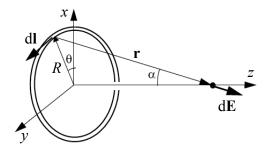
Solution Sheet 6

Discussion 16.10.2024

Solution 1 - Circular charged wire

a) An element with length $d\vec{l}$ creates an E-field $d\vec{E}$ on the point z along the central axis given by



$$d\vec{E} = \frac{dQ}{4\pi\epsilon_0 r^2}\hat{r}$$

Whereby

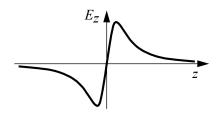
$$dQ = \frac{Qdl}{2\pi R}$$

The components of $d\vec{E}$ along x and y cancel and only the projection on z remains

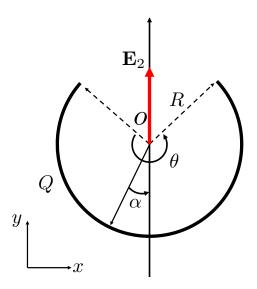
$$\vec{E} = \int_0^{2\pi R} \frac{Q}{2\pi R} \frac{1}{4\pi\epsilon_0} \frac{\cos \alpha}{r^2} dl \hat{z} = \int_0^{2\pi R} \frac{Q}{2\pi R} \frac{1}{4\pi\epsilon_0} \frac{z}{(z^2 + R^2)^{3/2}} dl \hat{z}$$

where we used the fact that $r^2 = z^2 + R^2$ and $z = r \cos \alpha$. The E-field thus becomes:

$$\vec{E} = \frac{Q}{4\pi\epsilon_0} \frac{z}{(z^2 + R^2)^{3/2}} \hat{z}$$



The electric field is zero in centre of the ring, changes sign with the direction of z and has the shape plotted in the figure



b) From a symmetry consideration, the E-field at the centre O is pointed in the y-direction. In addition, we can consider the y component $E_{1,y}$ of the E-field generated by only half of the wire, as the total field will be $E_{2,y} = 2E_{1,y}$.

The line charge density λ is

$$\lambda = \frac{Q}{R\theta} \tag{1}$$

For a small charge at α with a small wire piece of length $R \cdot d\alpha$,

$$dq = \lambda \cdot R \cdot d\alpha$$

$$= \frac{Qd\alpha}{\theta}$$
(2)

$$dE_y = \frac{dq}{4\pi\epsilon_0 R^2} \cos\alpha$$

$$= \frac{Q}{4\pi\epsilon_0 \theta R^2} \cos\alpha d\alpha$$
(3)

$$E_{1,y} = \int_0^{\theta/2} dE_y$$

$$= \int_0^{\theta/2} \frac{Q}{4\pi\epsilon_0 \theta R^2} \cos\alpha d\alpha$$

$$= \frac{Q}{4\pi\epsilon_0 \theta R^2} \int_0^{\theta/2} \cos\alpha d\alpha$$

$$= \frac{Q}{4\pi\epsilon_0 \theta R^2} \sin\alpha \Big|_0^{\theta/2}$$

$$= \frac{Q}{4\pi\epsilon_0 \theta R^2} \sin(\theta/2)$$
(4)

The total field is

$$E_{2,y} = 2E_{1,y}$$

$$= \frac{Q}{2\pi\epsilon_0 \theta R^2} \sin(\theta/2)$$
(5)

For the semi circle $(\theta = \pi)$ we thus obtain

$$\vec{E} = \frac{Q}{2\pi^2 \epsilon_0 R^2} \hat{y}$$

For the three quarter circle $(\theta = \frac{3}{2}\pi)$ it becomes

$$\vec{E} = \frac{\sqrt{2}Q}{6\pi^2 \epsilon_0 R^2} \hat{y}$$

It is also clear that for a closed ring the field becomes zero, in accordance with the result of part (a). For the open ring the E-field away from the xyplane of the ring becomes more difficult to calculate, but it is a good exercise to consider how one would approach this problem.

Solution 2 - Electric field and potential of a straight wire/rod

a) From symmetry considerations it follows that the E-field is along the horizontal direction of the rod towards point B. We will call this direction as x-axis and set the origin (x = 0) of the x-axis at the right end of the rod.

The contribution of a small part of the rod dx with line charge density λ to the E-field will be

$$dq = \lambda dx \tag{6}$$

$$dE_x = \frac{dq}{4\pi\epsilon_0 x^2} = \frac{\lambda dx}{4\pi\epsilon_0 x^2} \tag{7}$$

$$E = \int_{x_0}^{L+x_0} \frac{\lambda dx}{4\pi\epsilon_0 x^2}$$

$$= \frac{\lambda}{4\pi\epsilon_0} \int_{x_0}^{L+x_0} \frac{dx}{x^2}$$

$$= \frac{\lambda}{4\pi\epsilon_0} (-\frac{1}{x}) \Big|_{x_0}^{L+x_0}$$

$$= \frac{\lambda}{4\pi\epsilon_0} (\frac{1}{x_0} - \frac{1}{L+x_0})$$

$$= \frac{\lambda L}{4\pi\epsilon_0 x_0 (L+x_0)}$$
(8)

To find the potential we integrate from our reference where V = 0 (at $\pm \infty$) to the point we are interested in (x_0) . To be able to integrate along the positive x-direction we start at $-\infty$. Thus the potential is

$$V = -\int_{-\infty}^{x_0} E dx$$

$$= -\int_{-\infty}^{x_0} \frac{\lambda}{4\pi\epsilon_0} \left(\frac{1}{x} - \frac{1}{L+x}\right)$$

$$= -\frac{\lambda}{4\pi\epsilon_0} \int_{-\infty}^{x_0} \left(\frac{1}{x} - \frac{1}{L+x}\right) dx$$

$$= -\frac{\lambda}{4\pi\epsilon_0} (\ln(x) - \ln(L+x)) \Big|_{-\infty}^{x_0}$$

$$= -\frac{\lambda}{4\pi\epsilon_0} \ln\left(\frac{x}{L+x}\right) \Big|_{-\infty}^{x_0}$$

$$= -\frac{\lambda}{4\pi\epsilon_0} \ln\left(\frac{x}{L+x_0}\right)$$
(9)

The last step uses the formula

$$\operatorname{Lim}_{x \to -\infty} \ln(\frac{x}{x+L}) = \ln(1) = 0 \tag{10}$$

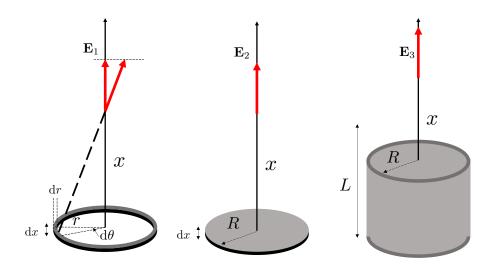


Figure 1: A circular ring, a circular disk and a cylinder.

b) The solution should be found by relating a circular ring, a circular disk and finally the cylinder. For a circular ring with radius r, width dr, thickness dx and distant x from

point A, the E-field is E_1 in x-direction

$$dq = \rho r \cdot d\theta \cdot dr \cdot dx \tag{11}$$

$$E_{1} = \frac{1}{4\pi\epsilon_{0}} \int_{0}^{2\pi} \frac{xdq}{(x^{2} + r^{2})^{3/2}}$$

$$= \frac{\rho rxdrdx}{4\pi\epsilon_{0}(x^{2} + r^{2})^{3/2}} \int_{0}^{2\pi} d\theta$$

$$= \frac{\rho rxdrdx}{2\epsilon_{0}(x^{2} + r^{2})^{3/2}}$$
(12)

For a circular disk with radius R, thickness dx and distant x from point A, the E-field is E_2 in x-direction

$$E_{2} = \int_{0}^{R} E_{1}$$

$$= \int_{0}^{R} \frac{\rho r x d r d x}{2\epsilon_{0} (x^{2} + r^{2})^{3/2}}$$
(13)

For a cylinder with radius R, length L and distant x_0 from point A, the E-field is E_3 in x-direction

$$E_{3} = \int_{x_{0}}^{x_{0}+L} E_{2}$$

$$= \int_{x_{0}}^{x_{0}+L} \int_{0}^{R} \frac{\rho r x d r d x}{2\epsilon_{0} (x^{2}+r^{2})^{3/2}}$$

$$= \frac{\rho}{2\epsilon_{0}} [L + \sqrt{R^{2} + x_{0}^{2}} - \sqrt{R^{2} + (x_{0}+L)^{2}}]$$
(14)

Solution 3 - Drilling into a disk

Assume the surface charge density is σ . For a circular ring with radius r, width dr and distant z from point P, the E-field E_1 is

$$dq = \sigma r \cdot d\theta \cdot dr \tag{15}$$

$$E_{1} = \frac{1}{4\pi\epsilon_{0}} \int_{0}^{2\pi} \frac{zdq}{(z^{2} + r^{2})^{3/2}}$$

$$= \frac{\sigma r dr}{4\pi\epsilon_{0}} \int_{0}^{2\pi} \frac{zd\theta}{(z^{2} + r^{2})^{3/2}}$$

$$= \frac{\sigma r z dr}{4\pi\epsilon_{0} (z^{2} + r^{2})^{3/2}} \int_{0}^{2\pi} d\theta$$

$$= \frac{\sigma r z dr}{2\epsilon_{0} (z^{2} + r^{2})^{3/2}}$$
(16)

For the circular disk with radius R, the E-field is E_2 in x-direction and is

$$E_{2} = \int_{R_{2}}^{R} E_{1}$$

$$= \int_{R_{2}}^{R} \frac{\sigma r z dr}{2\epsilon_{0}(z^{2} + r^{2})^{3/2}}$$

$$= \frac{\sigma z}{2\epsilon_{0}} \int_{R_{2}}^{R} \frac{r dr}{(z^{2} + r^{2})^{3/2}}$$

$$= \frac{\sigma z}{2\epsilon_{0}} \int_{z^{2} + R_{2}^{2}}^{z^{2} + R^{2}} \frac{dt}{2t^{3/2}}$$

$$= \frac{\sigma z}{2\epsilon_{0}} \left(-\frac{1}{t^{1/2}} \right) |_{z^{2} + R_{2}^{2}}^{z^{2} + R_{2}^{2}}$$

$$= \frac{\sigma z}{2\epsilon_{0}} \left[\frac{1}{(z^{2} + R_{2}^{2})^{1/2}} - \frac{1}{(z^{2} + R^{2})^{1/2}} \right]$$
(17)

It can also be solved in a simpler way using the superposition principle. The E-field of a charged disk of radius R is derived in the lectures as

$$E(R) = \frac{\sigma z}{2\epsilon_0} \left[\frac{1}{z} - \frac{1}{(z^2 + R^2)^{1/2}} \right]$$
 (18)

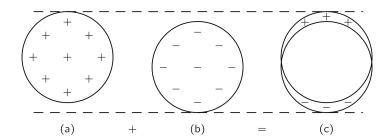
Using the superposition principle, the drilled disk can be consider as a positively charged disk of radius R plus a negatively charged disk of radius R_2 , therefore the total E-field is

$$E_2 = E(R) - E(R_2)$$

$$= \frac{\sigma z}{2\epsilon_0} \left[\frac{1}{(z^2 + R_2^2)^{1/2}} - \frac{1}{(z^2 + R^2)^{1/2}} \right]$$
(19)

Solution 4 - Asymmetric charge distribution

The general idea is sketched in the figure. To obtain the $\sigma_0 \cos \theta$ charge distribution we consider two spheres that are slightly displaced by dz



The spheres are charged with a uniform positive and negative volume charge density of ρ and $-\rho$. Using Gauss's law it has been derived in the lecture that the potential of such a sphere is the same as for a point charge with the same total charge if we look outside the radius of the sphere a. In this case the total charge should be considered

$$Q = \frac{4}{3}\pi a^3 \rho$$

The potential from the positively charged sphere is

$$\Phi_{+} = \frac{\frac{4}{3}\pi a^{3}\rho}{4\pi\epsilon_{0}r}$$

and from the negatively charged sphere $\Phi_{-} = -\Phi_{+} - d\Phi_{+}$ whereby the last term is due to the small displacement dz. Thus the total potential is

$$\Phi = \Phi_{+} + \Phi_{-} = -d\Phi = -\frac{\partial \left(\frac{4}{3}\pi a^{3}\rho}{4\pi\epsilon_{0}r}\right)}{\partial z}dz$$

Along the same lines as in the lecture we thus obtain

$$\Phi = \frac{\frac{4}{3}\pi a^3 \rho dz \cos \theta}{4\pi \epsilon_0 r^2}$$

For dz small, the charge in the parts of the spheres that don't overlap (c) can be considered the surface charge density σ_0 (volume charge density with one dimension removed becomes surface charge density):

$$\rho dz = \sigma_0$$

Thus the expression for the potential above can be rewritten as

$$\Phi = \frac{\vec{p} \cdot \hat{r}}{4\pi\epsilon_0 r^2}$$

with

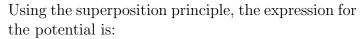
$$ec{p}=rac{4}{3}\pi a^3\sigma_0\hat{z}=\left(rac{4}{3}\pi a^3
ho dz\hat{z}
ight)$$

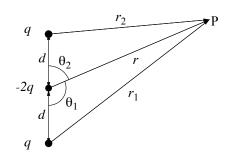
The asymmetric charge distribution thus has the same potential as a dipole with this dipole moment. Note that the dipole moment can also be calculated by integrating the expression for σ with regard to the centre of the sphere.

Solution 5 - Potential of a quadrupole

We choose the origin on the central charge -2q. r_1 and r_2 are the distances of the lateral charges from the reference point P identified by \vec{r} .

From the hypothesis: r_1 , r_2 , $r \gg d$.





$$\Phi(r) = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_1} - \frac{2q}{r} + \frac{q}{r_2} \right) = \frac{q}{4\pi\epsilon_0 r} \left(\frac{r}{r_1} + \frac{r}{r_2} - 2 \right)$$

We can express r_1 and r_2 :

$$r_1^2 = r^2 + d^2 - 2rd\cos\theta_1$$

$$r_2^2 = r^2 + d^2 - 2rd\cos\theta_2$$

Note that $\theta_1 = \pi - \theta_2$ such that $\cos \theta_1 = -\cos \theta_2$. We can then write:

$$r_1^2 = r^2 + d^2 - 2rd\cos\theta$$

and

$$r_2^2 = r^2 + d^2 + 2rd\cos\theta$$

where we have renamed $\theta = \theta_1$ and used the relation between θ_1 and θ_2 .

Binomial expansion: we use $1/\sqrt{1+x} \approx 1 - x/2 + 3x^2/8$ valid for small x; terms of order higher than d^2/r^2 are neglected only after having carried out the expansion.

$$\frac{r}{r_1} = 1 - \frac{d}{r}\cos\theta + \frac{d^2}{r^2}\left(\frac{3\cos^2\theta - 1}{2}\right) + \dots$$

and

$$\frac{r}{r_2} = 1 + \frac{d}{r}\cos\theta + \frac{d^2}{r^2}\left(\frac{3\cos^2\theta - 1}{2}\right) + \dots$$

The expression for the potential is then

$$\Phi(r) = \frac{2qd^2}{4\pi\epsilon_0 r^3} \frac{3\cos^2\theta - 1}{2} = \frac{qd^2}{4\pi\epsilon_0 r^3} (3\cos^2\theta - 1)$$