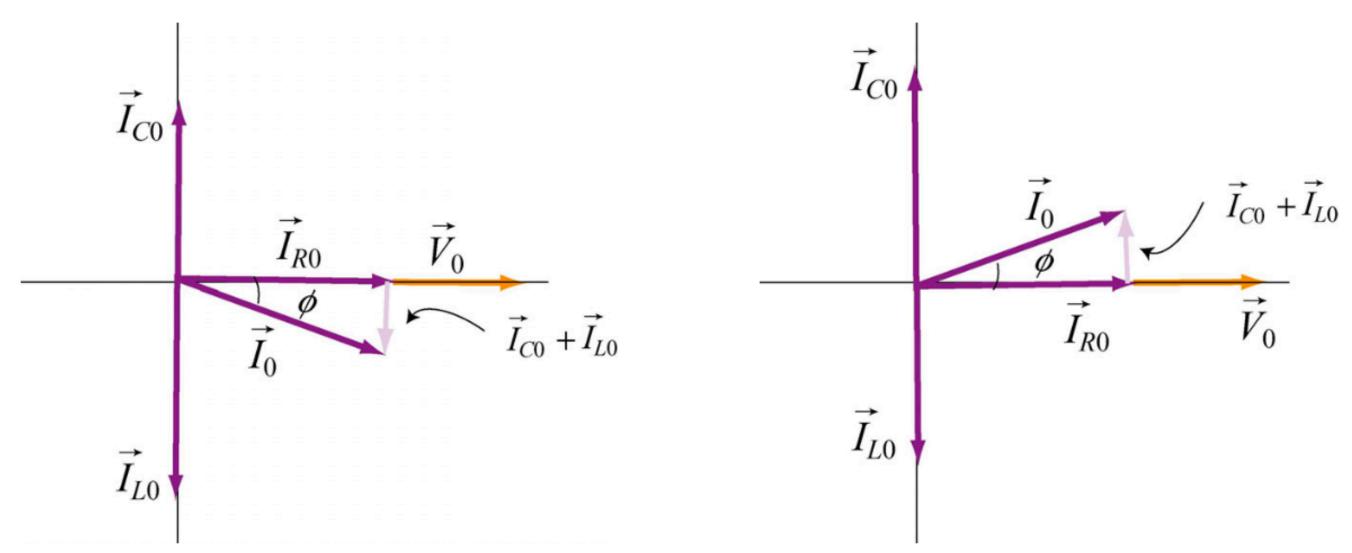


Figure 12.8.2 Phasor diagram for the parallel *RLC* circuit for (a) $X_L > X_C$ and (b) $X_L < X_C$.

From Figure 12.8.2(a), we see that $I_{L0} > I_{C0}$ in the inductive case and $\vec{V_0}$ leads $\vec{I_0}$ by a phase ϕ . On the other hand, in the capacitive case shown in Figure 12.8.2(b), $I_{C0} > I_{L0}$ and $\vec{I_0}$ leads $\vec{V_0}$ by a phase ϕ .

Can you also summarize when the electric and magnetic fields are zero or not, depending on the material, geometry, etc.?

Summary Table		
Material/Geometry	Electric Field (${f E}$)	Magnetic Field (${f B}$)
Static conductor	${f E}=0$ inside	${f B} eq 0$ if current flows
Dynamic conductor	${f E} eq 0$ inside	${f B} eq 0$ if current flows
Insulator (dielectric)	${f E} eq 0$ inside	${f B}$ depends on external fields
Superconductor	${f E}=0$ inside	${f B}=0$ inside (Meissner effect)
Cavity in conductor	${f E}=0$ if no charges inside	${f B}=0$ if no external fields
Far from charges/currents	${f E} \propto 1/r^2$ (point)	${f B} \propto 1/r^3$ (dipole)
Time-varying fields	${f E} eq 0$ induced	${f B} eq 0$ induced

This framework should help clarify when ${f E}$ and ${f B}$ are zero or not!

Electromagnetic waves why use sine or cosine?

The choice between using **sine** or **cosine** for representing electromagnetic waves depends on the **initial conditions**, **convention**, and **phase of the wave**. Both are mathematically equivalent, as one can always be expressed in terms of the other with a phase shift. Here's a breakdown of when to use each:

1. Initial Conditions of the Wave

• If the wave starts at a maximum or minimum amplitude (e.g., at t=0 or x=0), the cosine form is typically used:

$$\psi(x,t) = A\cos(kx - \omega t)$$

• If the wave starts at **zero amplitude** and is increasing or decreasing at t=0, the **sine form** is used:

$$\psi(x,t) = A\sin(kx - \omega t)$$

This choice aligns with the fact that cosine starts at 1 (maximum amplitude at $\theta=0$), while sine starts at 0.

2. Phase of the Wave

- If the wave has a **phase shift**, you can use either sine or cosine, but include the appropriate phase factor ϕ :
 - Cosine form with phase:

$$\psi(x,t) = A\cos(kx - \omega t + \phi)$$

Sine form with phase:

$$\psi(x,t) = A\sin(kx - \omega t + \phi)$$

The phase ϕ determines the starting point of the wave. For example: - $\phi=0$: A cosine wave starts at maximum. - $\phi=\pi/2$: A sine wave and a cosine wave are equivalent.

3. Physical or Practical Context

- Cosine is often the default in textbooks and analysis because it is mathematically convenient
 to start at a maximum amplitude when describing standing waves or harmonic oscillators.
- Sine may be more convenient in contexts where initial conditions or symmetry suggest a starting point of zero amplitude (e.g., Fourier series often uses sine terms for odd symmetry).

If you need help getting started with your formula sheet check out appendix D.4 of Purcell

D.4 The formulas

Chapter 1		
Coulomb's law (1.4):	$\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2 \hat{\mathbf{r}}}{r^2}$	$\mathbf{F} = \frac{q_1 q_2 \hat{\mathbf{r}}}{r^2}$
potential energy (1.9):	$U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$	$U = \frac{q_1 q_2}{r}$
electric field (1.20):	$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q\hat{\mathbf{r}}}{r^2}$	$\mathbf{E} = rac{q\hat{\mathbf{r}}}{r^2}$
force and field (1.21):	$\mathbf{F} = q\mathbf{E}$	(same)
flux (1.26):	$\Phi = \int \mathbf{E} \cdot d\mathbf{a}$	(same)
Gauss's law (1.31):	$\int \mathbf{E} \cdot d\mathbf{a} = \frac{q}{\epsilon_0}$	$\int \mathbf{E} \cdot d\mathbf{a} = 4\pi q$
field due to line (1.39):	$E_r = \frac{\lambda}{2\pi\epsilon_0 r}$	$E_r = \frac{2\lambda}{r}$
field due to sheet (1.40):	$E = \frac{\sigma}{2\epsilon_0}$	$E = 2\pi\sigma$
$\Delta \mathbf{E}$ across sheet (1.41):	$\Delta \mathbf{E} = \frac{\sigma}{\epsilon_0} \hat{\mathbf{n}}$	$\Delta \mathbf{E} = 4\pi \sigma \hat{\mathbf{n}}$
field near shell (1.42):	$E_r = \frac{\sigma}{\epsilon_0}$	$E_r = 4\pi\sigma$
F/(area) on sheet (1.49):	$\frac{F}{A} = \frac{1}{2} (E_1 + E_2) \sigma$	(same)
energy in E field (1.53):	$U = \frac{\epsilon_0}{2} \int E^2 dv$	$U = \frac{1}{8\pi} \int E^2 dv$

```
Chapter 11
dipole moment (11.9):
                                                        \mathbf{A} = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}
                                                                                                  \mathbf{A} = \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}
vector potential (11.10):
                                                         \frac{\mu_0 m}{4\pi r^3} (2\cos\theta, \sin\theta)
                                                                                                  \frac{m}{r^3}(2\cos\theta,\sin\theta)
dipole (B_r, B_\theta) (11.15):
                                                        \mathbf{F} = \nabla(\mathbf{m} \cdot \mathbf{B})
force on dipole (11.23):
                                                                                                    (same)
orbital m for e (11.29):
polarizability (11.41):
torque on dipole (11.47):
                                                         N = m \times B
                                                                                                    (same)
polarization density (11.51):
                                                                                                    (same)
                                                       \mathbf{M} = \chi_m \frac{\mathbf{B}}{\mu_0}
susceptibility \chi_m (11.52):
                                                                                                   \mathbf{M} = \chi_m \mathbf{B}
\chi_{pm} for weak B (11.53):
                                                                                                    \mathcal{J} = Mc
surface density \mathcal{J} (11.55):
volume density J (11.56):
                                                        \mathbf{J} = \operatorname{curl} \mathbf{M}
                                                                                                   \mathbf{J} = c \operatorname{curl} \mathbf{M}
                                                                                                   \mathbf{H} = \mathbf{B} - 4\pi\mathbf{M}
H field (11.68):
                                                                                                  \operatorname{curl} \mathbf{H} = \frac{4\pi}{c} \mathbf{J}_{\text{free}}
                                                        \operatorname{curl} \mathbf{H} = \mathbf{J}_{\operatorname{free}}
curl of H (11.69):
                                                                                                    \int \mathbf{H} \cdot d\mathbf{l} = \frac{4\pi}{c} I_{\text{free}}
                                                           \int \mathbf{H} \cdot d\mathbf{l} = I_{\text{free}}
    (integrated form) (11.70):
\chi_m (accepted def.) (11.72):
                                                        \mathbf{M} = \chi_m \mathbf{H}
                                                                                                    (same)
permeability (11.74):
                                                        \mu = \mu_0(1 + \chi_m)
                                                                                                   \mu = 1 + 4\pi \chi_m
B and H (11.74):
                                                        \mathbf{B} = \mu \mathbf{H}
                                                                                                   (same)
```

Don't forget to include your fundamental constants in your formula sheet

Fundamental constants

speed of light	C	$2.998 \cdot 10^8 \text{ m/s}$
elementary charge	e	$1.602 \cdot 10^{-19} \text{ C}$
		$4.803 \cdot 10^{-10} \text{ esu}$
electron mass	$m_{\rm e}$	$9.109 \cdot 10^{-31} \text{ kg}$
proton mass	$m_{\rm p}$	$1.673 \cdot 10^{-27} \text{ kg}$
Avogadro's number	$N_{\rm A}$	$6.022 \cdot 10^{-23} \text{ mole}^{-1}$
Boltzmann constant	k	$1.381 \cdot 10^{-23} \text{ J/K}$
Planck constant	h	$6.626 \cdot 10^{-34} \text{ J s}$
gravitational constant	G	$6.674 \cdot 10^{-11} \text{ m}^3/(\text{kg s}^2)$
electron magnetic moment	$\mu_{ m e}$	$9.285 \cdot 10^{-24} \text{ J/T}$
proton magnetic moment	$\mu_{ m p}$	$1.411 \cdot 10^{-26} \text{ J/T}$
permittivity of free space	ϵ_0	$8.854 \cdot 10^{-12} \mathrm{C^2 s^2/(kg m^3)}$
permeability of free space	μ_0	$1.257 \cdot 10^{-6} \text{ kg m/C}^2$

To get started you can look at the list on Purcell page 825 appendix K.1

Problems

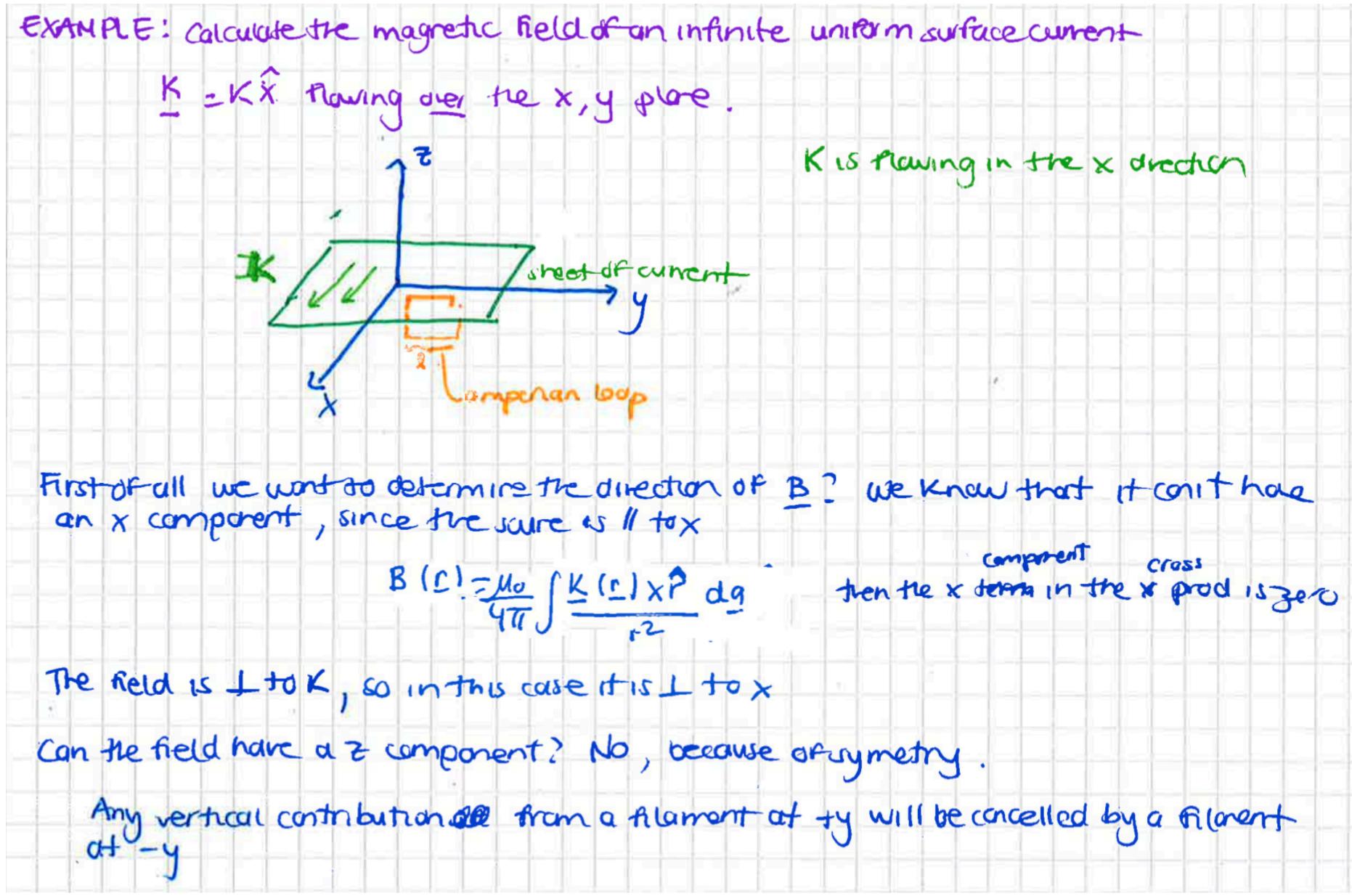
Biot-Savart

EXAMPLE: Find the magnetic held a distance & above the center of a circular loop of radius R, which contres a steady whent I. stedy current -> we can use Biot -savat's law B(r) = 40 # J dl x,r her contribe confused by the change in notation, her de = ds from before) Always make a drawing first: Observations: *B should point in the direction de xi i e it will be I to the give these vectors make. As we insegrate around the circle, the vector BB wil incepatia coe. A Because of symmetry the horizontal components

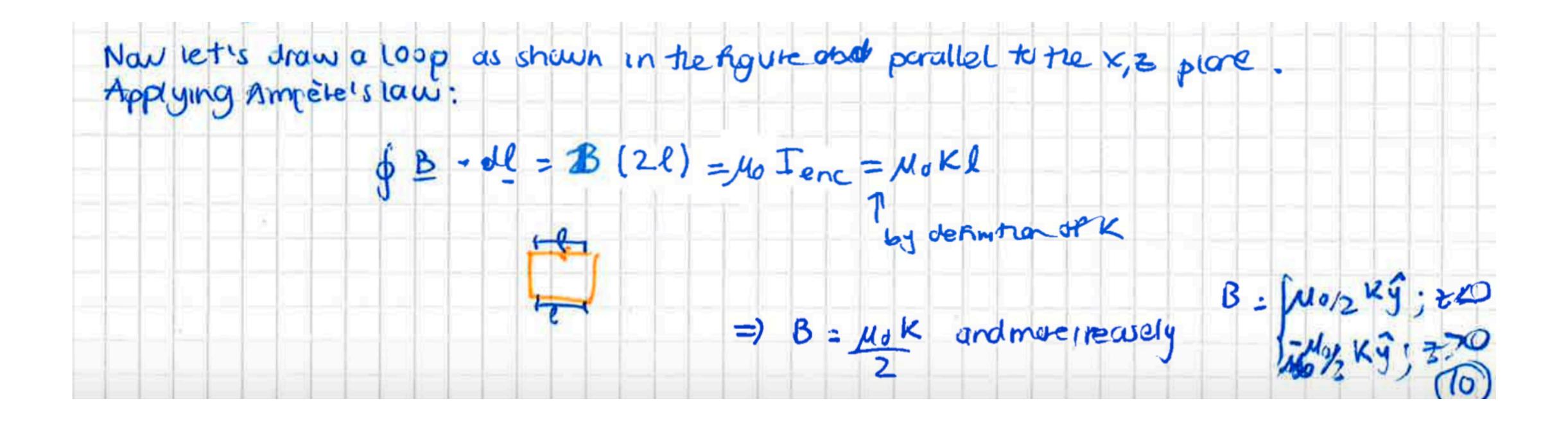
OF OB concel, leaving only the projection with

the 7 oxis given by case. taking these observations into a sound we consee: $B(z) = \frac{\mu_0}{4\pi} \int d \frac{1}{r^2} \times \hat{r} = \frac{\mu_0}{4\pi} \int \frac{d l}{r^2} \cos \theta = \frac{\mu_0}{4\pi} \int \frac{\cos \theta}{r^2} \int_{r^2}^{2\pi} d l$ = Me I cos & 2TT 12 = Mo I R
4TT 12 this is cas & by thisancrestry = MOIR because r=(R2+22)1/2 by pythologeras.

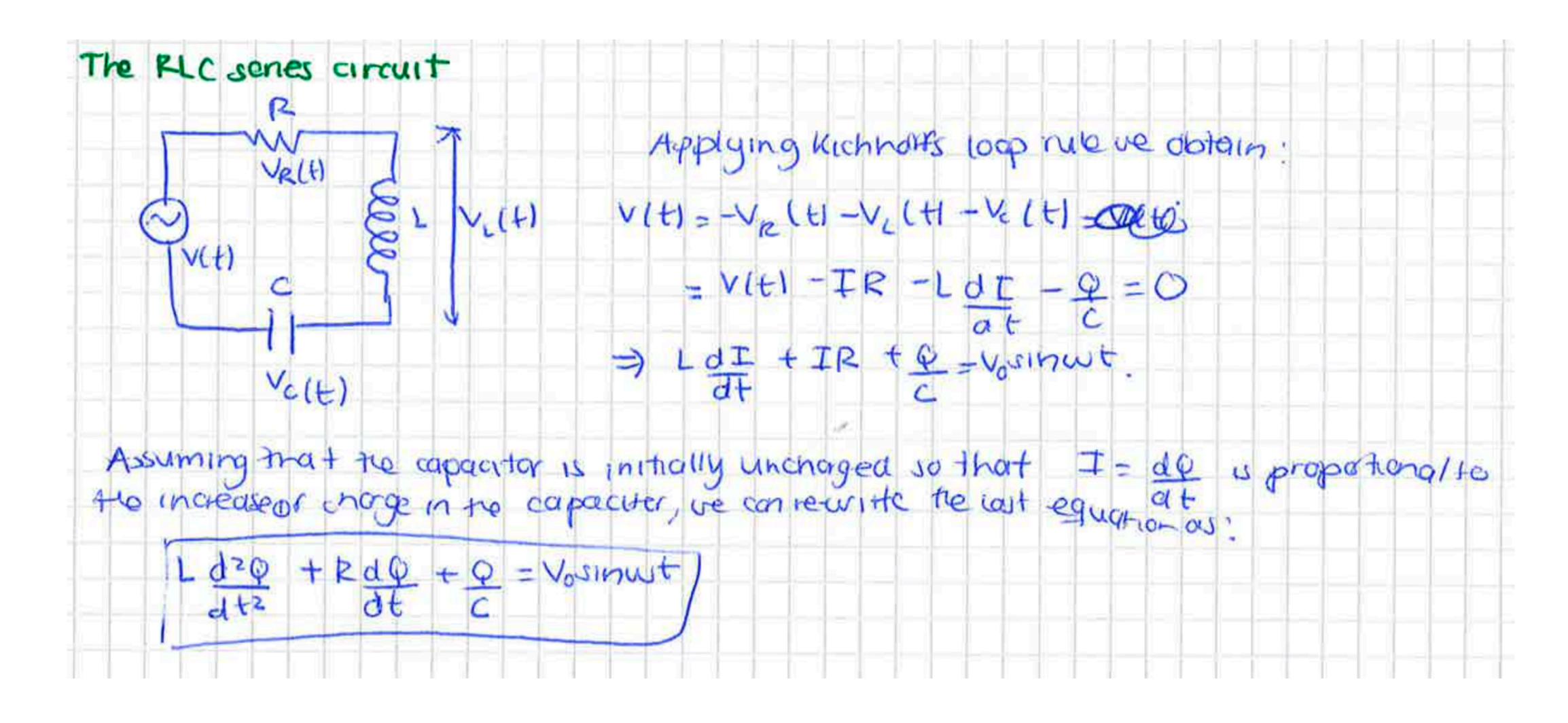
Using Ampere to calculate B



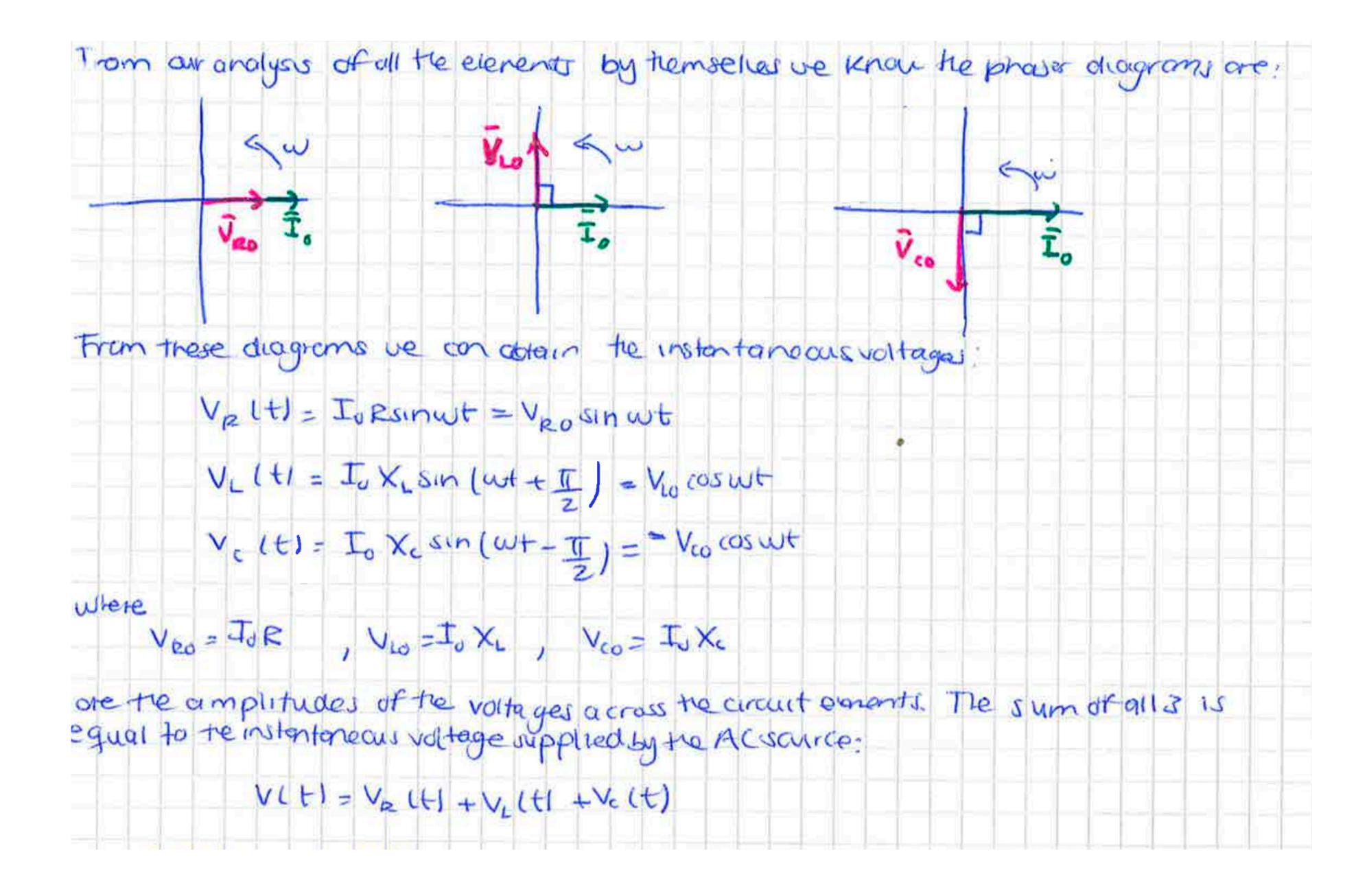
Using Ampere to calculate B

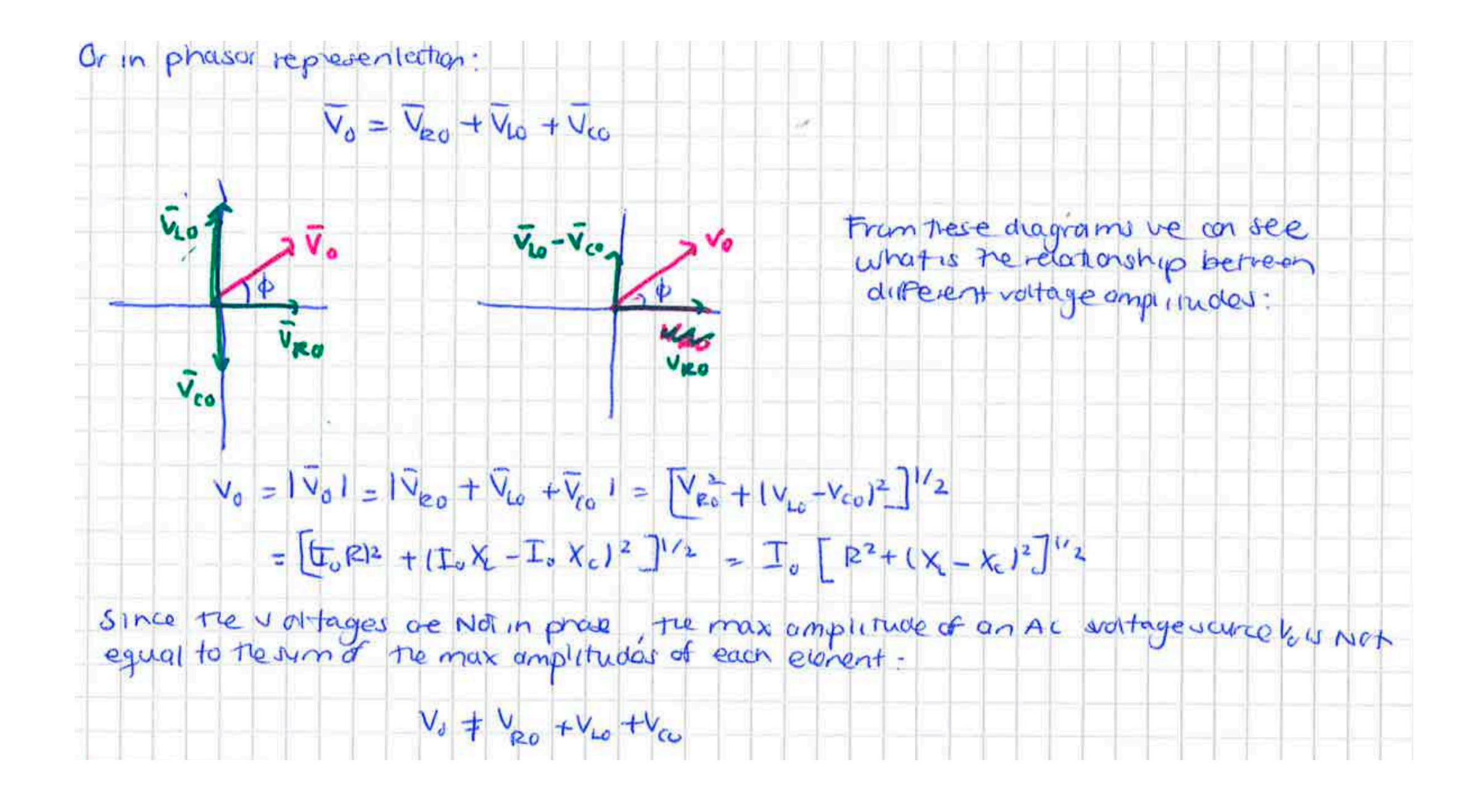


Let's solve a circuit



Ore possible solution to this equation is: Q(t) = Qo cas (ut - Q) where he amplitude I the phase ore: Qo = Vo/L W 1 R2+ (WL-1/WC)2 W/122+(X, -X,)2 1(RW/L12+LW=1/LC)2" and The corresponding current is then: I(+) = dQ = Jo sin(wt- p) with an amplitude The current has the same amplitude I = - Qow = - Vo t phase at all points in the RLC circuit. The instendedus voltage de across each circuitelorns has a different amplitude I preue relation withour ent:





12.9.1 *RLC* Series Circuit

A series RLC circuit with L=160 mH, $C=100\,\mu\text{F}$, and $R=40.0\,\Omega$ is connected to a sinusoidal voltage $V(t)=(40.0\,\text{V})\sin\omega t$, with $\omega=200\,\text{rad/s}$.

- (a) What is the impedance of the circuit?
- (b) Let the current at any instant in the circuit be $I(t) = I_0 \sin(\omega t \phi)$. Find I_0 .
- (c) What is the phase ϕ ?

Solution:

(a) The impedance of a series *RLC* circuit is given by

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 (12.9.1)

where

$$X_L = \omega L \tag{12.9.2}$$

and

$$X_C = \frac{1}{\omega C} \tag{12.9.3}$$

are the inductive reactance and the capacitive reactance, respectively. Since the general expression of the voltage source is $V(t) = V_0 \sin(\omega t)$, where V_0 is the maximum output voltage and ω is the angular frequency, we have $V_0 = 40$ V and $\omega = 200$ rad/s. Thus, the impedance Z becomes

$$Z = \sqrt{(40.0 \ \Omega)^2 + \left((200 \ \text{rad/s})(0.160 \ \text{H}) - \frac{1}{(200 \ \text{rad/s})(100 \times 10^{-6} \ \text{F})}\right)^2}$$

$$= 43.9 \ \Omega$$
(12.9.4)

(b) With $V_0 = 40.0 \,\mathrm{V}$, the amplitude of the current is given by

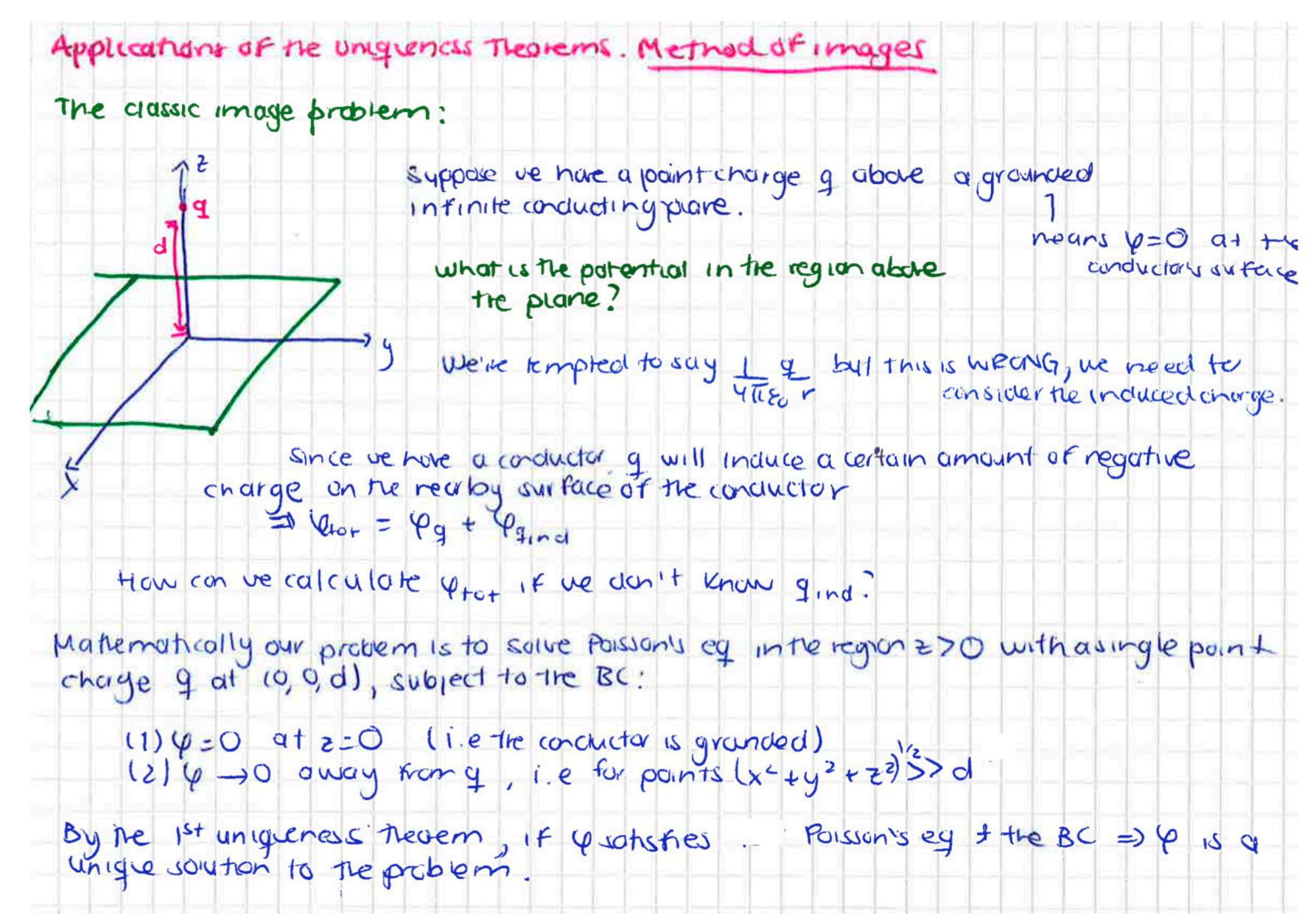
$$I_0 = \frac{V_0}{Z} = \frac{40.0 \,\text{V}}{43.9 \,\Omega} = 0.911 \,\text{A} \tag{12.9.5}$$

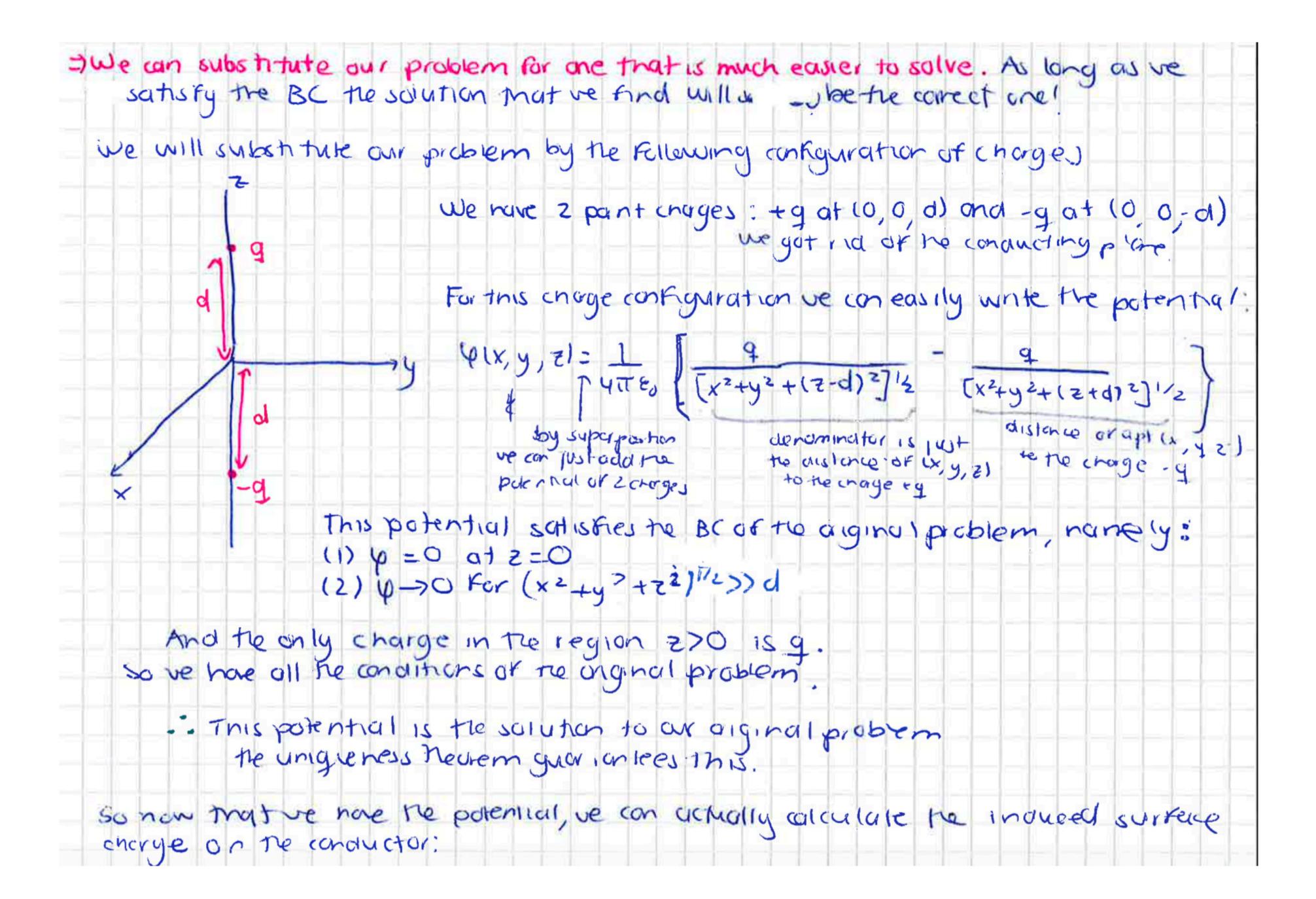
(c) The phase between the current and the voltage is determined by

$$\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right) = \tan^{-1} \left(\frac{\omega L - \frac{1}{\omega C}}{R} \right)$$

$$= \tan^{-1} \left(\frac{(200 \text{ rad/s})(0.160 \text{ H}) - \frac{1}{(200 \text{ rad/s})(100 \times 10^{-6} \text{ F})}}{40.0 \Omega} \right) = -24.2^{\circ}$$
(12.9.6)

Method of images





We know must at the surface of the conductor rewriting this in terms of 4: J=-8, 34 where by is the normal derivative at the our face in this cade. D= - 80 39 | Z= 0 Now if we calculate by for the potential we found: $\frac{\partial y}{\partial z} = \frac{1}{4\pi\epsilon_0} \left\{ \frac{-g(z-d)}{[x^2+y^2+(z-d)^2]^{3/2}} + \frac{g(z+d)}{[x^2+y^2+(z+d)^2]^{5/2}} \right\}$ =) = 1xy) = - 9d

2TT(x2+y2+d2)3/2 in duced surface charge is negative ~ Now if we compute the sotal induced charge Q= jorda for convenience we compute this j in polar coordinates (r q) with r2= x2+y2 saa=rdidp 50 5(v) = - 9d -2TT (12+d2)3/2 Now computing the J: Q = \[\int_{24} \int_{0} \frac{1}{24} \frac{1}{3} \frac{1}{2} \\ \left(\frac{1}{2} + \frac{1}{2} \right)^{1/2} \right)^{1/2} \\ \left(\frac{1}{2} + \frac{1}{2} \frac{1}{

Remember Purcell Chapter 12

This Chapter has the solutions to the exercises in the textbook!