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Solution 1 - Longitudinal Poiseuille flow in a ring gap

Symmetry + continuity equation — ¥ = (0,0, v,(r)) and p(r, z).

Simplifying the Navier-Stokes equation (steady flow, no gravity, continuity equation + in-
compressible fluid) we find

~Vp+nV*i=0

7 component: —%&p =0
 component: 0 =0
z component —0,p + 20,(rd,v,) =0

The pressure does not depend on r. Therefore each term in the z component equation
depends on a different variable, such that we can write:

Opp(z) =—-K = ﬂar(rarvx)
r
As expected, the expression for the pressure is :

p(z) ==Kz + po

The other equation gives

-K = gar(rﬁrvx)
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vp(r) = —%7’2 + CiIn(r/rg) + Co

where we have used a reference length ry to express the In.
With the no-slip conditions: v,(R;) = v,(R2) = 0:
K
0= _ERl + Cl ln(Rl/T’o) + CQ
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K
0= _ER% -+ 01 1H(R2/T0) + 02

Taking the difference between the two expressions we find

K 1
C) = R — R} —————
P 477( 2 )ln(Rl/Rz)
Re-injecting C in the expression for v(Ry) =0
K K 111(R2/7’0)
Cy="—R5+ R? — R} ——=" 2~
2T 477( 2 1>ln(R1/R2)
Replacing for C; and C; we find
_ K 2 2 oy In(r/Rs)
'Ux(’f') - 477 R2 r (RQ Rl)ln(Rl/RQ)

One can easily verify that this expression corresponds to the usual Poiseuille flow in a pipe
of radius Ry for R; — 0.

Solution 2 - Charge Density

a) The total charge on the surface of the sheet is given by

Q= /Ly/Ll 22y® 4 In(z)) do dy

We first solve the inner integral,

Ley Ly Le
/ (2%y® + In(z)) dr = y3/ ?dr + / In(z) dx
0 0 0

for the left side:

for the right side we use integration by parts with u(z) = In(z), dv = dz and we
evaluate du = 1/x dz and v(z) = z:



/ln(m)dx:/udv:uv—/vdu

we substitute v = In(z), v =z and du = 1/z dz:

/ln(x)dx:uv—/vdu

:zn(;g)x—/x-ldx

X

= In(z) x—/ dz

=In(z)z—z+C

With boarders:

Lz Lq Lq
/ In(z)de =In(z) z| —=z
0 0 0
So the inner integral writes as
[ m@) w= g L e o) o)
T n(z)) de =y° - sz n(z) z| —=
0 Y Y 3 o 0 0
Note: Since In(0) = —oo the solution for z - In(z) is not defined for z = 0. However we

can still solve the integral in the given boarders, since the limit lim,_o (2 - In(z)) =0
is defined. To proof lim,_, (z - In(z)) = 0 we use the rule of I'Hopital:

s () = G orit tim (£E21) = 2% then

e () (35)

So we can apply this to our problem:

limg_o (z - In(x)) = lim,; ( {T >
f
= limy_0 ( “ )
- llmﬂv—)O
=0
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Now, we continue with the outer integral
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substituting the dimensions of the sheet, L, = 0.6 m and L, = 0.5 m, we have

Ly [Ls
Q:/O /0 (2%y® + In(z)) dr dy

1
= {0.6 0.5 <50.620.53 + In(0.6) — 1)]

=—0.4521 C

For a disk of radius R, the mean charge density on its surface can be computed by

Total charge on disk . Q(R)

O disk — =
Disk area T R2

The total charge on the disk, in the polar coordinate system, is given by the expression
27 R
Q:/ / r-o(r,0) drdf
o Jo
where o is the charge distribution of the disk.

Then, Q needs to be computed in order to find T4 (R). The double integral to solve

is the following
2w R
Q(R):/ / r-e drdf
o Jo

The inner most integral can be solved by parts, using the following substitutions:
u=r,
du = dr,v = e" and dv = e¢" dr. That is

T
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/udv—uv—/vdu
/rerdr:rer—/e’"dr

=e (r—1)

Now, the outer integral can be solved

A%[amr—n}Rw:ié%@Rua—n+1)w

0
27

(&WR—n+1y90
=21 (e (R—-1)+1)

The mean charge density is:

m
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Taan(R) = 2L U l)el) ( 751;21)+1)=%<63(R—1)+1> <

Solution 3 - Point charges: triangle

Figure 1: The forces only indicate the direction

The Coulomb force acting on a charge ¢ fixed in the midpoint of the hypotenuse will be given
by the contributions of the three charges in A, B and C' considerated separately because of
the superposition principle. Therefore, we consider a coordinate system as shown in Fig. 1,
and evaluate the three forces:

P, = 1 90 f+@:\/§QQO(i+@)
dreg (dN/2/2)2 V2 4megd?
By — 1 490 @—@:\/EQQO(@_@)
dmeg (dV/2/2)2 V2 Areqd?
= L 2900 —3+§  2V2q, .
= (=2 +79)

7 dre (dv2/2)2 V2 A4meod?



Therefore we can evaluate the total force

o 2
F=Fys+Fp+Foc=—-—"17

Atfstle 4drend?

It has to be noted that the calculation would be a bit easier by choosing a coordinate system
rotated by 45°.

Discussion 1 - E-field Lines and Equipotential surfaces

The E-field lines are perpendicular to the equipotential lines. The E-field lines are from
+15V object (high potential) to the +10V object (low potential), so between the objects,
the +15V object is positively charged at the surface and +10V object is negatively charged
at the surface. In addition, as both objects carry net positive charge, besides the E-field
lines connecting these two objects, each of them should have other E-field lines which go to
infinity.

Figure 2: Equipotential maps and E-field lines around charged objects.

Solution 4 - Unstable Uranium Core

a) From the course, we know that the potential energy between two charges ¢ and @
separated by a distance d is given by :

Q- Q
dmegd

(1)



In the case of an equal separation of the core, the two equal parts both have a charge
equal to half the number of initial protons.

B 92e™

Q= Q= 5= 46et ~ T4 x 1071 (2)

The distance separating both equal parts can be estimated as the nucleus radius r, which
can be approximated as r ~ 10~'m. With the charges described above, we obtain :
54 - 10736

U=9-10"- T ™ 4.9 x 1071 J /atom (3)

This is the energy for one single atom of uranium.

Using Avogadro’s number, we find that 1 gram of Uranium-235 contains :

Nio 21
2—5% ~ 2.5 x 10 atoms.

The total energy per gram is then £ = 1.2 x 10'1J

By converting the energy in J/gram instead of M.J /kg, we obtain that the energy produced
from the nuclear reactor is 8 x 10'°J/gram. The two energies are of the same order of
magnitude.



