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Exercise 1 - Jet d’eau

We call A be the basis of the water jet and B its top point.

a) We can solve the problem with the Bernoulli equation :

in A: pg -0+ pam + P? = Patm T p?;
2

in B: pg - h+ pagm + pg = Patm + pgh.

So,

2

v
Patm + 5 = Pam + pgh ;

= v=+/2¢h = v=52m/s.

b) Right at the exit of the nozzle, the pressure applied on the fluid is no other than the
atmospheric pressure. Because the pressures balance out, there is only the atmospheric
pressure in the water jet. To be convinced of that, if the water pressure was higher that

77'

Patm, the fluid should laterally expand and make an ”explosion

Discussion 1 - Steady flow and acceleration

One can take as an example a one-dimensional flow inside a
pipe as shown in the figure. Let’s suppose the velocity varies
linearly from Vj to 3 Vj. The velocity can be written as:

V=3V0
2x
vz, t) = V(14 T) (1)
L=30
The acceleration of a fluid particle in one-dimension is: < >
dv(z,t) 0O 0 2 2Vy 2V 2%
=2 = y(z, ¢ t)—uv(z,t) = 1+ 52020142 (2

The acceleration is not zero here because of the change in section through the pipe leading
ov(x,t . ov(z,t

# # 0. A steady flow is defined as ¥ =0
which means that the local acceleration of particles that pass by a given point z is nil: every

particles has the same acceleration in z but the individual acceleration of these particles can
also not be zero as here a # 0.

to a convective acceleration v(z,t)

Exercise 2 - Tank with a hole



a)

The hole being small (r < R) the flow can be considered as quasi-steady and Bernoulli’s
theorem can be applied along a streamline going from the fluid surface (height z) to the
hole (z = 0):

1 2 1 2
Patm + P92 + 5pU; = Pasm + 0+ S pv (3)

with v, the velocity at the fluid surface and v the velocity at the hole level.
Conservation of mass flow rate:
pv,TR* = pvmr? (4)

Assuming that R > r, one has v, < v which means that v, can be neglected in equation
3. The fluid velocity at the hole is then:

v =1/2gz. (5)

The velocity v is constant over the hole section w72 because the fluid is ideal. The flow

rate coming out from the hole is therefore Q = vrr?.

This rate is related to the decrease in height of the fluid:

d
—WRQd—j =7riy/2gz. (6)

Integrating this equation leads to the time evolution of the fluid height z(%):

(@) vme = e vEe

The constant of integration C' is determined by the initial condition z(¢ = 0) = h and
equals C = —2v/h.

The time T, necessary to empty the tank is therefore:

Ty= )= = (8)

Now if there is no condition on 7 (r < R not verified), v, is not neglected and combining
Bernoulli’s theorem with the equation v, = v r?/R? leads to a corrective term:

29z .
1— (r?/R2)’

2h R? r2\ 2
To=1/= =5 /1 1
’ g r? <RQ> (10)

29z

=yt O

V=

2(v/z — V'h) =—;—22

For Ty we find :



Exercise 3 - Egyptian water clock

Conditions are fulfilled to apply Bernoulli’s theorem between z = 0 and z, one can write:

1 1
Patm + 5/)’03 + g% = Datm + §p’v§ (11)

The equation of continuity is given by:
SZUZ = S()Uo (12)

where S, and Sy are the revolution sections of the vessel in z and at the hole level respec-
tively.
By combining these equations, the level position as a function of the velocity and the geom-

etry is:
2 2
,UZ SZ
z=—=1-=5-1 13
29 <53 ) (1)
As the fluid level decreases at equal time intervals with respect to equidistant graduations
on the axis, one must have v, = v = cste.

Since the vessel has a revolution symmetry around z, i.e. S, = m(r(z))?, the equation
describing the vessel geometry is, with Sy = 7rg:

r(z) = 1o (@ 4 1)}1 (14)

Exercise 4 - Vorticity vector

a) U= (v:(2),0,0), with v,(2) = Cz, in cartesian coordinates (z, y, z)
V x ¥ = (0yv, — 0,0y, 0,v; — 00, 050, — Oyv,) = (0,0,,,0) = (0, C,0)

Q=Vx 7= (0, C,0). The flow is rotational. There is not global rotation of the fluid
but there is a local rotation of the particles. The vorticity vector is in the y direction and
it corresponds to the rotation axis of particles "rolling” in the flow direction z.

b) ¥ = (0, vs(r),0), with v,(r) = wr, in cylindrical coordinates in the basis (&, &, €,)

1 1
VX U = (=0pv,—0,04, 0,0, — 00,
r

Q= (0,0,2w). This flow is rotational. There is a global rotation of the fluid and a local
rotation of the particles around their own axis. The vorticity vector is in the z direction,
it is the particles rotation axis. This flow corresponds to the rotation of a solid with
angular frequency w.

;a,n(%)—%a(ﬁm — (0,0, %aT(%)) — (0,0, %&(wrQ)) —(0,0,20



c) U= (0,v(r),0), with vy(r) = C/r, in cylindrical coordinates in the basis (&, &, &)
1 1 1 1 C
Vxv=(- 6¢vz —0,Vp, 0, Uy — 0y, ;@(rvqg)—;@(bvr) = (0,0, ;&(T%)) = (0,0, ;8T(r7)) = (0,0,0)

Here, () = 0. The flow is irrotational. There is a global rotation of the fluid but no local
rotation of the particles.

Below: representation of the velocity fields; for ¢), vectors are not shown close to the origin
(divergence). Squares represent fluid particles and their motion in the flow.
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