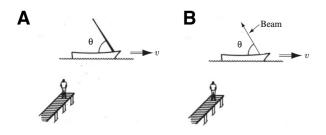

Exercise sheet #14


Problem 1. A longitudinal **E** field inside a wire causes a current $\mathbf{J} = \sigma \mathbf{E}$. Since the curl of **E** is zero, this same longitudinal **E** component must also exist right outside the surface of the wire. Show that the Poynting vector flux through a cylinder right outside the wire is equal to IV, where I the current and V is the electric potential (resistance heating).

Problem 2. The intensity of sunlight, at the earth, is roughly 1 kilowatt /m². How large is the magnetic field strength? Assume that the EM radiation from the sun is a plane sinusoidal wave.

Problem 3. A parallel-plate capacitor with circular plates of radius R and separated by a distance h is charged through a straight wire carrying current I, as shown in the figure below:

- (a) Show that as the capacitor is being charged, the Poynting vector \overrightarrow{S} points radially inward toward the center of the capacitor.
- (b) By integrating \overrightarrow{S} over the cylindrical boundary, show that the rate at which energy enters the capacitor is equal to the rate at which electrostatic energy is being stored in the electric field.
- **Problem 4.** (a) A sailboat is manufactured so that the mast leans at an angle $\bar{\theta}$ with respect to the deck. An observer standing on a dock sees the boat go by at speed v (Fig. below A). What angle does this observer say the mast makes?
 - (b) A spotlight is mounted on a boat so that its beam makes an angle $\bar{\theta}$ with the deck (Fig. below B). If this boat is then set in motion at speed v, what angle θ does an individual photon trajectory make with the deck, according to an observer on the dock? What angle does the beam (illuminated, say, by a light fog) make? Compare with part A.

Problem 5. A capacitor consists of two parallel rectangular plates with a vertical separation of 2 cm . The east-west dimension of the plates is 20 cm , the north-south dimension is 10 cm . The capacitor has been charged by connecting it temporarily to a battery of 300 V . What is the electric field strength between the plates? How many excess electrons are on the negative plate? Now give the following quantities as they would be measured in a frame of reference that is moving eastward, relative to the laboratory in which the plates are at rest, with speed 0.6c: the three dimensions of the capacitor; the number of excess electrons on the negative plate; the electric field strength between the plates. Answer the same questions for a frame of reference that is moving upward with speed 0.6c.