Solution Sheet 13

Discussion 11.12.2024

Solution 1 - Displacement Current

a) The current I_c in the circuit due to charging of the capacitor is

$$I_c = C \frac{d\Phi_c}{dt} \tag{1}$$

with Φ_c is the voltage on the capacitor and the capacitance of the capacitor C is

$$C = \frac{\epsilon_0 A}{d} \tag{2}$$

Using Kirchoff's law, in this circuit we have

$$\Phi_0 = R_1 I_c + \Phi_c
= R_1 C \frac{d\Phi_c}{dt} + \Phi_c$$
(3)

thus

$$\frac{dt}{\tau} = \frac{d\Phi_c}{\Phi_0 - \Phi_c} \tag{4}$$

with the time constant

$$\tau = R_1 C \tag{5}$$

Integrate the above equation from 0 to t on the left side and from 0 to Φ_c on the right side gives

$$\int_0^t \frac{dt}{\tau} = \int_0^{\Phi_c} \frac{d\Phi_c}{\Phi_0 - \Phi_c} \tag{6}$$

thus

$$\Phi_c(t) = \Phi_0(1 - e^{-t/\tau}) \tag{7}$$

thus the electric field E between the plates is

$$E(t) = \frac{\Phi_0}{d} (1 - e^{-t/\tau}) \tag{8}$$

Note that the method to derive the voltage on the capacitor was already discussed in another lecture and is only reproduced here for clarity.

b) To determine the magnetic field B in the solenoid, we use the Ampere's law on the central circular path of the solenoid of radius a, as

$$\oint \vec{B} \, d\vec{l} = \iint \mu_0 \epsilon_0 \frac{d\vec{E}}{dt} \, d\vec{S} \tag{9}$$

$$B2\pi a = \mu_0 \epsilon_0 \pi a^2 \frac{dE}{dt} \tag{10}$$

thus

$$B(t) = \frac{\mu_0 a \Phi_0}{2R_1 A} e^{-t/\tau} \tag{11}$$

the last step uses $\tau = R_1 C$ and $C = \epsilon_0 A/d$.

c) In the solenoid, the current I_s and voltage Φ_s are

$$I_s = \frac{dQ}{dt}$$

$$\Phi_s = R_2 I_s$$
(12)

thus charge Q which flows through the solenoid is

$$Q = \int_0^\infty I_s dt$$

$$= \int_0^\infty \frac{\Phi_s}{R_2} dt$$

$$= \int_0^\infty \frac{-1}{R_2} \frac{d\varphi}{dt} dt$$

$$= \int_0^\infty \frac{-1}{R_2} d\varphi$$

$$= \frac{NS}{R_2} [B(0) - B(\infty)]$$

$$= \frac{NS\mu_0 a\Phi_0}{2AR_1 R_2}$$
(13)

where we have used the Faraday law $\Phi_{\rm em} = -d\varphi/dt$, the total flux $\varphi = NSB(t)$ and the fact that $B(\infty) = 0$ as the field vanishes exponentially.

Solution 2 - AC magnetic field

Similar to the discussion in the previous exercise and with $C = \epsilon_0 A/d$, the E-field between the plates is

$$E(t) = \frac{Q(t)}{\epsilon_0 \pi a^2} \tag{14}$$

select a circular path of radius r between the two plates, whose plane is parallel to the plates, and use Ampere's law, as

$$\oint \vec{B}(t)d\vec{l} = \iint \mu_0 \epsilon_0 \frac{d\vec{E}(t)}{dt} d\vec{S}$$
(15)

when r < a,

$$B(t) \cdot 2\pi r = \mu_0 \epsilon_0 \frac{1}{\epsilon_0 \pi a^2} \frac{dQ(t)}{dt} \pi r^2$$
(16)

thus

$$B(t) = \frac{r\omega Q_0 \mu_0}{2\pi a^2} \cos \omega t \tag{17}$$

when $r \geqslant a$,

$$B(t) \cdot 2\pi r = \mu_0 \epsilon_0 \frac{1}{\epsilon_0 \pi a^2} \frac{dQ(t)}{dt} \pi a^2$$
(18)

thus

$$B(t) = \frac{\omega Q_0 \mu_0}{2\pi r} \cos \omega t \tag{19}$$

Solution 3 - Waves

a) Recall that $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$. Rewrite Ψ in the following way

$$\Psi = \frac{A}{2} [\sin(Bx + Ct) + \sin(Bx - Ct)] + D$$

$$= \frac{A}{2} [\sin(B(x + \frac{C}{B}t)) + \sin(B(x - \frac{C}{B}t))] + D$$
(20)

Clearly we can replace $\sin(Bx) = f(x)$, and f(x - vt), f(x + vt) are the solution of wave equations.

b) Setting x - Ct/B = const shows that the speed is v = C/B.

c) To verify that $\chi = (x - v_1 t)^2 + (x + v_2 t)^{-1/2}$ is indeed a solution of the wave equation $\frac{\partial^2 \chi}{\partial t^2} = v^2 \nabla^2 \chi$, we put χ into the wave equation, as

$$\nabla^{2} \chi = \frac{\partial^{2} \chi}{\partial x^{2}}$$

$$= \frac{\partial}{\partial x} [2(x - v_{1}t) - \frac{1}{2}(x + v_{2}t)^{-3/2}]$$

$$= 2 + \frac{3}{4}(x + v_{2}t)^{-5/2}$$
(21)

$$\frac{\partial^2 \chi}{\partial t^2} = \frac{\partial}{\partial t} \left[-2v_1(x - v_1 t) - \frac{v_2}{2} (x + v_2 t)^{-3/2} \right]
= 2v_1^2 + \frac{3v_2^2}{4} (x + v_2 t)^{-5/2}$$
(22)

To satisfy the wave equation it is required that $v_1 = v_2 = v$.

This result can also be obtained by considering that h(x,t) = f(x-ct) + g(x+ct) is a general solution of the wave equation. However, in many less simple examples it will be necessary to go through the solution as described above.