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Solution 1 - Airplane take-off speed

a) The airplane will take off when the force arising from the difference in pressure above and
below the wings equals the gravitational force.
Using Bernoulli we can find the expression linking v1, p1 (below the wings) to v2, p2 (above
the wings), and to the expression for the force:

F = 2A(p1 − p2) = 2A
1

2
ρ(v 2

2 − v 2
1 ) (1)

The gravitational force is:
F = mg (2)

We find the expression for v1 (assimilated to the speed of the airplane):

v 2
2 − v 2

1 =
mg

Aρ
(3)

With v2 = 1.2v1 we obtain

v1 =

√
mg

0.44Aρ
= 150 m/s = 541 km/h (4)

b) The actual take-off speed is around 300 km/h. This difference is primarily caused by the
fact that also the body is designed such as to create a lift force. Further corrections arise
from the presence of turbulence and the fact that at these velocities air can no longer be
considered incompressible.

Discussion 1 - Streamlines

The denser the streamlines, the higher the velocity. Importantly, streamlines can never
cross, neither itself or another streamline. If they would cross this would imply two different
velocities for the same point. In this case it should be made clear that the velocity on one
side of the house is higher as on the other side and thus the pressure lower. This will cause
a air flow in the house (streamlines...) that will cause the door to slam. Thus it is not the
wind blowing through the house that is the reason.

Solution 2 - Streamlines in 2D

In the following we determine the expression y(x ) for the streamlines. We have: vx = (v0/l)x
and vy = −(v0/l)y . The streamlines are, in each point, tangential to the velocity vector, and
thus verify the following equation:

dy

dx
=

vy
vx

=
−yv0/l

x v0/l
= −y

x
,
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where we can separate the variables and obtain:

ˆ
dx

x
= −
ˆ

dy

y
,

i.e.:
− ln y = ln x + C , → xy = C ′ .

So, each streamline is a hyperbola.

In general, the acceleration is :

a =
dv

dt
=

∂v

∂t
+ (v · ∇) v =

∂v

∂t
+ vx

∂v

∂x
+ vy

∂v

∂y
+ vz

∂v

∂z
.

The flow is stationary so ∂v
∂t

= 0. Moreover, the flow is bidimensional so vz = 0 and vz · ∂v∂z = 0.
The acceleration then becomes :

a = vx
∂v

∂x
+ vy

∂v

∂y
=

(
vx

∂vx
∂x

+ vy
∂vx
∂y

)
x̂+

(
vx

∂vy
∂x

+ vy
∂vy
∂y

)
ŷ ,

and finally:

a = x
v 2
0

l2
x̂+ y

v 2
0

l2
ŷ =

v 2
0

l2
r r̂ .

The acceleration is radial. Its amplitude is constant on the concentric circles around the
origin.
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Solution 3 - Viscosity, shear stress, and shear strain

Since the gradient of the velocity is constant, and since we only need to consider the force
along the x -direction, we find that

Syx = η
dvx
dy

= η
v0
d

(5)

The expression for the shear rate is

ėyx =
de

dt
=

d

dt

∆x

d
=

1

h

d∆x

dt
=

v0
d

(6)

The shear strain can also be expressed as

Syx = ηėyx (7)

Solution 4 - Viscous drag

The lower disk will be set in motion by the shear stress exerted by the fluid.
By hypothesis:

∂v

∂z
= α(r , t) at any point at distance r from the axis. (8)

We deduce:
v(z ) = α(r , t)z + β(r , t) (9)

Boundary conditions (non-slip):

v(z = 0) = ωr =⇒ β is independent of time and is β = ωr ;

v(z = d) = Ωr =⇒ α =
(Ω− ω)r

d
.

The shear stress at a distance r is given by:

Sz = η
∂v

∂z
=

η(Ω− ω)

d
r (10)

and is thus independent of z .

The moment of force exerted by the fluid on the upper disk (z = 0) is given by the sum of all
the small moments of force exerted by the constraints on each surface element of the disk:

C =

ˆ
A

Sz r dA =

ˆ R

0

Sz2πr
2dr =

2π

d
η(Ω− ω)

ˆ R

0

r 3dr =
π

2d
η(Ω− ω)R4; C⃗ = C e⃗z (11)
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The angular momentum of the lower disk is
given by IΩ. If the fluid exerts a moment
of forces C on the upper disk, it must ex-
ert a moment −C on the lower disk. Here
we have assumed that the fluid is no longer ac-
celerating (steady flow), or rather that the mo-
ment of inertia of the fluid is zero and thus
directly follows the rotation of the upper disk.
The dynamics of the lower disk is now given
by the law of angular momentum: d

dt
(IΩ) =

−C .

We thus obtain the differential equation allowing to
determine the temporal dependence Ω(t):

I Ω̇ +
π

2d
ηR4Ω =

π

2d
ηR4ω (12)

Ω(t) = ω

(
1− exp (− π

2d
η
R4

I
t)

)
(13)
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