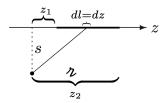
Exercise sheet #10

Problem 1. A solenoid has radius R, current I, and n turns per unit length. Given that the magnetic field is $B = \mu_0 n I$ inside and B = 0 outside, find the vector potential \mathbf{A} both inside and outside. Hint: Use the expression for the curl in cylindrical coordinates to find the forms of \mathbf{A} that yield the correct values of $\mathbf{B} = \nabla \times \mathbf{A}$ in the two regions.

Problem 2. Find the magnetic vector potential of a finite segment of straight wire carrying a current I. Calculate the magnetic field generated by that potential. Hint: Put the wire on the z axis, from z_1 to z_2 as shown in the schematic below.



Problem 3. Magnetic scalar potential

- (a) Consider an infinite straight wire carrying current I. We know that the magnetic field outside the wire is $\mathbf{B} = (\mu_0 I/2\pi r)\,\hat{\boldsymbol{\theta}}$. There are no currents outside the wire, so $\nabla \times \mathbf{B} = 0$; verify this by explicitly calculating the curl.
- (b) Since $\nabla \times \mathbf{B} = 0$, we should be able to write \mathbf{B} as the gradient of a function, $\mathbf{B} = \nabla \psi$. Find ψ , but then explain why the usefulness of ψ as a potential function is limited.

Problem 4. Consider an infinite solenoid with circular cross section. The current is I, and there are n turns per unit length. Show that the magnetic field is zero outside and $B = \mu_0 nI$ (in the longitudinal direction) everywhere inside. Do this in three steps as follows.

- (a) Show that the field has only a longitudinal component. Hint: Consider the contributions to the field from rings that are symmetrically located with respect to a given point.
- (b) Use Ampère's law to show that the field has a uniform value outside and a uniform value inside, and that these two values differ by $\mu_0 nI$.
- (c) Show that $B \to 0$ as $r \to \infty$. There are various ways to do this. One is to obtain an upper bound on the field contribution due to a given ring by unwrapping the ring into a straight wire segment, and then finding the field due to this straight segment.

Problem 5. A long circular cylinder of radius R carries a magnetization $\mathbf{M} = ks^2\hat{\phi}$, where k is a constant, s is the distance from the axis, and $\hat{\phi}$ is the usual azimuthal unit vector. Find the magnetic field due to \mathbf{M} , for points inside and outside the cylinder.

