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Introduction

Fluids are clearly part of our everyday life. Actually so much so that we
rarely think about how weird their behaviour would appear for someone
who has never encountered a real fluid and we certainly don’t realise the
complexities in describing the flow of fluids. One would be inclined to
simplify the treatment by neglecting the viscosity, as will be done in the
first chapters, but this will actually lead to behaviour which is completely
alien to us. It would not even be possible to stir a cup of tea! Thus in the
later chapters we will have to face the complexities of dissipative physics.

Let’s start by trying to define what a fluid is. A working definition is
that a fluid fills a container, while maintaining its volume, under the in-
fluence of gravity. This clearly applies to liquids, which is sometimes used
synonymously to fluids, but also to gasses like our atmosphere, and to plas-
mas. In much of this lecture we will assume the fluid to be incompressible
and the compressibility primarily starts to play a role for the transport of
sound waves.

Actually, the compressibility is the only static deformation tensor that
is non-zero in fluids, and this is what sets it clearly apart from solids.
The Young modulus, which describes the change in length when a force
is applied, and the shear stress, which describes the deformation upon an
applied force, are both zero in the static case for fluids. Another important
difference with solids is that in fluids the response will be isotropic i.e. it
does not depend on the direction.
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In the following we will often be using the nabla vector (6) which can
be expressed as follows in Cartesian, cylindrical, and spherical coordinates

respectively:
- o 0 0
= (=, = = 1
v (83:’ oy’ 82’) (1)
- 0o 10 0
V= (57@@) @

- 210 1 0
V= <E’;%’rsin93_¢> (3)

In the rest of the lecture the vector sign will not be used and we will write
V instead of V.



Chapter 1

Hydrostatics

In this chapter we will look at the most important aspects of fluids at
rest that will be relevant to our further discussion. It is assumed that the
students are familiar with hydrostatics from other courses and high school
physics.

Because of the absence of shear stress, the force F per unit area A will
always be perpendicular to any surface we choose in the fluid and it will be
the same for all orientations of this surface. The pressure p defined as

p:

|y

(1.1)

is thus also independent of which direction we look and isotropic. As a
reminder, when we write a surface as a vector, this means that the modulus
represents the area and the direction the surface normal. We will encounter
this notation many times during this lecture.

Although the pressure is isotropic, this does not imply that its can’t
vary as a function of position. The clearest example of this dependency on
position is when we consider a fluid column under the influence of gravity.
If at a height zy the pressure is defined as pg, the pressure will be py — pgh
at a height h above and py+ pgh at a height h below. Where p is the (mass)
density. Thus we can say that

p + pgh = const. (1.2)

In the following we will generalise this for three dimensions i.e. for p(z,y, 2)

Let’s consider a small cube with sides Az, Ay, and Az. At point x the
pressure is p which is perpendicular to the surface as discussed above. Thus
the force, pressure times area, on this face of the cube is F7 = pAyAz. At
point x + Ax the pressure is slightly different, and, considering the basic
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definition of derivatives, it is p + %Aw. Because the surface normal has
changed sign, the force here becomes Fy = —(p + g—iAx)AyAz. The total
force along the x-direction is given by F, = F| — F, = —%AxAyAz.
Similar considerations can be made for the y- and z-directions yielding
F, = —g—ZAxAyAz and F, = —%Aa:AyAZ. Thus the total force per unit

volume f becomes

F P _8p _8p _8p .
AV_f_( or oy’ az)_ vp (1.3)

Where AV = AzAyAz and V is defined in Eq. [I] In words, the force is
the gradient of the pressure.

Besides the force due to pressure, there might be other forces acting on
the liquid, for example gravity. These can be summarised as a potential ®
per unit mass. For only gravity we would simply get ® = gz. The force
per unit mass becomes —V® (g) and the force per volume —pV® (pg). In
equilibrium the pressure and potential forces should balance each other and
we get

f=-Vp—pVo =0 (1.4)

This is called the equation of hydrostatics. The first term can be con-
sidered as the internal forces and the second term as all external forces
working on the fluid.

Whether Equation has a solution depends on the properties of the
density p, which breaks the symmetry of the expression. If p is constant,
the solution is rather simple and becomes p + p® is constant, which is the
same as Eq. if we only consider gravity. If the density is only a function
of the pressure (p(p)) a solutions exists, leading for example to the generally
layered structure of our atmosphere. However, if the density also depends
on other parameters (p(p,x,y, z,t,T...)) then no solution exists to Eq.
and one obtains phenomena like convection.

This ends our discussion of hydrostatics and we will now consider what
happens if the fluid is in motion. This will rapidly become more complex,
and certainly more interesting.



Chapter 2

Fluid dynamics without
viscosity

The goal will be to describe the dynamic properties of the fluid at every
point in space for some infinitely small volume. One can imagine we want
to know how a small part of dust would move in the fluid. In order to
be able to deal with the math in bits and pieces we will first ignore the
internal friction in the fluid. Or in other words we will ignore the viscous
forces. However, it should be noted that a fluid with zero viscosity is not
a simple approximation of a real fluid, it is actually a very exotic state of
matter comparable to what a superconductor is for electric transport. The
only known example is superfluid Helium and this shows some incredible
behaviour.

2.1 Equation of motion

As mentioned above, we want to describe all properties of the fluid for every
point in space. This will clearly concern the pressure p and the velocity v,
but also the density p and the temperature 7" need to be described. One can
go even further and also include what type of molecule is where, what its
orientation is, and what quantum state it is in. These last points certainly
go too far for this lecture, but even without them we will need to make
some simplifications. The first is that we say that the temperature is not
an independent property, but that it can be determined from the pressure
and density.

The second assumption that we will often make is that the fluid is in-
compressible, and that thus the density is constant. This assumption is
typically valid if the velocities involved are significantly lower as the speed

7
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of sound in the fluid. If we combine this with the conservation of matter in
a continuity equation we obtain a useful expression. The mass flow can be
expressed by pv and the total mass flow over some closed surface S must
be equal to the change of mass M within this surface

ﬁé@m-d§::%¥ (2.1)

Using Gauss’s theorem we can also express this locally with the divergence
of the mass flow

dp

ot
Now if p is constant then we obtain that the divergence of the velocity is
Zero

V- (o) = (2:2)

V.-i=0 (if incompressible) (2.3)

Which in principle states that there are no spontaneous sources of flow.
We are now ready to write Newton’s law (F' = md) per unit volume
whereby we use Eq. [L.4] for the force

f=pi==Vp—pV®+ foi (24)

Here ﬁ,isc represents the internal viscous forces which we set to zero in this
chapter.

The next step will be to find an expression of the acceleration in terms of
the velocity, which is our quantity of interest. One would be inclined to say
that @ = % but this incorrect. This expression describes the acceleration at
some fixed point in space, but not of the small unit volume, or dust particle,
that we are following in the fluid. Instead, the acceleration is given by the
change in velocity when going from point 1 to point 2. The velocity at point
1is

0y = U(z,y, 2,t)
and when going to point 2 it has changed by Av¢ and becomes
Uy = U(x + Ax,y + Ay, z + Az, t + At)

If we now consider that the change in a given direction is given by the
velocity component along this direction multiplied by the time we can write
Az = v, At, Ay = v,At, and Az = v,At and insert this to obtain

Uy = U(x + v, Aty + v, AL, 2 + v, At t + At) (2.5)
=7 t) + v At + v At + oy At + %At (2.6)
IR e e L P a1 '



2.1. EQUATION OF MOTION 9

In the last step we went from a notation where the vector component are
separate to a complete vectorial expression.

Now the acceleration becomes the full change in velocity (¢ — ) divided
by the time interval At

U1 — o ov ov ov  0v

> =y, - — 4 — 2.7
CETAr T Yman ey TV T o 27)
As derived in the exercises this can be shortened into
ov
ad=(v-V)U+ — 2.8
Q= (V)i (28)

We can now insert Eq. in Eq. reshuffle the terms and leave out the
viscosity to obtain

%Hﬁ.vw:—%—w (2.9)
This is our central equation of motion of a fluid in the absence of viscosity.
Because we set out to determine our expression for every point in space,
the pressure, density, and potential are scalar fields, and the velocity is a
vector field.

The (¢ V)U term is not very intuitive, but it contains most of the
information about the spatial dependency of the velocity field. Therefore it
is instructive to rewrite this term and to introduce the vorticity Q). This
is a vector field, but we will drop the vector sign for simplicity. The first
step is to rewrite the term using a vector identity

(5 V)7 = (V x ) x 5+ %V(ﬂ %) (2.10)
Now we define the vorticity as
Q=Vxv (2.11)
and we simplify the scalar product in the last term to obtain
(U- V)T =Q x 7+ %V?ﬂ (2.12)

Inserting this in Eq. we get

—

0u

1
at+Q><17+§Vv2:———V<I> (2.13)
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This will be the reference point for some of our discussion to come.

The vorticity represents the circulation of the velocity around any point
and is more easily to consider as the (¢'- V) term above. If 2 = 0 the flow
is called irrotational and otherwise rotational or said to contain vorticity.
However, we have to be careful. For example, a free vortex like a whirlpool
or outflow of a basin is irrotational because the angular velocity decreases
with one over the distance to the centre % As a result, the curl of the
velocity becomes zero at any point of the vortex except the centre. The piece
of dust caught in this whirlpool will thus always face the same direction.
In a forced vortex, where the rotation is induced by an external force, for
example a rotating cylinder, there is vorticity. In this case the angular
velocity is constant and the curl of the velocity, or €2, takes a value of twice
the local angular velocity. On the other hand, a steady flow along a single
direction (parallel flow), but with a velocity gradient perpendicular to this
direction, is rotational. €2 = 0 only exactly at the centre line and takes
finite opposite values on either side of this. Illustrations of the vorticity are
provided in the lecture.

In a next step we can also eliminate the pressure from our equation of
motion if the fluid is incompressible. To do this we take the curl (Vx) of
both sides of Eq. and use that the curl of any gradient is always zero.
We then get

@jLVx(QxU):O (2.14)
ot
Together with Eq. and Eq. this now completely describes the ve-
locity field. We can calculate the velocity from the vorticity, use this to
calculate the change of vorticity (Eq. and the change of velocity, and
so on. We have, of course, sacrificed any knowledge on the pressure distri-
bution using this method.

Looking at Eq. we find a peculiarity. If the vorticity is zero for
some time ¢ then also %—? = 0 and 2 = 0 everywhere for all time. This
means it is impossible to induce vorticity in an irrotational flow. This is
counterintuitive as we know we can stir our tea, and one of the reasons why
the exclusion of viscosity is far from realistic. We will come back to this in

the next chapter.

2.2 Steady flow and Bernoulli

A steady flow is defined by the fact that the flow pattern does not change
with time and thus that % = 0. Remember that this is the velocity change
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at any given point and absolutely does not mean that everything is station-
ary. The velocity can still change as a function of position. This will now
allow us to define the concept of streamlines. These are lines tangent to
and indicate the trajectory that a fluid (or dust) particle would take. They
are similar to the field lines that we will encounter in electromagnetism.
One can also define streamlines if the flow is not steady, but in this case
they change with time and are not the trajectory of a fluid particle.

To derive Bernoulli’s theorem we take the scalar product of the ve-
locity (¢%) and Equation for steady flow (2 = 0) and realise that
U+ (© x U) =0 to obtain

1

7-VE 4o+ Z0?) =0 (2.15)
P 2

If we now look along a streamline we know that by definition ¥ # 0 and

thus the gradient term has to be zero. If the gradient is zero, it means that

the object has to be constant and we thus get

1
L 51)2 = const. (2.16)

p
whereby the value of the constant can depend on the streamline and we
thus have to apply this along a streamline. This is Bernoulli’s theorem,
where often it is used that ® = gz.

If the flow is irrotational (2 = 0) and steady we directly obtain the
result of Eq. from Eq. and the result is valid everywhere; i.e. the
constant is the same in the whole flow.

Figure 2.1: Bundle of streamlines and mass transport. (From Feynman
lectures)

It is illustrative to also derive Bernoulli’s theorem from conservation
laws. To do this we consider a bundle of streamlines, or flow tube, as
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illustrated in Figure 2.1} By definition there is no velocity component, or
flow, perpendicular to the streamlines and thus no fluid can leave the tube
through the side surfaces. Conservation of mass now tells us that per unit
time as much mass AM must enter the tube as that leaves it on the other
side because nothing can leave the tube in any other way. This mass flow,
or flux, is given by

AM = plAllet = pQAQ’UQAt (217)

Where A; and A, are the area at the entrance and exit of the tube, re-
spectively. Per unit time we thus get that pAv is constant and for an
incompressible fluid

1

voc o (2.18)

Thus if the area becomes smaller the flow has to be faster, which is rather
intuitive.

As a next step we consider the work done by the pressure and equate
this to the energy change. Work is force times distance, leading to

plAﬂllAt — pQAQUQAt = AM(E2 - El) (219)

where F is the energy per unit mass which is composed of the kinetic (%1)2),
potential (@), and internal/thermal energy (U). Thus we obtain

plAﬂ)lAt pQAQUQAt 1 1
AM — AM = 5@3 + (1)2 + U2 - 511% + (I)l + U1 (220)

Using our expression for the mass flow Eq. we see that the first term
can be rewritten as % which yields for a streamtube

1 1
Pl o 4+ U =2 4 S0 0y + Uy (2.21)
P1 2 P2 2
For an incompressible fluid the density and internal energy are constant
and we thus obtain the same expression as Bernoulli’s theorem in Eq. [2.16]

2.3 Applications of Bernoulli
There are many applications of the Bernoulli theorem, whereby most are

based on the relationship between velocity and pressure if the potential is
constant. A higher velocity will lead to a lower pressure. This will lead
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to the shower curtain always being drawn inwards, to doors slamming in
a draft, train windows rattling with a passing train, the possibility to let
something fly that is heavier than air, and hurricanes to lift off roofs from
houses. However, we will start with an example where the pressure is
constant.

=

Figure 2.2: Torricelli flow

Consider the situation sketched in Figure illustrating the flow from
a large tank filled with liquid. For simplicity we consider the surface at
the top of the tank to be much larger as the surface of the opening. This
way we can ignore the flow speed at the top surface and set it to zero. We
set the potential at this surface as a reference and set it to zero, thus the
potential at the outflow is —gh. The pressure at the top surface and the
outlet are both the external air pressure py and putting this in Eq. we
obtain

1
Po = Po + 5PV — PR (2.22)

and thus
Vout = 29h (223)

This is the so-called Torricelli flow.

As a next example we consider the flow through a horizontal tube with
cross section A;which is at position 2 reduced to A, < A; and afterwards
goes back to A;. From Eq. it directly follows that the velocity vy > v;.
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Using Eq. [2.16] with constant potential because of the same height for the
middle streamline, we obtain
Loy Loy

P+ 5PV = P2 + 5PV
and directly see that py < py. If at position 2 another small tube is placed
perpendicular to the flow, we obtain suction through to tube due to the
lower pressure. This pressure reduction forms the basis for a carburettor
in a combustion engine, or a vaporiser. This is generally referred to as
the Venturi effect. With a slight modification this can also be used to
construct a pump without any moving parts, but where the rapid flow of
water or oil creates an under pressure.

{

Figure 2.3: Pitot tube for speed measurements

For boats and especially for aircraft it is complicated, but essential, to
measure the speed with regard to the water or air surrounding it. Also here
Bernoulli provides a solution in the form of the Pitot tube illustrated in
Fig. Again, the potential at point A and X is the same. Furthermore,
because point A is a stopping point for the flow, the velocity here vy, = 0.

Now Eq. simply becomes

1

Pa =Dpx + §PU§<

ox = /201 = px)

and thus



2.3. APPLICATIONS OF BERNOULLI 15

where the pressure difference is measured by, for example, the height dif-
ference of a fluid in the tube and vy is the speed of the object with respect
to the surrounding.

The wings on an airplane or hydrofoil, or the rotor of a helicopter, are
designed such that the density of the streamlines of the fluid is higher above
as below. Thus the velocity of the fluid is also higher above as below and
accordingly the pressure is lower above as below. This pressure difference
creates an upward force (lift) that keeps an airplane in the air. The same
effect is responsible for the fact that roofs are lifted up from buildings in
storm.

n s
hy

()

- - (D (€ )

Figure 2.4: Venturi flow meter

Many other applications can be considered, but, here, as a last example
we treat the Venturi flow meter shown in Figure because it forms the
transition to viscous flow. The cross sections A;, Ay and Az are known with
Ay = 2A, and we measure the heights h; and hy (and h3). These heights are
directly related to the pressure p; = ghy and py = ghs. In accordance with
Eq. we get that vy, = 2v; and putting everything together in Eq.
we obtain

2

v = gg(hl — hy)

and can thus determine the speed of flow.

If we look more carefully at hs we see that it is slightly lower as h;
although the cross section is the same. This means that the conservation
of energy that forms the basis of Bernoulli’s theorem is not entirely valid.
Somewhere energy has to be “lost” and this is due to internal friction in
the fluid. This internal friction is called the viscosity and the inclusion of
this in our equation of motion forms the basis of the next chapter.



Chapter 3

Flow 1n viscous fluids

There is a wide range of everyday observations that indicate that the treat-
ment of the flow of fluids, as presented in the previous chapter, is incom-
plete. There is the pressure drop over a tube, the fact that one can induce
vorticity, and other observations like turbulence and friction of a solid mov-
ing through a fluid. All these effects, and more, follow from the viscosity of
the fluid. We will first derive the coefficient of viscosity and then change our
equations of motion including this extra term and look at the consequences
of this inclusion.

3.1 The coefficient of viscosity

We start with the observation that the velocity of a fluid is zero with respect
to the surface of a solid. If the solid is stationary, a thin layer of the fluid
will also stand still, and if the solid is moving, the fluid next to it will move
with the same velocity. Now we consider two very large parallel plates with
area A and distance d from each other, with a fluid in between. The bottom
plate is not moving and the top plate moves with a velocity vy. This will
induce a velocity gradient in the fluid whereby the bottom part of the fluid
is standing still and the top part also moves with vy. Due to the friction
in the fluid a force F' needs to be applied to keep the plate moving with
constant velocity. The coefficient of viscosity n with units [Ns/m?| is
now defined as:

=0 (3.1)

Here it should be realised that the force is applied parallel to the surface
and thus represents a stress (and not a pressure).

16
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In order to describe this stress accurately it is helpful to consider the
deformation of a solid as illustrated in Figure[3.1} This so-called shear strain
can be described by the displacement along the z-direction u, as a function
of y and vice versa (u,). If the deformation is small, we can approximate
tan 0 ~ ¢ and thus u, = 6y and u, = 0z. Using tensor notation one could
now (wrongly) think that it is a good idea to describe the strain e of the
deformation in x along the y-direction as

Cay = 85;”” =0
and similar for 9
Cyr = % =0

. However, this causes a problem if we assume a negative deformation —u,,.
In this case we would just have a trivial rotation of § and no deformation
at all, whereas our strain tensor would be non-zero.

Figure 3.1: Deformation of a square (solid line) as compared to its rotation

(dashed line)

To resolve this problem, and thus to avoid that we describe rotation as
deformation, we need to take a combination of the strain along the x and
y directions. The simplest is a linear combination

1 /0 Oy
exy:eyx:§ (ﬂ“‘ - ) (3.2)

ox dy
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Where we directly see that for a rotation we obtain zero. This of course
means that the two tensor elements e, and e,, are the same, and the strain
tensor is thus symmetric. It should be noted that this does not indicate
that the deformations along the two directions are always identical. One
could have a finite u, and u, = 0 or similar. It just means that in our
description the two are mixed in a single number in the strain tensor.
Now we can apply this to the stress, which is the rate of change (2) of

ot
the strain, and sometimes referred to as the shear rate. With % — 0 Uz e

ot Oy
can now write out the stress that needs to be applied to have this gradient

of velocity. Using the notation of the symmetric rank 2 stress tensor S we
can write

ov v,
Say = Sye = 1) (a—xy + Dy ) (3.3)

and similar expressions for S,. and S,,. Here the viscosity 7 is the coefficient
proportionality. In tensor notation S,, indicates the stress at the surface
defined by # along the ¢ direction (or at the surface —z along —7).

<Y

Figure 3.2: Measuring viscosity with two concentric rotating cylinders.
(From Feynman lectures)

To illustrate the idea we will now consider a method to measure the
viscosity of a fluid. It is based on two concentric rotating cylinders with a
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fluid in between as illustrated in Figure[3.2] The inner (outer) cylinder has
radius a (b) and rotates with a velocity v, (v), whereby both rotate in the
same direction. We wait until a steady flow is established and in this case
we can assume from symmetry that the velocity is only a function of r. For
the angular velocity we can write w = ¥ and for the z and y coordinate we
obtain: x = rcoswt and y = rsinwt. For the velocities we thus get

Uy = % = —rwsinwt = —wy (3.4)
dy
vy = 5y = Tweos wt = wx (3.5)
The stress tensor from Eq. [3.3] thus becomes
Owz)  O(wy) Ow Ow
Sy = - = — =Y 3.6
S =0 (P - 2 ) < (52 -0 (3:6)

If we now consider that for y = 0 then x = r and take the rotational

symmetry into account i.e. our choice of the axes is arbitrary. We thus
obtain

Oow

S =nr— 3.7

Soy =14 (3.7)

Next we calculate the torque 7 of the stress on the fluid, whereby the

torque is given by the moment (arm) times the area (the cylinders have
length [) times the stress given above

Ow
= r2mrlS,, = 2rinr*— 3.8
r = 12mrlS,,, = ol (39
Because the flow is steady, the torque is independent of r. Thus 7‘3%—?
is constant (Cy) and we get that g—f = % and thus w = —257{2 + Cs.

The two constants can be determined from the boundary conditions that
W= wg = “ at r = a and similar for r = b. We are here only interested in
C so we can insert it in Eq. .8}

2a°%b?
G=gogle )
Thus we obtain for the torque
4tinab?

T = 27Tl7701 = m(wb — Cda) (39)
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We can now rotate one of the two cylinders and measure the torque on the
other one to obtain n with all the other parameters known.

The coefficient of viscosity is typically strongly dependent on temper-
ature, and for non-Newtonian fluids its also depends on the applied force.
Often the so-called kinematic viscosity is used which is the coefficient of
viscosity divided by the density: 2. The values of the kinematic viscosity
for different fluids are often closer together.

3.2 Viscous flow

We will now include the viscous force in our equation of motion as given in
Eq. and thus aiming to complete the expression

ov Vp fvisc

(T VT = ——E o
8t+(v V) = ; Vo + p

(3.10)

To do this, we will need to turn the stress tensor into a force per volume.
Let’s start with the stress tensor as defined in Eq. [3.3] but now also

including forces that occur during compression of the fluid. If we later

consider an incompressible fluid we can set that part to zero again.

Ov;  Ov;
= + + 1 ;;(V - 11
§7,j 77 (ax] axl) 77 52]( U) (3 )

where 7* is the second coefficient of viscosity, d;; the Kronecker delta which
is equal to 1 if 7 = 5 and zero otherwise, and x; = z,vy, 2. Considering that
force is stress times surface and with a bit of algebra (to be included when
time available) we obtain for the viscous force per unit volume

—'l,]
(foise)s Z o (3.12)

and with Eq. this becomes

8vi 81}]’ 0 xS 5
fvzsc i z:: 8.213] (77 (8% + axl)) + 8_% (77 5”(V U)) (313)

Considering that both coefficients of viscosity are homogeneous and thus

8877 = 9" — () we can rewrite this using the nabla operator
T, ox;

foise = V2T + (n+n")V(V - 7) (3.14)



3.3. HELMHOLTZ THEOREMS 21

It is a good student exercise to write this out and check that one obtains
Eq. The Laplacian operating on a vector field should be interpreted
as
V20 = (Vu,, Vv, V?0,)
and on a scalar field
3 82p
Vip =

— Q2
J=1

If we now insert Eq. in Eq. we obtain the Navier-Stokes

equation for a viscous fluid:
6'17 - N 2 — * hrd
p E+(U~V)v =—Vp—pVe+nV0+ (n+n)V(V-0) (3.15)

And in terms of the vorticity defined in Eq. this becomes

v

v 1
p (at +Qx T+ §Vv2) = —Vp—pV® + VG + (n+n")V(V - )
(3.16)

For an incompressible fluid V - ¥ = 0 and the expression becomes much
simpler. Now we again eliminate the pressure in a similar way as for the
derivation of Eq.[2.14] Taking the curl of Eq. [3.16] remembering that p is
constant, and simplifying yields

XL vk @x ) = v (3.17)
ot P
where we directly see the use of the dynamic viscosity.

Equation [3.17| represents a diffusion equation of the vorticity {2 whereby
the term on the right is like a damping term. In the following we will use
this equation to try to understand what can happen with the flow of a real

fluid.

3.3 Helmholtz theorems

The Helmholtz theorems concern the vorticity €2 and allow to have a closer
look at this vector field. We especially consider the vortex lines which
are like the streamlines but for the vorticity. They are of course intricately
connected with the streamlines through Eq. and they can be considered
to encircle each other. An example of this is illustrated in Fig. [3.3|



22 CHAPTER 3. FLOW IN VISCOUS FLUIDS

From the definition of the vorticity 2 = V x ¢ it directly follows that
the divergence of the vorticity is always zero

V.-Q=0 (3.18)

This means that vortex lines have no source or drain, and always close on
themselves. We will see something similar for the magnetic field lines later
in this lecture.
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Figure 3.3: Torus of vortex lines and the connection between vortex lines
and streamlines. (From Feynman lectures)

If we now consider fluids with very low viscosity (1 & 0) the second the-
orem is that vortex lines move with the fluid. Thus the product of vorticity
and area A is constant:

WA = QA (3.19)

It is thus always the same particles that make up a vortex, and if the fluid
is deformed by pressure forces the the vortex lines deform along. This is
crucially different from, for example, a wave. The second theorem can
be derived from the conservation of angular momentum in the absence
of friction (viscosity). For this we consider a bundle of vortex lines at
time t; and some time later when the fluid has moved or changed shape.
Taking a cylindrical shape for simplicity, the moment of inertia of this
bundle is I = MR? with R the radius of the cylinder and M its mass.
The angular velocity of the fluid particles around the vortex lines is by
definition proportional to © and the angular momentum becomes M R*Q).
Conservation of angular momentum means
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For an incompressible fluid M; = M, and further A = 7R? and we thus
obtain Eq. [3.19] This is nicely illustrated by the vortex cannon shown
during the lecture which produces a torus of vortex lines like in Fig. [3.3]

The third theorem we have already encountered in the previous chapter,
and thus also only applies for n =~ 0. It states that if for some time t the
vorticity s zero, then it will be zero for all t.

The vortex lines also help to understand what happens if we do include
viscosity. Namely, the vorticity spreads over the fluid and moves through
it. In the vortex cannon we saw this by the smoke ring becoming thicker.
More importantly, if 7 # 0 vorticity can be (spontaneously) created in the
fluid, leading to turbulence and drag forces.

3.4 Magnus effect

We consider a cylinder in a flow to the right, or equivalently, a cylinder
moving to the left through a stationary fluid as illustrated in Figure [3.4]
The velocity of the fluid relative to the cylinder is v, far away from the
object If the viscosity is zero, then there is symmetry along the horizontal
and vertical direction and there is no net force on the cylinder.
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Figure 3.4: Cylinder in flow
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If the fluid is viscous (1 # 0) we still have symmetry along the z axis,
but the symmetry with respect to the y axis is broken because due to the
friction. As a result dF3 = dF; # dF| and there is a net force along the
Z direction against the movement of the object or dragging it along in the
flow. This is the so-called drag force. It has been empirically determined
for various objects and here only the Stokes flow around a sphere of radius
R is given:

F, = 6mnRvy (3.21)
y
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Figure 3.5: Rotating cylinder in flow

Now let’s return to our cylinder, but consider that it is rotating with
angular velocity w in the clockwise direction i.e. & = —w, as illustrated in
Figure 3.5l Because at the surface the relative velocity between cylinder
and fluid is zero, the rotation drags the fluid flow along. On the upper
part (y > 0) the original flow velocity and the additional velocity from
the rotation add up to increase the total velocity, and for y < 0 the total
velocity is decreased: U = v, + W X R. Thus v9 > w3 and v; > v4 and if
we assume that Bernoulli is still valid we obtain that ps < ps and p; < p4.
This means that the pressure forces on the upper part are lower as on the
lower part and there is thus a net force along the positive g-direction. If
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the direction of rotation is reversed then also the direction of the force is
reversed.

It is left as a student exercise, but under the assumption that Bernoulli
can be applied, we obtain that

F, = 2nwR*pLog, (3.22)

where L is the length of the cylinder. We can generalise this for any object
or flow by considering the circulation I', which describes the flow around
an object. For the rotating cylinder we obtain

I = 51511 di' = 2mwR? (3.23)

This means we can rewrite Eq. as
F,=TpLvuy (3.24)

This expression is valid for any object, where L plays the role of the di-
mension perpendicular to the plane we are considering for the force. It also
applies if the object is not rotating. The circulation can still be obtained by
integrating the velocity around an object, or if we rewrite this using Stoke’s

theorem:
r://(vXﬁ)-M://Q-M (3.25)
A A

where A is a surface encompassing the object of interest. Equation is
the Kutta-Joukowski formula and is routinely used in engineering prob-
lems to calculate the (lift) force on objects. It again shows the usefulness
of the vorticity field in fluid dynamics.

The force on a rotating object in a flow, and its subsequent movement,
is referred to as the Magnus effect. It forms the basis of spin and slice in
tennis and related sports, or the curving of a football. In the more general
formulation of Eq. it is also applied for the lift on airplane wings and
the changes, or breakdown, of lift if the flow becomes turbulent.

3.5 Poiseuille flow

We will discuss here one more important example of flow before moving to
the topic of turbulence. Let’s consider a cylinder (or pipe) with length L
and radius R, oriented along the z-direction. A pressure gradient j—i induces
the flow of an incompressible fluid along the z-axis. Conservation of mass
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means that de = 0 (just as much fluid has to go in as out) and we consider
a steady ﬂow and thus also 8”1 = 0. We explicitly want to find a solution
for a laminar flow meaning that v, = vg = 0. The cylindrical symmetry
imposes a further condition namely that there should be no dependency on
6 and thus 9% = 0. Putting all this together we have that 7 = v, (r)

If we put this in the Navier-Stokes equation (Eq. [3.15| - and realise that
(7 V)7 = 0 because only 2% # 0 we obtain

[/ v, 10v,
or VY < or? i or ) (3.26)

Here g—’; is just the pressure gradient as parameter and the solution is rapidly
found to be

velr) =3 (;lp ) O In(r) + Gy (3.27)

We know that for » = 0 the velocity has to be finite and thus C; = 0. To find
the other integration constant we consider the boundary condition at r = R
where the velocity has to be zero v,(R) = 0 which leads to Cy = 4; ( dw)
and thus for the velocity profile

va(r) = ﬁ (Z—i) (r? — ) (3.28)

which is the parabolic profile sketched in Figure Note that in the
example Z—i < 0 as the flow goes to positive x direction.
The maximum velocity is achieved for r = 0 and is thus

and the volume flow can be obtained by integrating the velocity over the
area of the cylinder:

wa:[ZU-d5=iLRuxﬂ2mdr (3.29)

mdp (% 5 TR dp
S R*r — r¥dr = 3.30
2n dx (R —r7)dr 877 dx ( )
The pressure gradient can be considered as the driving force and thus the
factor “Ef is the resistance of the pipe per unit length.
It should be noted that Eq. 3.27] can also be used to calculate the flow

profile in other situations. For example for concentric pipes, or if there is
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Figure 3.6: Velocity profile for Poiseuille flow

no pressure gradient but the pipe is moving. In these cases the boundary
conditions, and thus the final expression for v,(r), are different.

To obtain a feeling for the nature of the vorticity, it is illustrative to
calculate the vorticity for the Poiseuille flow described above. In calculating
the curl of ¢ only the %L; term is unequal to zero and this appears in the
0y component. We thus get that

ov,  O0v, r (dp
0, — — =—— | = 3.31
’ (8:6 or ) 4n (d;t:) (3:31)
The vortex lines thus circle around the axis of the cylinder as illustrated
in Figure 3.7 The magnitude of the vorticity, and thus the density of the

vortex lines, increase with r. Surfaces of constant vorticity form cylinders
with fixed 7.

3.6 Reynolds number

The Navier-Stokes equation including viscosity (Eq. is not only ex-
tremely difficult to solve once we move beyond steady and laminar flow, it
is not even clear whether the obtained solution is unique. Furthermore, it
shows very chaotic behaviour, where the solution strongly depends on the
initial boundary conditions. However, solving this equation is extremely im-
portant for a wide range of applications, ranging from weather predictions
to vehicle design. Using powerful supercomputers and iterative algorithms
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Figure 3.7: Vorticity in Poiseuille flow

the solutions have become better and better, but often rely on wind tunnel
tests. One very important aspect of the Navier-Stokes equation is that it is
scalable. If a solution is found for a given object and flow, it can be applied
to larger or smaller objects or flows with different velocity or viscosity, as
long as a special ratio between these factors stays constant. This is the
Reynolds number Re which will be derived here.

We will again consider the flow of a fluid with viscosity 1 and density p
around a cylinder with diameter D = 2R with its axis along the z-direction.
The fluid velocity far away from the cylinder is along the z-direction and
U = v, = vg. Our velocity field is defined by Eq. and Eq. with
the boundary conditions that 7 = 0 for 2%+ y? = DT. The solutions clearly
depend on D, vy, n, p and our first step is to rewrite everything in units of
the first two. We get that

r=12'D y=yD z=2ZD v=1vv (3.32)

Here the variables with a prime are our new variables. For example we now
get that v/ =1 for 2/ > 1.

This change in units also leads to a new time
D
t=t— 3.33
- (333)

Furthermore, we will need to write our derivatives

0 Vo 0
0 10
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whereby the last one is representative for all spatial derivatives, summarised
in a new V’. Lastly, also the vorticity has to be expressed in these new units
N V0o — V0 v
Q=Vxv==-V xv == 3.36
D D (3.36)
Now we have all the ingredients to rewrite the vorticity diffusion equa-
tion Eq. in the units of D and vy.

oY , n 1
Q/ AR IZQ/ _ IQQ/ )
5 + V' x (' x ) —vaDV ( Rev ) (3.37)
With the Reynolds number thus defined as
Re = BUOD (cylinder) (3.38)
n

In general the Reynolds number can be defined considering any character-
istic dimension L perpendicular to the flow.

Re = Lol (3.39)
n
Exactly what dimension needs to be taken depends on the object and this
is well tabulated for a wide variety of cases.

The consequence of Eq[3.37 is that the flow is the same, but scaled,
if the Reynolds number is the same. For example, if we have determined
the flow in a wind tunnel for a 1:10 scale model, we know that the found
flow will be the same for the real object for 10 times lower flow velocity.
Of course, one can simultaneously change the viscosity and density as well,
just as long as the Reynolds number stays the same.

3.7 Turbulent flow

One of the most important applications of the Reynolds number is to de-
termine when the transition between laminar and turbulent flow happens.
In turbulent flow much energy is lost in the creation of vortices and the
flow resistance typically increases. However, there are also regimes where
the generation of a turbulent layer around the object actually reduces the
resistance. Most of this is rather empirical and tables can be found on the
internet (or in the library of STI).

As an example, the derivation of the Poiseuille flow required that the
flow was laminar. This is only valid if % > % where the Reynolds number
for a pipe is Re = @ with L the length of the pipe and R its radius. If
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Figure 3.8: Laminar flow around cylinder for Re ~ 0

we are outside this regime, the nice parabolic solution we obtained will no
longer be valid.

In this section we will just consider some examples of turbulent flow
around a cylinder for different Reynolds numbers, but similar flow patterns
exist for different objects.

For a negligible Reynolds number the flow is nicely laminar and sym-
metric as shown in Figure If we increase the flow velocity for the same
cylinder, the Reynolds number will increase and around Re ~ 13 we start
seeing some vorticity behind the cylinder. For larger Re ~ 26 this has
developed into two large symmetric vortices as shown in Figure [3.9]

At a Reynolds number of Re & 40 the character of the flow completely
changes again and steady solutions no longer exist. The vortices behind the
cylinder become unstable and get dragged along by the flow. This always
happens in alternating fashion and creates the so-called Karman vortex
street shown in Figure [3.10L The impressive consequence of the reduced
dimensions in the Reynolds number is that such vortex streets also occur
in cloud formations behind lone mountain tops, but then on the scale of
hundreds of kilometres.

When the Reynolds number increases even further, the flow becomes
increasingly noisy as shown in Figure In this regime the turbulence
can form a boundary layer that actually reduces the drag force and the
resistance.

It should be noted that from Eq. [3.37 and Eq. [3.39] it can not be con-
cluded that the flow for Re — oo is the same as for n — 0. The distinction
is clear from Figure and the type of results we obtained when ignor-
ing the viscosity. The reason for this difference is the second derivative in
Eq.[3.37 This will allow for very rapid variations in the flow to compensate
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Figure 3.9: Onset of turbulent flow around cylinder for Re &~ 13 and in-
creased turbulence behind cylinder for Re ~ 26

for the increase in Re and thus the product will not go to zero.

As a last remark, in the derivation of the Reynolds number we ignored
the second coefficient of viscosity and the compressibility of the fluid because
we used Eq. as a starting point. This means that the use of Re is only
valid for velocities well below the speed of sound in the fluid. If we want
to go to higher velocities, we have to use the Mach number. In this case
the flow is the same, but scaled, if both the Reynolds and Mach number
are the same.
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Figure 3.10: Karman vortex street behind a cylinder for Re ~ 140

Figure 3.11: Turbulent flow around cylinder for Re ~ 2000 and for
Re ~ 10000



Chapter 4

Various end stuff

This script has been written under substantial time pressure and any reader
might recognise this. Although care has been taken to avoid any mistakes,
I can’t guarantee the absence of typos and other errors. Any comments in
this respect are more than welcome.

It should be realised that this script is not meant to replace a proper text
book and I have no claim with regard to completeness. Many topics would
deserve a more in-depth treatment and there are excellent texts that do
exactly this. My only aim is to provide an overview of my lecture as given
at this level and covering the knowledge that I require from my students.

Lastly, many figures in this script have been taken from a variety of
sources and I have not been as strict as I should have been listing these
sources. This script is only meant for distribution with the relevant stu-
dents at the EPFL and not for any further distribution or commercial gain.
However, if anyone feels that their copyright has been inflicted I kindly ask
them to contact me and the issue will be fixed immediately.
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